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Ro‑vibrational energies of cesium 
dimer and lithium dimer 
with molecular attractive potential
C. A. Onate1*, T. A. Akanbi1 & I. B. Okon2 

An approximate solution of the Schrӧdinger equation for a molecular attractive potential was 
obtained using the parametric Nikiforov–Uvarov method. The energy equation and the corresponding 
radial wave functions were calculated. The effects of the potential parameters on the energy 
eigenvalues were examined. The thermal properties under the molecular attractive potential were 
calculated and the behaviour of the thermal properties with the maximum quantum state (λ) and the 
temperature parameter (β) respectively, were studied. Using the molecular spectroscopic parameters, 
the Rydberg–Klein–Rees (RKR) of cesium dimer and lithium dimer were both obtained and compared 
with the experimental values. The RKR values of both cesium dimer and lithium dimer calculated 
aligned with the observed values. The deviation and average deviation of the RKR for each molecule 
were also calculated.

A good understanding of a molecular structure depends on the internuclear and molecular potential models. 
This creates a larger space of study on the molecular potential functions in the diatomic domain, which geared 
different authors to carry out a number of researches in this area. The molecular potential functions have spec-
troscopic parameters such as the dissociation energy (De), equilibrium bond separation (re) and a screening 
parameter (α) that make them suitable for the description of the diatomic molecules. The molecular screening 
parameter is calculated using a simple formula1–3

where ωe is a vibrational frequency, c is speed of light, W is Lambert function, µ is the reduced mass. With the aid 
of the spectroscopic parameters, several molecular potential functions were formulated and studied for different 
applications. For instance, the improved Rosen Morse potential function formulated by Jia et al.4, was used to 
study the RKR of sodium dimer, nitrogen dimer and cesium dimer respectively in Refs.2,5,6. In Refs.7 and8 respec-
tively, the improved Manning-Rosen potential function also formulated by Jia et al.4 was used to calculate the 
rotation vibrational transition frequency of hydrogen fluoride (HF). The Tietz-Wei potential function was used 
to study eigensolutions and thermodynamic properties in Ref.9. In Ref.3, an improved deformed four parameter 
exponential-type potential model was formulated and studied under the RKR of cesium molecule. The same 
RKR of cesium molecule was studied under Tietz-Hua oscillator in Ref.10. Desai et al.11, in one of their papers, 
calculated the RKR of nitrogen molecule and hydrogen molecule under the Morse potential and modified Morse 
potential. Recently, Horchani et al.12, formulated an improved generalized Pӧschl–Teller oscillator and obtained 
the RKR of potassium molecule. Jia et al.13, in one of the papers, calculated the thermodynamic properties of 
lithium dimer under the improved Manning-Rosen potential. Onate and Idiodi14, reported Fisher information 
and complexity measures of the generalized Morse potential model. The thermodynamic properties of Shifted 
Deng-Fan potential was also reported by Oyewumi et al.15. The scattering state solutions for Manning-Rosen 
potential was reported by Qiang et al.16. In Ref.17, Idiodi and Onate obtained Fisher information and variance 
for Frost Musulin potential. Onate et al.18, also reported some theoretic quantities under Tietz-Hua potential. 
Edet et al.19, calculated the thermal properties of the Deng–Fan–Eckart potential. The bound state solutions and 
energy spectra for some molecules under some molecular potentials were also studied and reported by different 
authors. Motivated by the usefulness and influence of the molecular potentials, this study aims to transform an 
attractive potential model to a molecular potential model and study the one-dimensional Schrödinger equation 
with the transform potential. The study also intends to calculate the RKR values of two molecules (cesium dimer 
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and lithium dimer) and thermodynamic properties of the potential. The attractive potential is a four-parameter 
exponential-type potential formulated in 1993 by Williams and Pouliss20. According to these authors, the four 
parameters are A, B, C and α. The attractive potential has received acceptable reports under relativistic and non-
relativistic regime by few authors21–23. The potential cannot be used to describe the detail features of a molecule 
since there are no spectroscopic parameters. Here, the attractive potential will be modified into a molecular 
potential function to fit the description of a given molecule. The molecular attractive potential model in this 
study is given by

The parameters A, B and C are potential parameters. In the previous reports on the attractive potential, the 
potential parameters were given as A =

(

α
2

)2
, B = �0α

2

4
− 2α2 and C = α2 − �0α

2

4
, where −∞ < �0 < +∞, 

however, in our computations, these values may not be used. In the present work, these parameters are given 
as A = �0

2
, B = 2(1− �0) and C = A+ B+ 2. This is to enable us have the desired results. The scheme of our 

work is as follows: The bound state of the radial Schrödinger equation is given in the next section. The thermal 
properties of the potential are given in section 3. The discussion of results and conclusion respectively are given 
in sections 4 and 5.

Bound state solutions of the Schrödinger equation with molecular attractive 
potential
From the three-dimensional Schrödinger equation, the radial Schrödinger equation with a centrifugal term is 
given as

where V(r) is the interacting potential, Enℓ is the non-relativistic energy of the system, � is the reduced Planck’s 
constant, n is the quantum number,Rnℓ(r) is the wave function. The centrifugal term in Eq. (3) can be over-come 
by employing the following approximation scheme

In this work, the authors decided to use parametric Nikiforov–Uvarov method for the calculation of the 
energy equation and the wave functions. The parametric Nikiforov–Uvarov method is a popular and accurate 
method to obtain energy equation and the wave functions. It was derived from the original Nikiforov–Uvarov 
method25. The method has been widely reported and as such, the detail of the method will not be presented 
in this work. To use this method, Tezcan and Sever26, formulated a general form of a second-order differential 
equation of the form

Following the work of these authors, the condition for eigenvalues equation and wave functions respectively, 
are given by24,26–29

where P(α,β)n  are Jacobi polynomials. The parametric constants in Eqs. (6) and (7) are mathematically deduced as

The detail of the methodology can be found in Ref.26 and other literatures. When Eq. (2) and Eq. (4) are 
substituted into Eq. (3), the radial Schrödinger equation given in Eq. (3) becomes

Defining a variable of the form y = e−αr , and substitute it into Eq. (9), then, we have
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where

Comparing Eq. (10) with Eqs. (5), (8) turns out to be

Substituting Eq. (12) into Eqs. (6) and (7) respectively, we have the energy equation and its corresponding 
wave functions for the system as follows

The molecular attractive potential and thermodynamic properties
To calculate the thermodynamic properties for the molecular attractive potential, the energy equation given in 
Eq. (13) is written in a compact form which is purely vibrational. Thus Eq. (13) is written as

Having written the energy equation in a compact form that is suitable for the calculation of the thermody-
namic properties, then, the partition function of the system can be define as

Now, defining ρ = (n+ δ) and substituting Eqs. (17) into (19), the partition function given above can easily 
be written in the form
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Vibrational mean energy. 

where

Vibrational specific heat capacity. 

where

Vibrational entropy. 

Vibrational free energy. 

Discussion
The effects of the three potential parameters on the energy eigenvalues are shown in Fig. 1. It is observed that 
as A and C respectively decreases from − 10 to minus infinity, the energy tends to be constant. In the same way, 
as each of A and C increases from 0 to infinity, the energy tends to be constant. In each case, the energy has two 
turning points. The two turning points lies between − 6.5 and − 4.5 for each of A and C . The variation of energy 
with B goes differently from that of A and C . The energy of the system goes to negative infinity as B rises. The 
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energy also has two turning point between B = −11.5 and B = −9.5. The behaviour of the vibrational partition 
function with the maximum quantum state (λ) and the temperature parameter (β) respectively, are shown in 
Fig. 2. The vibrational partition function decreases monotonically as both λ and β respectively, increases. When 
the partition function decreases as β increases, it simply means that the partition function increases only when 
the temperature of the system rises. In both cases, the partition function tends to converge at various values of 
β and λ. In Fig. 3, the plots of the vibrational mean energy against λ and β respectively are shown. The vibra-
tional mean energy rises with an increase in λ but decreases with increasing β. The vibrational mean energy for 
β = 0.001, 0.00104, 0.00107 and 0.00109 are equal for all values of λ. For various values of λ, the vibrational mean 
energy tends to converge as the temperature of the system rises gradually. The effects of the maximum quantum 
state and temperature parameter respectively, are shown in Fig. 4. The vibrational specific heat capacity varies 
directly with β. At β = 0, the vibrational specific heat capacity for λ = 1.5, 2, 2.5 and 3 converged. As β increases, 
the vibrational specific heat capacity for various λ diverged. The vibrational specific heat capacity rises as λ 

Figure 1.   Variation of energy against (A,B,C) respectively.
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increases for some values and have a turning point at λ = 4225. Though the specific heat capacity decreases as λ 
increases above 4225, the decrease is not as sharp as the increase for λ < 4225. Figure 5 showed the variation of 
entropy with both maximum quantum state and temperature parameter. The vibrational entropy rises with the 
maximum quantum state λ for the four values of β studied. In the case of β, the vibrational entropy decreases 
for some values of β and have a turning point. The turning point of the entropy for various λ differs from one 
another. However, as the temperature parameter increases, the vibrational entropy for various λ tends to converge. 
Figure 6 presents the variation of free energy with both λ and β respectively. The vibrational free energy varies 
directly with the maximum quantum state (λ) and increases monotonically as the temperature parameter (β) 
increases. At higher values of β, the vibrational energy has a turning point.

Since the potential parameters ( A , B and C ) are not spectroscopic parameters, a careful selection of their values 
is required. To obtain a desired result, in this work, the potential parameters are taken as A = �0

2
, B = 2(1− �0) 

and C = A+ B+ 2 in the computations of numerical values. In Table 1, the energy spectrum for three values of 
the dissociation energy with various quantum number and angular momentum quantum number were presented. 
As it can be seen from the table, the higher the dissociation energy, the higher the energy of the system. It also 
shows that the energy of the system varies directly with the quantum number. With a carefully selection of the 
relationship for the potential parameters, the results obtained for the molecular attractive potential equal the 
results for Generalized Morse potential. In Table 2, we presented a comparison of the results of the molecular 

Figure 2.   The variation of vibrational partition function against the maximum quantum state (λ) and 
temperature parameter (β) respectively.

Figure 3.   Variation of vibrational mean energy (U) against the maximum quantum state (λ) and the 
temperature parameter (β) respectively.
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attractive potential and that of the Generalized Morse potential for two different values of the equilibrium bond 
separation. The results showed a good agreement. In the computations, �0 = 2. In Table 3, the calculated RKR 
vibrational energies and the experimental data for cesium dimer and lithium dimer are presented using Eq. (12) 
and the experimental data taken from Refs.25 and26. For cesium dimer, De = 2722.28 cm−1,re = 5.3474208 Ȧ, and 
ωe = 28.8918 cm−1. For lithium dimer, De = 2722.28 cm−1, re = 4.173 Ȧ and ωe = 65.130 cm−1. The deviation 
σ for both the cesium dimer and the lithium dimer were calculated. For the cesium dimer, the deviation increases 
from the lowest vibrational level to the highest vibrational level. The deviation in the lithium dimer increases 
from the lowest vibrational level to the first three lower vibrational level, then the pattern of deviation changes 

Figure 4.   Variation of the vibrational specific heat capacity against the maximum quantum state (λ) and 
temperature parameter (β) respectively.

Figure 5.   Variation of vibrational entropy against the maximum quantum state (λ) and the temperature 
parameter (β) respectively.
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Figure 6.   Variation of vibrational free energy against the maximum quantum state (λ) and temperature 
parameter (β) respectively.

Table 1.   Energy spectrum (En,ℓ) for various n and ℓ states for three different values of the dissociation energy 
with µ = � = 1, α = 0.25, re = 0.20 and �0 = 2.

n ℓ De = 5 De = 10 De = 15

0 0 3.977598297 6.798287056 9.109637217

1
0 4.792524933 9.075571808 13.01290785

1 4.955213995 9.592230252 13.92388300

2

0 4.967085778 9.696564702 14.20710054

1 4.999752546 9.882375036 14.57263827

2 4.980612046 9.981247750 14.83593431

3

0 4.999955612 9.920455196 14.69371353

1 4.980876842 9.984079176 14.85561791

2 4.926380148 9.998356127 14.96591760

3 4.844354168 9.962890521 14.99996366

4

0 4.975269344 9.993868287 14.90806828

1 4.926609948 9.997542268 14.97297704

2 4.847057320 9.962692496 14.99999958

3 4.744069524 9.891525886 14.97589134

4 4.620971626 9.791084240 14.90996055

5

0 4.916959544 9.991867929 14.98978447

1 4.847020680 9.959496312 14.99972101

2 4.746922555 9.891084068 14.97436300

3 4.625214934 9.792547351 14.90959415

4 4.484544594 9.668886423 14.81149912

5 4.326164617 9.523261130 14.68535808
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without following a definite direction. To ascertain the closeness of the calculated values to the experimental 
values, the average deviation for each molecule was calculated using the formula9

where ERKR is the experimental values, Ev0 is the calculated value and N  is the number of experimental RKR 
data points. With the formula, the average deviation for the cesium dimer is 0.4415% and that of the lithium 
dimer is 0.0007%.

(29)σav =
100

N

∑

v

∣

∣

∣

∣

ERKR − Ev0

ERKR

∣

∣

∣

∣

,

Table 2.   Comparison of energy eigenvalues as a function of the parameter a for 2p, 3p, 3d, 4p, 4d and 4f states 
with µ = � = 1, and �0 = 2.

State α Present 30 31 Present 30 31

2p

0.05 7.860596160 7.86080 7.862800 4.140678930 4.14068 4.14208

0.10 7.952471120 7.95247 7.955370 4.218346794 4.21835 4.22040

0.15 8.043224870 8.04322 8.047240 4.295518199 4.29552 4.29870

0.20 8.132870439 8.13287 8.138420 4.372213175 4.37221 4.37690

3p

0.05 10.98907607 10.9976 10.99980 7.524809220 7.53258 7.53500

0.10 11.14518564 11.1617 11.16470 7.708790323 7.72393 7.72710

0.15 11.29818128 11.3224 11.32647 7.891196980 7.91330 7.91770

0.20 11.44806887 11.4795 11.48513 8.072028091 8.10071 8.10660

3d

0.05 10.21535527 10.2154 10.21651 5.739126228 5.73913 5.74040

0.10 10.35103947 10.3510 10.35409 5.843270280 5.84327 5.84650

0.15 10.48372939 10.4837 10.48992 5.945053133 5.94505 5.95150

0.20 10.61346374 10.6135 10.62403 6.044533598 6.04453 6.05530

4p

0.05 12.48657121 12.4974 12.49920 9.601425934 9.61280 9.61560

0.10 12.67524352 12.6960 12.69851 9.860761187 9.88269 9.88620

0.15 12.85677735 12.8865 12.89010 10.11501518 10.1467 10.1514

0.20 13.03115169 13.0689 13.07400 10.36412165 10.4047 10.4111

4d

0.05 12.09143796 12.0977 12.09890 8.485907020 8.49272 8.49480

0.10 12.27048800 12.2825 12.28570 8.691367758 8.70461 8.70870

0.15 12.44340752 12.4608 12.46715 8.892880024 8.91218 8.91940

0.20 12.61023933 12.6326 12.64324 9.090508156 9.11551 9.12720

4f

0.05 11.81953623 11.8195 11.82090 7.433455810 7.43346 7.43510

0.10 11.99296121 11.9930 11.99810 7.581418806 7.58142 7.58680

0.15 12.16044661 12.1604 12.17180 7.724482273 7.72448 7.73610

0.20 12.32207217 12.3221 12.34210 7.862757512 7.86276 7.88310

Table 3.   Comparison of RKR data (cm−1) with calculated energies of Cs2
(

33
∑+

g

)

 molecule and 7Li2
(

a3
∑+

u

)

 
molecule.

v

Cs2
7
Li2

RKR32 Calculated values σ RKR33 Calculated values σ

0 19,477.5507 19,477.55890 − 0.008200 31.8570 31.80133823 0.05566177

1 19,506.2939 19,506.29961 − 0.005710 90.4530 90.39141775 0.06158225

2 19,534.8916 19,534.87673 0.014870 142.523 142.4158566 0.10714340

3 19,563.3470 19,563.29044 0.056560 188.240 188.1839027 0.05609730

4 19,591.6634 19,591.54092 0.012248 227.679 227.4610980 0.21790200

5 19,619.8441 19,619.62831 0.215790 260.837 260.5359641 0.30103590

6 19,647.8922 19,647.55284 0.339360 287.665 287.3994373 0.26556270

7 19,675.8110 19,675.31463 0.496370 308.098 307.9456174 0.15238260

8 19,703.6037 19,702.91391 0.689790 322.155 322.2954606 − 0.14046040

9 19,731.2736 19,730.35084 0.922760 330.170 330.7598462 − 0.58984620

10 19,758.8239 19,757.62551 1.198800 333.269 333.5574895 − 0.02884895
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Conclusion
The solutions of a one-dimensional Schrödinger equation were obtained under a molecular potential with three 
different potential parameters. It was noted that for negative values of the potential parameters, the potential 
parameters have the same effects on the energy eigenvalues but for positive values of the potential parameters, 
the effect of one differs from the effects of the other two parameters. The effect of λ and β on the thermal proper-
ties are the same except that of the mean energy. The RKR of both cesium dimer and lithium dimer calculated 
aligned with the observed values. However, the average deviation of lithium dimer from the observed value is 
far smaller than the average deviation of cesium dimer from the observed value.
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