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The third form electric organ 
discharge of electric eels
Jun Xu*, Xiang Cui & Huiyuan Zhang 

The electric eel is a unique species that has evolved three electric organs. Since the 1950s, electric 
eels have generally been assumed to use these three organs to generate two forms of electric organ 
discharge (EOD): high-voltage EOD for predation and defense and low-voltage EOD for electrolocation 
and communication. However, why electric eels evolved three electric organs to generate two forms 
of EOD and how these three organs work together to generate these two forms of EOD have not 
been clear until now. Here, we present the third form of independent EOD of electric eels: middle-
voltage EOD. We suggest that every form of EOD is generated by one electric organ independently 
and reveal the typical discharge order of the three electric organs. We also discuss hybrid EODs, which 
are combinations of these three independent EODs. This new finding indicates that the electric eel 
discharge behavior and physiology and the evolutionary purpose of the three electric organs are more 
complex than previously assumed. The purpose of the middle-voltage EOD still requires clarification.

Humans have known of the special ability of electric eels to stun prey and people since ancient  times1,2. This 
special force of “electricity” has attracted the attention of scientists since the early stage of the development of 
 science1–3: Williamson and  Walsh2,3, Von  Humboldt2,3, and  Faraday3,4 used electric eels as electricity sources in 
experiments. The electricity utilized by these scientists is currently known as high-voltage electric organ discharge 
(EOD), which can reach at most 860 V according to recent  research5. Biologists  Hunter6 and  Darwin7 dissected 
and studied the electric eel.  Hunter6 reported on the electric eel electric organs in 1775 and found that these eels 
have two separate electric organs.  Sachs8 found the third electric organ in 1877. Therefore, to date three pairs of 
electric organs of electric eels have been described in Electrophorus, and these are known as the Hunter’s organ, 
the main organ and the Sachs’  organ9–13. Coates et al.14 reported that electric eels can generate a second form of 
EOD, i.e., low-voltage EOD, in 1937. In 1958,  Lissmann15 found that weak electric fish use low-voltage EOD for 
electrolocation and communication, thus revealing the function of the gymnotiform low-voltage EOD.  Catania16 
reported that electric eels emit three distinct types of EOD: (i) low-voltage pulses for sensing their environment, 
(ii) pairs and triplets of high-voltage EODs given off periodically while hunting in complex environments, and 
(iii) high-frequency volleys of high-voltage pulses during prey capture or defense. Although Catania classified 
EODs into three types, both type 2 and type 3 EODs are high-voltage EODs. From the voltage amplitude point 
of view, two types of EOD have been found: high-voltage EOD for predation and defense and low-voltage EOD 
for navigation and communication. Since the 1930s, electric eels have been assumed to control these three pairs 
of organs to generate the above two forms of EOD, with many studies related to electric eel discharge behavior 
and physiology being based on this  assumption1,5,10,11,16.

However, this assumption has two problems: (1) Why did electric eels evolve three separate electric organs to 
generate two forms of EOD? (2) How do these three electric organs work together to generate these two forms 
of EOD? Problem 1 has yet to be solved, but some conflicting descriptions regarding Problem 2 exist in different 
papers: Traeger et al.10,11 and  Crampton17 described that high-voltage EOD was generated by the main organ and 
the anterior portion of Hunter’s organ, while low-voltage EOD was generated by Sachs’ organ and the posterior 
portion of Hunter’s organ. Gotter et al.18, Sillar et al.19 and Souza et al.20 described that high-voltage EOD was 
generated by the main organ, while low-voltage EOD was generated by Sachs’ organ and Hunter’s organ. The 
key point is that the discharge mode and function of Hunter’s organ are not clear, even though this organ was 
found in  17756.

By precisely measuring the voltage waveform and space distribution along an electric eel’s body, we found that 
electric eels generate three independent forms of EOD instead of just two, and each EOD voltage space distribu-
tion matched one electric organ’s shape and position: The low-voltage EOD space distribution matched the shape 
and position of Sachs’ organ. The high-voltage EOD space distribution matched the shape and position of the 
main organ. The third EOD form, which we define as middle-voltage EOD, has an amplitude that is approximately 
2.4 times that of low-voltage EOD and 1/5 that of high-voltage EOD and a voltage space distribution along the 
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body of an electric eel that matches the shape and position of Hunter’s organ. This observation indicates that 
electric eels use three pairs of electric organs to generate three forms of EOD independently. We also found some 
irregular EOD waveform, and they can be explained as simply combinations of low-voltage EOD, middle-voltage 
EOD and high-voltage EOD. This conclusion reveals that the electric eel discharge behavior and physiology are 
more complex than previously assumed. However, the purpose of the middle-voltage EOD and why electric eels 
evolved Hunter’s organ still require clarification.

Results
The setup of the experiments. We experimented on a 48 cm long Electrophorus electricus and placed it 
into a 50 × 32 × 35 cm (L × W × H) glass tank. We then designed a 48 × 36 cm (L × H) acrylic board, which was 
used to mount the voltage-measuring electrodes. We employed 33 electrodes made of nickel-titanium alloy, as 
shown in Fig. 1a. The far-left electrode, i.e., electrode 0, works as a voltage and distance reference point: assume 
that its voltage is 0 V and its location is 0 cm. The other 32 electrodes, i.e., electrode 1 to electrode 32, were used 
to measure the voltage. The distance between two electrodes was 1.5 cm, and the total distance was equal to the 
electric eel length of 48 cm. The 32-channel 16-bit AD converter we used had a sample rate of 31.25 ksps per 
channel, and the voltage-measuring span was ± 300 V. As a result, the voltage-measuring system time resolution 
was 0.032 ms, voltage resolution was 9.16 mV and space resolution was 1.5 cm. We used the acrylic board to 
slightly push the electric eel toward the glass tank side, make the electrode 0 contacted to the tip of the tail of the 
eel, as shown in Fig. 1b. Fresh water was added to the glass tank to a depth of 4 cm, which just covered the electric 
eel’s back. The water ensured that all 33 electrodes could measure some voltage. Though a few of them may not 
have contacted the electric eel skin well, the water voltage measured was very similar to the skin voltage because 
of the short distance. Figure 1c presents the voltage-measuring system schematic.

We used a glass rod to touch the electric eel’s head to evoke discharge and a computer to record all 32 elec-
trode voltage waveforms. Figure 1d shows the voltage waveform recorded by electrode 32. It lasted 45 s totally. 
The analysis below is based on the 45 s data of all 32 electrodes recorded.

Analysis of low-voltage EOD. We first analyzed the low-voltage EOD waveform at 3.518 s, as shown in 
Fig. 2a EOD 1. This EOD was also enlarged, as shown in Fig. 2b. When checking all 32 electrode voltages at the 
moment of the EOD 1 pulse peak, we found that the electrode 3 voltage was the lowest and less than 0, which 
means that electrode 3 is the negative pole of this EOD. Then, we used electrode 3 as the voltage reference point, 
and all 33 electrode voltages (including the 0 V of electrode 0) were subtracted from electrode 3 voltage. The 
results are represented in Fig. 2c by the magenta line. The horizontal axis is the distance from every electrode 
to the electric eel’s tail end, and the vertical axis is the voltage amplitude of every electrode relative to that of 
electrode 3. Clearly, the voltage of electrode 18 is the highest, reaching 23 V. According to electromagnetic field 

Figure 1.  Using 32 channels AD Converter to record electric eel discharge. (a) Acrylic glass to which 2 × 16 
channel AD converters and 33 electrodes were attached. (b) Measuring and recording the electric eel discharge. 
(c) Schematic of the voltage-measuring electrodes and the electric eel. (d) The discharge waveform recorded by 
electrode 32 (using electrode 0 as reference).
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theory, the negative pole should be located near electrode 3 at the 4.5 cm ± 0.75 cm position, and the positive pole 
should be located near electrode 18 at 27 cm ± 0.75 cm.

Figure 2.  EOD voltage waveform and space distribution. (a) The discharge waveform recorded by electrode 
32(using electrode 0 as reference) (b) Enlarged view of the low-voltage EOD 1. (c) The voltage space distribution 
along the electric eel body in the period of low-voltage EOD 1 (using electrode 3 as reference). (d) The 48 cm 
long electric eel and its three electric organs: the orange part shows Sachs’ organ, the green part shows the main 
organ, and the purple part shows Hunter’s organ. (e) Enlarged view of the high-voltage EOD 2(using electrode 0 
as reference). (f) The voltage space distribution along the electric eel body in the period of high-voltage EOD 2 
(using electrode 9 as reference).
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The blue line is the waveform 0.32 ms after the pulse peak instant, and the red line is the waveform 0.48 ms 
after the pulse peak instant. From these three lines, we can find that all 33 electrode voltages reached their maxi-
mum value at the same time and dropped synchronously, which means that no voltage phase delay occurs along 
the electric eel’s body within our measurement accuracy. Supplementary Movie 1 demonstrates the changing 
process of this low-voltage EOD.

We dissected this eel. Figure 2d shows its three electric organs boundary. Compared Fig. 2c with Fig. 2d, we 
found that this EOD negative pole and positive pole position matched the position of Sachs’ organ. The voltage 
increased with distance in the 4.5–27 cm portion, but the increasing rate decreased with distance, which matched 
the shape of Sachs’ organ: it becomes narrower along the electric eel’s body, which means fewer electrocytes and 
a lower rate of voltage increase. We thus concluded that low-voltage EOD is independently generated by Sachs’ 
organ.

Analysis of high-voltage EOD. We analyzed the high-voltage EOD at 12.64 s, as shown in Fig. 2a EOD 
2. This EOD was also enlarged, as shown in Fig. 2e. When checking all 32 electrode voltages at EOD 2 pulse 
peak, we found that electrode 9 had the lowest voltage among all 32 electrodes and was less than 0, which means 
that electrode 9 is the negative pole of the high-voltage EOD. Then, we used electrode 9 as the voltage reference 
point, and all 33 electrode voltages (including the 0 V of electrode 0) were subtracted from that of electrode 
9, the results of which are depicted by the magenta line in Fig. 2f. The voltage of electrode 26 was the highest, 
reaching 278 V. Then, the negative pole was located at 13.5 cm ± 0.75 cm, and the positive pole was located at 
39 cm ± 0.75 cm. The blue line is the waveform 0.32 ms after the pulse peak instant, and the red line is the wave-
form 0.48 ms after the pulse peak instant. Supplementary Movie 2 demonstrates the changing process of this 
high-voltage EOD.

The high-voltage EOD negative pole and positive pole positions matched the main organ’s position, as shown 
by the green region of Fig. 2d. The voltage increased with the distance in the 13.5–39 cm portion, and the increas-
ing rate increased with the distance also, which matches the shape of the main organ: it became wider along the 
electric eel’s body, which means more electrocytes and a higher rate of voltage increases. Thus, we can conclude 
that high-voltage EOD is independently generated by the main organ.

Compared the low-voltage EOD with the high-voltage EOD, we found that their waveforms in the time 
domain are very similar, except for the amplitude difference, as Fig. 2b,e show. However, a large difference in the 
voltage space distribution along the electric eel’s body exists, as shown in Fig. 2c,f. The negative pole and posi-
tive pole positions apparently changed. This change means that the traditional “standard” electric eel discharge 
voltage measurement method, which measures the voltage from the tip of the snout to the tip of the  tail5,21, is 
an underrepresentation of the maximum voltage of the high-voltage EODs and low-voltage EODs, measured 
between the positions of the negative and positive poles. Measuring the voltage between the two ends of the 
electric organ will yield a more precise result.

The third form EOD: middle-voltage EOD. We found that some EOD voltages are different from the 
low-voltage EOD and high-voltage EOD, as shown in Fig. 2a (EOD 3 and EOD 4). EOD 4 is not clear in Fig. 2a 
but clear in Fig.  3a when enlarged. The EOD waveform is similar to the low-voltage EOD and high-voltage 
EOD except for the amplitude. The electrode 3 voltage is the lowest among all 32 electrodes and less than 0 at 
the pulse peak instant. Then, we used electrode 3 as the voltage reference point, and all 33 electrode voltages 
(including the 0 V of electrode 0) were subtracted from electrode 3 voltage. The results are represented in Fig. 3b 
by the magenta line. The voltage of electrode 26 is the highest, which means that the negative pole is located at 
4.5 cm ± 0.75 cm and that the positive pole is located at 39 cm ± 0.75 cm. The blue line is the waveform 0.32 ms 
after the pulse peak instant, and the red line is the waveform 0.48 ms after the pulse peak instant. Supplementary 
Movie 3 demonstrates the changing process of this middle-voltage EOD.

The maximum voltage of the magenta line reaches 56 V, which is 2.4 times that of the low-voltage EOD and 
1/5 that of the high-voltage EOD. This EOD negative pole is the same as the low-voltage EOD, but the positive 
pole is the same as the high-voltage EOD. This EOD voltage space distribution waveform is similar to a straight 
line, different from the low-voltage EOD convex waveform in Fig. 2c and the high-voltage EOD concave wave-
form in Fig. 2f. Thus, this EOD is a completely new one that is different from low-voltage EOD and high-voltage 
EOD, which we define as middle-voltage EOD.

The middle-voltage EOD negative pole and positive pole matched the position of Hunter’s organ, as shown 
by the purple region of Fig. 3c. The voltage increased with distance in the 4.5–39 cm portion, and similar to 
a straight line, the rate increase with distance was constant. This observation matched the constant width of 
Hunter’s organ along the electric eel’s body, from which we can conclude that the middle-voltage EOD is gener-
ated by Hunter’s organ independently.

Analysis of irregular EOD. According to circuit theory, these three EODs have different voltages; if two or 
three of them discharge at the same time, a loop current will flow inside the electric eel body. This current will 
increase the voltage of the lower EOD but decrease the voltage of the higher EOD, harming the EOD normal 
function. However, we found some irregular EOD waveform, they can be explained only as the discharging of 
two or three electric organs, as shown in Fig. 2a EOD 6, This EOD was also enlarged, as shown in Fig. 4a.

The pulse waveform in Fig. 4a at 39.693 s is not a typical electric eel EOD, its duration is longer than that of 
any kind of normal EOD, and the waveform increasing trend changes at point A. By analyzing the voltage space 
distribution at point A, point B (0.384 ms after point A) and point C (0.768 ms after point A), the results are as 
shown in Fig. 4b (using electrode 3 as reference). Compared with Fig. 4c, we find that the voltage space distribu-
tion at point A is a typical middle-voltage EOD but at point C is a typical high-voltage EOD. The voltage space 
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distribution at point B seems to be an intermediate waveform. This EOD pulse can be explained as follows: The 
electric eel emits a middle-voltage EOD following a low-voltage EOD as the normal but launches the high-voltage 
EOD at the wrong time, i.e., before the middle-voltage EOD has finished. Then, the high-voltage EOD conflicts 
with the middle-voltage EOD, generating an internal loop current and causing high-voltage EOD “failure” (the 
voltage achieved was only 80 V). The electric eel launched another high-voltage EOD soon after (1.92 ms after 
point C) to “make up for this mistake”. Therefore, this irregular EODs can be treated as malfunctions of electric 
eel discharge order. Some other irregular EOD waveform that can also be explained by the combination of low-
voltage EOD, middle-voltage EOD and high-voltage EOD also exist. We define low-voltage EOD, middle-voltage 
EOD and high-voltage EOD as basic EODs and other irregular EODs as hybrid EODs. Supplementary Movie 4 
demonstrates the changing process of this irregular EOD.

Figure 3.  The third form EOD: middle-voltage EOD. (a) Enlarged view of the EOD 4 as shown in Fig. 2a (using 
electrode 0 as reference). (b) The voltage space distribution along the electric eel body in the period of middle-
voltage EOD 4 (using electrode 3 as reference). (c) The 48 cm long electric eel and its three electric organs.

Figure 4.  The irregular EOD. (a) Irregular EOD waveform, which is an enlarged view of the EOD 6 in Fig. 2a 
(using electrode 0 as reference). (b) Comparison of the three different instant voltage space distribution along 
the body of 48 cm long electric eel (using electrode 3 as reference) (c) The 48 cm long electric eel and its three 
electric organs.
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Discussion
Although the middle-voltage EODs were easily recorded, and frequently generated, they have never previously 
been treated as an independent EOD type. According to the description above, we use the joint spatiotemporal 
analysis method: we use the EOD waveform voltage amplitude (time domain) as shown in Fig. 5a with the volt-
age space distribution (space domain) along the electric eel’s body as shown in Fig. 5b as the judge standard, 
confirmed that the middle-voltage pulse is a new form of independent EOD. Compared these three different 
EOD voltage space distributions with the three electric organ positions, as shown in Fig. 5b,c, and based on the 
fact that no evidence has arisen until now that electric eels can control part of their electric organs to carry out 
discharge, we believe that every form of EOD is generated by one electric organ independently. We can use these 
three basic EODs combination to explain irregular EODs waveform as hybrid EODs.

The amplitude difference between the middle-voltage EOD and the low-voltage EOD is not as apparent as 
the difference between the high-voltage EOD and the low-voltage EOD, as shown in Fig. 5a. Some hybrid EODs 
also exist, as Fig. 4a shows, which makes the question complicated. For this reason, the middle-voltage EOD 
has been overlooked since 1937. It has always been mixed with hybrid EODs and has been treated as an “over 
discharged” low-voltage EOD or an “unsuccessful” high-voltage EOD.

The middle-voltage EOD always occurs once between a low-voltage EOD and a high-voltage EOD. Figure 5a 
shows a typical scenario of electric eel discharge with time: The first pulse is the low-voltage discharge of Sachs’ 
organ at 21.6333 s, followed by the middle-voltage discharge of Hunter’s organ 10.5 ms later, and finally the high-
voltage discharge of the main organ 2.9 ms later. Figure 3a also depicts a typical scenario of electric eel discharge. 
Supplementary Movie 5 demonstrates the changing process of this typical scenario of electric eel discharge. 
Sometimes no high-voltage EOD occurs, as shown by EOD 3 in Fig. 2a. The middle-voltage EOD occurs only 
one time following a low-voltage EOD. We never observe the middle-voltage EOD to occur repetitively and inde-
pendently, as does the low-voltage EOD and high-voltage EOD. There are very few chances the middle-voltage 
EOD occur after a high-voltage EOD: we found only one time it occurred after a high-voltage EOD until now.

For these three basic EOD voltage amplitudes, based on the 45 s data of the 48 cm eel, the minimum value 
of the low-voltage EOD is 22.8 V, the maximum value of the low-voltage EOD is 25.8 V, and the difference is 
approximately 12%. The minimum value of the middle-voltage EOD is 38.5 V, the maximum value of the middle-
voltage EOD is 56.5 V, and the difference is approximately 32%. The minimum value of the high-voltage EOD 
is 210 V, the maximum value of the high-voltage EOD is 279 V, and the difference is approximately 33%. The 
hybrid EODs voltage change from 52.9 to 212.2 V. The minimum value of the middle-voltage EOD is approxi-
mately 1.5 times the maximum value of the low-voltage EOD, and the minimum value of the high-voltage EOD 
is approximately 2.4 times the maximum value of the middle-voltage EOD.

When checking all the data in Fig. 2a, we found a total of 86 low-voltage EOD pulses, 15 middle-voltage 
EOD pulses, 64 high-voltage EOD pulses and 13 hybrid EOD pulses in the 45 s waveform. This outcome means 
that the middle-voltage EOD also occurs frequently. Among all 15 middle-voltage EODs, 14 were followed by 
high-voltage EOD, and only one was not followed by high-voltage EOD. For the high-voltage EOD, 14 followed 
the middle-voltage EOD, 2 followed the low-voltage EOD directly, and the others followed the high-voltage 
EOD or hybrid EOD. All the 13 hybrid EODs were generated by the conflict of the middle-voltage EOD and 
the high-voltage EOD.

Figure 5.  The typical scenario of electric eel’s discharge. (a) Comparing the three forms EOD time-domain 
waveform, which is an enlarged view of the EOD 5 in Fig. 2a. (b) Comparison of the three forms EOD voltage 
space distribution along the body of the 48 cm long electric eel (the normalized waveform refers to the voltage 
peak value of every EOD). (c) The 48 cm long electric eel and its three electric organs.
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We have also recoded the discharge of a 22 cm eel, a 42 cm eel and a 53 cm eel, all the data are summarized 
in Table 1.

These results show that the middle-voltage EODs are common among all these Electrophorus electricus. These 
results also show if an eel wants to launch a high-voltage EOD series after low-voltage EOD electrolocation, a 90% 
possibility that it will launch a middle voltage before the high-voltage EOD exists, and there is some possibility 
that the high-voltage EOD will conflict with the middle-voltage EOD. However, all of our data were recorded in 
an unnatural environment. The electric eel was placed in a narrow tank where it could not swim and move. We 
used a glass rod to touch its head, which threatened it.

Catania16 reported electric eel use pairs and triplet high-voltage EODs in complicated environments to stimu-
late hidden prey uncontrolled movement, which can enable eels find hidden living prey. Is middle-voltage EOD 
used to stimulate hidden prey? We do not believe so: (1) The amplitude of the middle voltage is 38.5–56.5 V in 
our experiment, and this voltage will attenuate greatly in deep water and at some distance. (2) The middle-voltage 
EOD occurs only one time after low-voltage EOD and before high-voltage EOD, and its duration is less than 2 ms. 
Thus, the amplitude and quantity are not sufficient to stimulate the prey to respond. Middle-voltage EOD occurs 
only once after a low-voltage EOD and before a high-voltage EOD, where it works as a “bridge” to “connect” the 
low-voltage EOD and high-voltage EOD. Even though sometimes no middle-voltage EOD exists between the 
low-voltage EOD and high-voltage EOD, we suppose that the middle-voltage EOD is used for coordinating the 
low-voltage EOD and high-voltage EOD, adjusting the electric eel body internal environment, such as balancing 
the charge inside. If used for any external function such as hunting or electrolocation, no reason exists for it to 
occur only one time and for less than 2 ms. More research is needed to reveal the function of middle-voltage 
EOD and the reason why electric eels evolved Hunter’s organ.

Methods
Animals. The experiments were performed in accordance with the Guide for the Care and Use of Laboratory 
Animals of the National Research Council. The experimental protocol was approved by the animal care and use 
committee of North China Electric Power University. Electrophorus electricus of 48 cm in length was purchased 
from a commercial fish supplier and housed in an 80 × 40 × 40 cm (L × W × H) glass tank with fresh water, and 
the water temperature was maintained between 20 and 30 °C. The eel was fed fish.

Recordings of the EOD. To record the EOD, the electric eel was transferred to a 50 × 32 × 35 cm (L × W × H) 
customized Plexiglas aquarium. The EOD was recorded by 33 nickel-titanium  alloy electrodes (0.5  mm in 
diameter, 10 cm in length) in the water, connected at their exposed tips to wire leads connected to the voltage 
divide circuit. We used a 100 K ohm/3.3 K ohm resistor serially connected to divide the electric eel EOD signal 
into ± 10 V spans. The output of the voltage divide circuit was connected to the input of the AD converter. We 
used two USB3103 AD converters, which have 16 channels each, and made them work synchronously to record 
32 channel signals. Every channel has a 16-bit accuracy with a sample rate of 31.25 ksps. The 33 electrodes, volt-
age divider circuit, and AD converter module were all mounted on a 48 × 36 cm acrylic board. This board was 
used to push the electric eel to one side of the glass tank to ensure that all the electrodes were connected to its 
body well. Fresh water was added to the glass tank to a depth of 4 cm to ensure that every electrode recorded 
some voltage. The water temperature was 25–26 °C. The conductivity was 250 μS/cm. A glass rod was used to 
touch the electric eel’s head to evoke discharge, and all the sampling data were transferred to a Lenovo P50s 
laptop by a USB cable.

Data availability
The data that support the findings of this study are available from the authors upon reasonable request.

Received: 26 July 2020; Accepted: 5 March 2021

Table 1.  The EOD recording of 4 different length eels. (a) Row A: Means the number of the middle-voltage 
EOD which followed the low-voltage EOD and was followed by high-voltage EOD; (b) Row B: means the 
number of the middle-voltage EOD followed the low-voltage EOD but was not followed by high-voltage EOD; 
(c) Row C: means the number of the high-voltage EOD which followed the low-voltage EOD directly without 
middle-voltage EOD.

22 cm eel, 40 s data 42 cm eel, 14 s data 48 cm eel, 45 s data 53 cm eel, 49 s data

Low-voltage EODs 52 76 86 32

Middle-voltage EODs 4 12 15 17

High-voltage EODs 7 49 64 41

Hybrid EODs 2 7 13 2

A 4 12 14 17

B 0 0 1 0

C 1 0 2 0
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