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Predicting how surface texture 
and shape combine in the human 
visual system to direct attention
Zoe Jing Xu*, Alejandro Lleras & Simona Buetti 

Objects differ from one another along a multitude of visual features. The more distinct an object is 
from other objects in its surroundings, the easier it is to find it. However, it is still unknown how this 
distinctiveness advantage emerges in human vision. Here, we studied how visual distinctiveness 
signals along two feature dimensions—shape and surface texture—combine to determine the 
overall distinctiveness of an object in the scene. Distinctiveness scores between a target object and 
distractors were measured separately for shape and texture using a search task. These scores were 
then used to predict search times when a target differed from distractors along both shape and 
texture. Model comparison showed that the overall object distinctiveness was best predicted when 
shape and texture combined using a Euclidian metric, confirming the brain is computing independent 
distinctiveness scores for shape and texture and combining them to direct attention.

Our visual environment is filled with objects that vary along many feature dimensions. Most theories of vision 
and attention propose that attention is guided by the specific feature values that belong to the object we are look-
ing  for1–3. Less is known about the specific mechanisms underlying attentional guidance by features, particularly 
when the target object we are looking for differs from other elements in the scene along more than one visual 
feature. How are these featural differences combined to guide attention? Are there mechanistic laws that describe 
how attention is simultaneously guided by multiple features? Imagine you just finished cooking a dish and are 
looking for a plate to serve it. You know exactly what plate you are looking for: a white dome-like plate that has 
a blue-dotted pattern. Imagine searching for that specific bowl (your target) on a table that has many other plates 
(the distractors) that vary in shape and texture, like on Fig. 1. Does the visual system use both the overall shape 
and texture information to tell the target apart from the distractors? Here, we investigated the precise underly-
ing laws that govern how texture and shape combine to guide attention in human vision during a search task.

Recent work demonstrated the existence of a mathematical law that describes how color and shape combine 
to guide visual attention in efficient  search4. When observers are searching for a known target that differs from 
surrounding objects in terms of color and shape, the visual system computes the visual distinctiveness between 
the known features of the target and the distractors. Specifically, a difference signal is computed in parallel and 
separately for each feature. In the case of color and shape the overall distinctiveness of the target is determined 
by the sum of the separate color and shape distinctiveness signals. What is visual distinctiveness and how can 
it be estimated? According to Target Contrast Signal  Theory5, visual distinctiveness reflects the difference or 
distance between two points in feature space, the first point being associated with the target and the second with 
the distractor. As described below in more details, the visual system uses visual distinctiveness signals computed 
throughout the visual field to reject distractors that are unlikely to be the target. In this view, Target Contrast Sig-
nal  Theory5 therefore separates itself from theories that assume attentional guidance is driven by specific feature 
 values1–3, and is more in line with theories positing attention is guided by difference signals between target and 
non-target  items4,6–11. Note however that people can use peripheral vision to reject  distractors5,12–14 only when 
the feature differences between the target object and the distractors are sufficiently  large12,15,16. When the feature 
differences are too small, people must rely on the fine visual analysis provided by foveal vision.

Visual distinctiveness can be directly derived from the observed search efficiency when plotting RTs as a func-
tion of set size for each specific target-distractor feature pair4,5. As shown on Fig. 2A,B, when visual search relies 
on parallel peripheral processing, response time increases logarithmically as a function of set  size4,5,13,14,17. This 
logarithmic relationship between set size and response times is the signature that items are processed in parallel 
and with unlimited  capacity12,18; in the process of finding the target, the visual system accumulates information, 
stochastically, in the form of a contrast signal generated when comparing an item to the target template. Once 
items reach a given level of accumulation (i.e., a threshold), they are rejected as potential contenders. The rate 
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of contrast accumulation is influenced by a number of factors, such as eccentricity, but more important here, 
target-distractor dissimilarity. So, when the visual distinctiveness between the target and distractor is large 
(e.g., searching for a red target among blue items), the contrast signal will accumulate at a faster rate, resulting 
in shallower logarithmic slopes, that is, in faster search efficiency (blue triangle line, Fig. 2A). When the visual 
distinctiveness between the target and distractors is small (e.g., searching for a red target among orange items), 
the contrast will accumulate at a slower rate, resulting in steeper logarithmic slopes and in slower search effi-
ciency (orange triangle line, Fig. 2A). Thus, Target Contrast Signal theory proposed that the steepness of the 
logarithmic slope is inversely proportional to the overall contrast signal being accumulated between a given 
target-distractor pairing, such that

Figure 1.  [Image of fine pottery]. (2009). Retrieved from https ://commo ns.wikim edia.org/wiki/File:Handg efert 
igte_Keram ik.JPG.

Figure 2.  Results from Buetti et al.4. (A) Example of color search. The Figure shows reaction times when 
searching for a red triangle among a varying number of orange, yellow or blue triangles. Displays were always 
distractor homogeneous, meaning that only one distractor type was presented at a time. Results show that 
search efficiency, here indexed by the logarithmic search slope, varies as a function of target-distractor similarity. 
Search becomes less efficient when target-distractor similarity increases. (B) Example of shape search. The 
Figure shows reaction times when searching for a gray triangle among a varying number of gray diamonds, 
circles or semicircles. (C) Search efficiency observed in simple color and shape searches can be used to 
predict performance when the target differs from distractors both along color and shape. For instance, search 
efficiencies when searching for red among yellow (A) and when searching for triangle among diamonds (B) 
were used to predict performance when participants searched for a red triangle target among yellow diamonds. 
The Figure shows the predictions from the best performing model (Collinear Contrast Integration model, as is 
shown in Eq. (3)). Error bars on each data point indicate the standard error of the observed reaction time for 
each specific condition.

https://commons.wikimedia.org/wiki/File:Handgefertigte_Keramik.JPG
https://commons.wikimedia.org/wiki/File:Handgefertigte_Keramik.JPG
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with D being the logarithmic slope and α a multiplicative constant.
As an example, to determine the visual distinctiveness (referred to as  Contrastoverall in Eq. (2)) of a target 

that differs from distractors along two separate features, say a red triangle among yellow diamonds, one needs 
to determine the visual distinctiveness along the color feature space and along the shape feature space. That is, 
logarithmic search efficiencies must be obtained when searching for a red triangle target among yellow triangle 
distractors (color search; Fig. 2A) and when searching for a gray triangle target among gray diamond distractors 
(shape search; Fig. 2B). Buetti et al.4 tested different equations to determine how the contrast along color and the 
contrast along shape should be combined and found that Eq. (2) was the best formula to determine the overall 
visual distinctiveness between target and distractors when the stimuli differed along color and shape. Given that 
the visual distinctiveness is related to the logarithmic search slope as indicated in Eq. (1), if one replaces Eqs. (1) 
into Eq. (2), Eq. (3) and (4) obtain, with Dcolor being the logarithmic slope observed in color search for a specific 
target-distract pairing and Dshape being the logarithmic slope observed in shape search for a specific target-
distractor pairing. Note that the α cancels out on both sides of the equation when one replaces Eq. (1) into Eq. (2).

The measure of visual distinctiveness provided by Doverall (Eq. (4)) can then be used to predict search times in 
different, more complex, search conditions using Eq. (5).

In Eq. (5),  RT0 corresponds to the response time in the target only condition, Doverall corresponds to the pre-
dicted overall search efficiency computed from Eq. (4) for the combined contrast of color and shape. The final 
term is the natural logarithm of the total set size, which includes all distractors plus the target.

Buetti et al.4 used visual distinctiveness measures observed for specific target-distractors color-parings 
(Fig. 2A) and for specific shape-parings (Fig. 2B) to predict 90 search times when the target differed from dis-
tractors along both color and shape features. The predictions from Eq. (5) were then compared to the observed 
search times from six experiments in which separate groups of naïve participants searched for one of two targets 
(a red triangle or a blue cyan semicircle) among a set of homogeneous distractors varying both in color (e.g., 
orange, blue, or yellow) and shape (e.g., diamonds, circles, triangles). Remarkably, as shown on Fig. 2C, Eq. (5) 
accounted for 93.3% of the variance observed in the data with a mean prediction error of only 13 ms (the cor-
responding data and code are available on OSF, link: https ://osf.io/f3m24 /).

Texture as a visual feature. A question that follows Buetti et al.’s4 work is how does this finding extend 
to other visual features? We decided to investigate how texture and shape combine because in our daily life we 
often encounter objects (i.e., shapes) that are characterized both by given colors but also by specific patterns or 
surface textures (Fig. 1). Thus, investigating how shapes and texture combined seemed a natural way of pursuing 
the investigation of how features combine. The literature provides some information on this front. Admittedly, 
this type of surface property is not the only type of texture that could be studied. In the Supplementary Materi-
als, section we motivate why we chose this kind of texture as opposed to other ones like material texture, which 
has also been  studied19–21.

Garner and  Felfoldy22,23 determined that there are two types of relationships between feature dimensions: 
integral and separable. To evaluate the relationship the authors used a speed classification task. Participants 
were shown stimuli on cards that varied along two dimensions, say length and width, and were asked to sort 
the cards into two categories (e.g., long vs. short) by focusing only on one dimension (e.g., length). Participants 
were asked to ignore the other dimension (e.g., width). If the irrelevant dimension affected the speed at which 
participants sorted the relevant dimension, the two dimensions were defined as integral. If no such interference 
was observed, the two dimensions were called separable.  Garner22 showed that the dissimilarity along separable 
feature dimensions (e.g., color and  shape4,24) combine linearly, following a city-block metric; on the other hand, 
dissimilarity along integral feature dimensions (e.g., saturation and brightness of Munsell  colors23) combine 
following a Euclidean distance metric. Note that Garner’s City block metric corresponds to Eq. (2) and Garner’s 
Euclidian distance metric corresponds to Eq. (7) below.

Later works inspired by Garner’s findings tested other feature combinations using the same speed classifica-
tion task and showed inconclusive evidence regarding texture and shape. Cant et al.19 found that neither material 
texture (brick or wood textures) or surface color interfered with the width or length classification. Meiran et al.25 
found that surface texture (dots or lines) was separable from shape as well as from color. Supporting these find-
ings, recent fMRI and neuropsychological data provided evidence that different cortical structures are responsible 
for the processing of shape (lateral occipital cortex) and material properties (collateral sulcus), suggesting that 
these properties are independently  coded20. However, there is also evidence that other texture information (such 

(1)Contrast =
α

D
,
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(5)RTpredicted = RT0 + Doverall ∗ln(setsize).
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as curved or straight lines that made the surface appeared convex or flat), interfered with shape  classification26, 
suggesting these features are integral.

Texture as a visual feature has been mostly studied with regards to the process of texture  segmentation27–33, 
that is, the study of the conditions under which the visual system can effortlessly or “pre-attentively” separate 
two regions of the scene based on textural differences. These regions are constructed by repeating elements 
and the question is which featural characteristics of those repeated elements afford segmentation in a parallel 
fashion without requiring serial attention to individual elements.  Julesz27,28 showed that texture segmentation 
can happen effortlessly when the repeating elements differ along color, elongated blobs (i.e., line segments with 
different orientations and widths), and terminators (the end-points of the elongated blobs). Differences in size, 
and contrast can also afford texture  segmentation30. More generally, texture segmentation is thought to arise 
from analysis of global display properties, that is, properties shared by many items, that differ across different 
regions of the display and that may be unavailable at the single item  level34. For instance, the average orientation 
of lines in one region of the display may differ from the average orientation of lines around that region, creating 
a segmentation clue.

The role the textural properties of an object play in directing attention towards objects that share those same 
properties has seldom been studied, aside from color. That is, we know that color is a powerful guiding  feature35, 
but if we go beyond color to the shape patterns that may exist on the surface of objects, it is less clear how well 
the human visual system can analyze that information and use it to guide attention in a scene. One might intuit 
that if a shape pattern affords segmentation when embedded in a second shape pattern, then visual search for 
objects with that shape pattern ought to be parallel and effortless, and vice-versa. But this is not the  case34. There 
are shape patterns that can afford effortless segmentation without giving rise to parallel search. The reverse is also 
true. There are shape patterns that can be found in parallel but nonetheless do not afford effortless segmentation. 
According to  Wolfe34, the reason for this is that segmentation follows analysis of global properties of the scene, 
whereas search is focused on properties of individual objects in that scene. In fact, when there is only one target 
in the display, the availability of its visual properties as “global” properties of the display is vastly diminished, 
compared to when multiple identical items share that same property in close proximity of one another (as in 
texture segmentation).

More recently and related to the current study, Pramod and  Arun21 studied how material texture and shape 
combine in efficient visual search. The authors focused on the inverse of reaction time (1/RT) at a fixed set size, 
as a measure of the distance between target and distractors in feature  space36, that is, as a measure of target-
distractor dissimilarity. A weighted linear combination model was used to compute the expected 1/RT score in a 
bi-dimensional search condition (when the target differed from distractors along both texture and shape) based 
on the 1/RT scores in the unidimensional searches. The results showed that the unidimensional search param-
eters for texture and shape were sufficient to account for 83% of the variance observed in bidimensional search 
displays. Although successful, the methodology has some shortcomings. Because the parameters are estimated 
at a specific set size, the fitted model is only capable of interpreting the data at this fixed set size; this harms the 
generalizability of the model because the dissimilarity score between the same two stimuli is different for different 
levels of set size. Further, the 1/RT measure compounds search-related processing time with non-search process-
ing time, such as response selection and execution, which contaminates the dissimilarity metric and makes it 
less accurate in reflecting the searching process. Finally, the authors only used weighted linear combinations in 
their formulas and did not include comparison to other non-linear metrics like the Euclidian distance  metric22.

Present study: how do surface texture and shape combine to guide attention? The present 
study follows the prediction-based methodology of Buetti et al.4, which consists of three steps.

Step 1: estimating search efficiency in one-feature dimension search. In Experiment 1, the target and distractors 
differed along one single feature, either shape or texture. The goal of the experiment was to estimate the loga-
rithmic search efficiency (i.e., the D values) for all target-distractor pairings shown in Fig. 3 37. These D values 
will then be used to predict search times when the target differs from distractors along two features, shape and 
texture, in Experiment 2.

In all experiments, the target was a gray octagon with a white cross and participants reported the left or right 
location of the black square next to it. In Experiment 1A, the search was based on shape: the distractors shared the 
same texture as the target, a white cross on a gray background, but differed in shape; they were either triangles, 
squares, or houses (Fig. 4 top). In Experiment 1B, the search was based on surface texture: the distractors shared 
the same shape as the target, a gray octagon, but varied in texture; the textures were either white dots, or white 
lines forming a tilted pound key, or solid gray (Fig. 4 middle).

Step 2: estimating search efficiency in two-feature dimensions search. In Experiment 2, search times were evalu-
ated for all possible combinations of surface texture and shape distractors. Three groups of naïve participants com-
pleted Experiment 2A–C. Each group of participants searched for the same target among three different types of 
distractors (Fig. 3 bottom). Displays contained only one type of distractors (Fig. 4 bottom).

Step 3: model comparison: predicting search RTs observed in Step 2 by using the parameters observed in Step 1. The 
logarithmic slopes for each specific shape and texture pairings from Experiment 1A and 1B were then used to 
predict the logarithmic slopes (i.e., the Doverall values to be used in Eq. (5)) when the target differed from distrac-
tors both in terms of shape and texture. The Doverall values were computed for three different models described 
in Eqs. (6)–(8). For each model, the Doverall values were used to predict the 36 search times using Eq. (5) (i.e., 
9 target-distractor pairings by 4 distractor set sizes). These predicted search times were then compared to the 
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observed search times from Experiment 2A–C. The predictive performance of each model was then compared. 
We also considered a fourth model based on Pramod and Arun’s21 work that used the 1/RT index instead of the 
D index (Eq. (9)).

The equations for the four models are described below:

(1) Best feature guidance model This first model assumes that when the target and the distractors differ in both 
shape and texture, the visual system will rely on the dimension that provides the largest contrast (Eq. (6)), 
indexed by the smaller D value. The visual system will ignore the contrast coming from the other feature 
(Fig. 5 top left panel).

(2) Orthogonal contrast combination model If shape and texture are integral dimensions, then the two dimen-
sions should combine according to Garner’s Euclidian distance  metric4,22. According to this model, the 
overall contrast is formed in a shared multidimensional space composed by the single feature dimensions 
of shape and of texture (Fig. 5 top middle panel). The magnitude of the overall contrast is determined by 
the orthogonal sum of the two single-feature contrasts (i.e., the Euclidean distance), both computed in an 
independent manner. The overall contrast would be expressed like: Contrastoverall

2 = Constrasttexture
2 + Con-

strastshape
2. Since the overall contrast for a given target-distractor pairing is inversely proportional to the 

steepness of the logarithmic slope D, this formula solves as follows:

(3) Collinear contrast integration model This model assumes independence of the two feature dimensions 
(similar to the Orthogonal Combination Model) but the two contrasts are combined collinearly (Fig. 5 top 
right panel). This means that the two contrast are maintained separately and are not combined in a common 
multidimensional space to produce the overall contrast. In Garner’s terms, the Collinear Contrast Integra-

(6)Doverall = min
(

Dtexture, Dshape

)

.

(7)
Doverall =

1
√

(

1
Dtexture

)2
+

(

1
Dshape

)2

Figure 3.  Stimuli used in Experiments 1 and 2. The black squares near stimuli were presented either on the 
left or right of the stimulus. Participants were asked to report the left or right location of the black square of the 
target item. A group of naïve participants completed each experiment.
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Figure 4.  Illustration of the approach used in the present study. The target was always an octagon with a white 
cross texture. In Experiment 1A, in the shape search condition, logarithmic search efficiency was evaluated 
when participants searched for the target among 0, 1, 4, 9, and 19 identical distractors (either triangles, squares 
or houses). The distractors shared the same white cross texture as the target. In Experiment 1B, in the texture 
search condition, logarithmic search efficiency was evaluated when participants searched for the target among 
0, 1, 4, 9, and 19 identical distractors (octagons with either a tilted pound key, dotted or solid texture). In 
Experiment 2, in the combined shape and texture conditions, logarithmic search efficiency was evaluated when 
participants searched for the target (octagon with white-cross texture) among distractors that differed along the 
shapes and textures tested in Experiment 1A and B. In Experiments 2A–C, search performance was evaluated 
for all combinations of shape (3) and texture (3) distractors, as shown on Fig. 3 (bottom).
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tion Model follows a the city-block distance  metric22 such that: Coverall = Ctexture + Cshape. Since the contrast is 
inversely proportional to D, the formula can be solved as:

  Note that Eq. (8) is the same as Eq. (3) and is the equation that was found to best predict how color and 
shape combine to guide attention in Buetti et al.4.

(4) Reciprocal of RT model This model is similar to the Collinear Contrast Integration Model but uses a differ-
ent metric to predict feature combinations. Specifically, instead of using the search slope estimated across 
all set sizes like Buetti et al.4, the model uses 1/RT at a fixed set size as an index of target–distractor feature 
distance. Pramod and  Arun21 used set size 16. Here we used set size 20.

In Eq. (9), a, b, and c are free parameters that are optimized to minimize residual error. 1/RTs represents 
the 1/RT measured when target and distractors differed along shape only; 1/RTt represents the 1/RT measured 
when target and distractors differ along texture only; 1/RTs,t represents the 1/RT measured when the target and 
distractors differed along both shape and texture.

Results
Step 1: search efficiency in one‑feature dimension search. Table 1 shows the logarithmic slopes as 
well as the RTs at set size 20 found in Experiments 1A, B. These parameters were used to make RT predictions 
in Step 3 below.

Step 2: search efficiency in two‑feature dimensions search. Table 2 shows the logarithmic slopes as 
well as the RTs at set size 20 observed in Experiments 2A–C.

Step 3: model comparison. Figure 5 shows the observed RTs from Experiment 2A–C as a function of 
predicted RTs. As a reminder, predicted RTs were computed using Eq. (5). The parameter  Doverall in Eq. (5) was 

(8)
1

Doverall
=

1

Dtexture
+

1

Dshape
.

(9)1/RTs,t = a× 1/RTs + b× 1/RTt + c.

Figure 5.  Top Visualization of how contrasts along texture (Ctexture) and along shape (Cshape) could be combined 
to produce the overall contrast when a target differs from distractors along two feature dimensions (Ctexture&shape) 
according to the Best Feature Guidance Model (left panel), the Orthogonal Contrast Combination Model 
(middle panel), and the Collinear Contrast Integration Model (right panel), respectively. Bottom Observed RTs 
from Experiment 2A–C as a function of Predicted RTs. Predicted RTs were estimated using Eq. (5). The left, 
middle, and right panels show the prediction accuracy of Eq. (5) when the  Doverall parameter was computed 
based on the Best Feature Guidance Model (Eq. (6)), the Orthogonal Contrast Combination Model (Eq. (7)), 
and the Collinear Contrast Integration Model (Eq. (8)), respectively. Error bars on each data point indicate the 
standard error of the observed reaction time for each specific condition.
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computed based on the Best Feature Guidance Model (Eq. (6)), the Orthogonal Contrast Combination Model 
(Eq. (7)), and the Collinear Contrast Integration Model (Eq. (8)). Equation (5) therefore produced a precise RT 
for each of the set size tested in Experiments 2A–C.

The results indicated that the  R2 of the Orthogonal Contrast Combination Model (90.13%) was higher than 
the  R2 of the Best Feature Guidance (87.45%) and Collinear Contrast Integration (87.69%) models. The AIC 
model comparison results showed that the Orthogonal Contrast Combination Model (AIC = 288.45) was 75 
times more likely than the Best Feature Guidance Model (AIC = 297.10) and 53 times more likely the Collinear 
Contrast Integration Model (AIC = 296.39).

Furthermore, we computed the mean prediction error to evaluate the accuracy of the predictions of each 
model. The mean prediction error was obtained by computing the mean of the absolute differences between the 
observed RTs in Experiments 2A–C and the RTs predicted by each model using Eq. (5). Larger values indicate that 
the predicted RTs are scattered more widely around the observed values. Smaller values indicate that the predicted 
RTs are more tightly clustered around the observed values. The Orthogonal Contrast Combination Model showed 
a smaller prediction error (14.16 ms) than the Best Feature Guidance Model (25.32 ms), t(35) = 3.41, p = 0.002, 
dz = 0.824, BF = 20.17, and than the Collinear Contrast Integration Model (26.68 ms), t(35) = 5.41, p < 0.001, 
dz = 1.307, BF = 4200.37. Note that the prediction range was about 200 ms (observed RT range 563–757 ms), so 
the magnitude of the mean prediction error of the winning model was about 7% of the overall prediction range. 
In fact, 35 of the 36 predictions of the winning model (Orthogonal Contrast Combination Model) fell within 
the margin of error of the observed data (i.e., inside an interval centered on the observed mean plus or minus 
1.96 times the standard error of the observed mean).

Finally, the comparison between the winning model and the Reciprocal of RT Model indicated that the 
 R2 of the Orthogonal Contrast Combination Model (90.63%) was higher than the  R2 of the Reciprocal of RT 
Model (85.13%). We also computed the AIC relative likelihood of the two models, and the results showed that 
the Orthogonal Contrast Combination Model (AIC = 76.25) was 8 times more likely than the Reciprocal of RT 
Model (AIC = 80.41).

We should add we had started a replication of the current results, but data collection was stopped abruptly due 
to the COVID-19 pandemic. The partial data are reported in the methods section and confirm that Orthogonal 
Contrast Combination outperforms the other two models.

Discussion
Visual objects can differ from one another along a multitude of visual properties. Although it has been clear for 
a long time that certain features can by themselves guide attention in a  scene35, the question of how differences 
along multiple feature dimensions each contribute to guide attention has not been the focus of much research, 
particularly when the observers know ahead of time which features they are looking for. Buetti et al.4 showed 
that for color and shape the visual system is computing visual distinctiveness values for each feature dimension 

Table 1.  Logarithmic search efficiency (D) in Experiments 1A and 1B as well as reaction times (RTs) at set size 20.

Stimuli Distractor type D RTs (set size = 20)

Shape

House 95.2 846.7

Square 44.9 693.2

Triangle 46.8 689.6

Texture

Solid 43.9 693.2

Tilted# 111.9 905.8

Dots 69.5 766.1

Table 2.  Logarithmic search efficiency (D) in Experiments 2A–C as well as reaction times (RTs) at set size 20.

Compound stimuli Distractor shape Distractor texture D RTs (set size = 20)

Experiment 2A

House Tilted# 68.6 756.9

Square Dots 28.2 644.8

Triangle Solid 29.1 638.5

Experiment 2B

House Dots 49.1 724.7

Square Solid 19.2 641.6

Triangle Tilted# 37.0 687.8

Experiment 2C

House Solid 38.1 647.0

Square Tilted# 46.1 673.6

Triangle Dots 38.7 657.1
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separately, which are then combined linearly to guide attention. The present study investigated two different 
feature dimensions: shape and surface texture. Several conclusions can be drawn from the present results.

First, the results indicated that textural information alone can guide attention in parallel across the scene, 
indicating that peripheral vision can compute visual distinctiveness signals arising from the surface properties 
of objects. This follows because the RT by set size functions in Experiment 1B were logarithmic (data shown 
in Supplementary Information Fig. S1), a behavioral index of parallel guidance across the  scene4,5,12. In sum, 
this demonstrates for the first time that other surface properties beside  color35 can guide attention, specifically, 
shape-defined textural elements present on the surface of objects.

Second, the winning model combined surface texture and shape in orthogonal fashion, suggesting that sur-
face texture and shape combine following a Euclidian metric and are integral  dimensions22. This finding makes 
sense if one considers the surface textures used in the present study as shapes within shapes. In that sense, the 
stimuli here can be understood as hierarchical stimuli, much like Navon letters: they each have a global feature 
property (i.e., the overall shape of the object) and a local feature property (i.e., the smaller shapes inside the 
object boundaries). The global feature (shape) would be carried over low spatial frequency channels and the 
local feature (texture) would be carried over relatively higher spatial frequency channels but importantly, both 
would rely on the same brain areas for processing. When viewed from this perspective, the finding that both 
the global and local features used here concurrently guide attention is consistent with Miller’s38 proposal that, 
more generally speaking, local and global properties of objects are processed in parallel and are available at the 
same time to guide attention.

Third, the result showed that when searching for a target that differs from distractors along two visual fea-
tures, both features contribute to attentional guidance, irrespective of their efficiency. It is not the case that the 
feature dimension with the greatest guidance will drive performance, as evidenced by the finding that the Best 
Feature Guidance model was outperformed by the Orthogonal Contrast Integration Model which takes into 
consideration differences along both feature dimensions. Thus, this suggests that when processing information 
in parallel, the visual system uses all available distinctiveness signals to guide attention. This observation is con-
sistent with Buetti et al.’s4 findings showing that shape contributed to guidance even though it was systematically 
less efficient than color. An implication of this finding is that the more information an observer has about the 
visual properties of a target, the more efficient the observer will be at finding that target. This is consistent with 
previous findings showing that the more precise the target-defining cue is (verbal label vs. categorical example 
vs. exact image of the target), the more efficient the search  becomes39,40. These findings are also consistent with 
the “information summation”  proposal41. In that study, the authors studied whether observers rely on contour 
cues and/or surface texture cues (composed of small Gabor elements) when detecting the presence of a large 
shape in a field of randomly oriented Gabors. The authors found that observers simultaneously used both cues 
in a manner that allowed them to perform better than if they had relied on either of the two cues, or even on the 
best of both cues. This indicated that information about contour and surface texture was combined in the visual 
system (much like in Eq. (8)) to improve the detectability of an object in noise.

Fourth, the results suggest that texture and shape co-activate to guide attention. This can be concluded from 
the fact that the slope of the Observed by Predicted RT function was 0.75 (Fig. 5 middle). Because the slope is 
smaller than 1, it indicates that the presence of distinctiveness signals along shape and texture speed up attentional 
guidance in a multiplicative way. Specifically, the observed RTs when people are searching for a target that differs 
from the distractors along both texture and shape was 25% faster than the simple Euclidian summation of the 
shape and texture distinctiveness signals.

Fifth, it should also be noted that the findings showing that texture and shape combine according to a Euclid-
ian metric stand in contrast with previous findings suggesting that shape and texture are separable  features19,25 
that are independently coded in the  brain20. We suggest this inconsistency may arise from the type of visual 
processing used to perform the tasks. For example, the speed-classification  task19,25 relies on foveal vision. Simi-
larly, the oddball detection  task20 also relies on foveal vision (observers were free to foveate the stimuli over long 
periods of time to decide which of three shapes was different from the other two along either shape or material 
texture properties). Thus, it is possible that in tasks where only one object at a time is examined with foveal vision, 
observers might be able to maintain the representation of the two feature dimensions separately (giving rise to 
evidence for separable dimensions). In contrast, in a parallel search task where multiple objects are presented in 
the periphery, observers might no longer be able to maintain distinct representations. In this case, the represen-
tations of texture and shape might be combined into a single dimensional feature space that characterizes each 
object at a given location. This would occur because of the properties of peripheral vision. Indeed, peripheral 
vision tends to represent information in a pooled manner, where visual information at a given location is pooled 
into a summary representation of the information at that  location15, as opposed to the detailed representations 
afforded by foveal vision. Therefore, when studying how two or more features combine, it seems important to 
consider not only the specific features in question but also the type of visual processing (foveal vs. peripheral) 
involved in representing those features. These findings further suggest that while certain feature combinations 
are pooled (like shape and texture, as shown here), other feature combinations (like shape and color, see Buetti 
et al.4) appear to survive pooling, as also shown in the visual crowding  literature42–44.

Finally, the current study represents a new demonstration of the success of our estimate-then-predict 
 methodology4,45–47. This approach has also been used to investigate other theoretical questions such as why 
search slows down when multiple types of distractors are intermixed in the same display (distractor heterogeneity 
effect)45–47. This success is owed to two factors: (1) Equation (5) captures the processes at play in peripheral paral-
lel search, specifically, that the rejection of non-target items in peripheral vision follows a logarithmic efficiency; 
(2) the estimates of the D parameters indexing visual distinctiveness are robust across experiments and across 
groups of observers, underscoring the proposal that feature distinctiveness or contrast is the currency of atten-
tional  guidance5. The manner in which these distinctiveness signals for each feature are combined to determine 
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the overall object’s contrast to the target item seem to follow different laws. Distinctiveness signals along color 
and shape dimensions combine  linearly4, while signals along surface texture and shape combine orthogonally, 
likely reflecting the differences in the way the visual system represents those feature dimensions in the first place. 
This critical idea behind Target Contrast Signal theory that contrast is the main currency of the visual system 
and the force that guides attention makes sense from a neurobiological perspective. Most of the visual brain 
is wired to compute contrasts. For instance, most color-coding neurons in the early visual system code color 
contrasts as opposed to specific color values and are present as early as the  LGN48,49, in fact, they are computed 
even before visual information leaves the  eyeball50. A contrast computation is also at the basis of all lateral 
inhibition  signals51, of the color  system52, of boundary  detection53, and perhaps even of visual  categorization54. 
This idea that the contrast or difference between two stimuli is critical for determining search performance is 
also consistent with evidence from neuroscience showing search speed is proportional to the discriminability 
between patterns of neuronal activity in visual cortex that respond to target and  distractors55–57. Perhaps theories 
of visual attention should shift the focus away from arguing that specific feature values guide  attention1,2,35,58,59, 
and towards a more relational consideration, where attention is guided by the context in which features present 
themselves, as proposed by Target Contrast Signal  theory5 and the relational account of attentional  guidance6–11.

Methods
The methods and experimental protocols were approved by the Institutional Review Board at the University of 
Illinois, Urbana-Champaign, and are in accordance with the Declaration of Helsinki.

The present study uses a model comparison approach to study visual attention that side steps the traditional 
null hypothesis significance testing. The goal is to find a theoretically motivated model that accounts for the most 
variance in the data by making specific reaction time predictions for the different experimental conditions. A total 
of five experiments were conducted (Experiment 1A, 1B, 2A, 2B and 2C), each with a naive group of participants. 
The data and code from this project are publicly available on OSF (https ://osf.io/pkh68 /).

Participants. Participants were recruited from the University of Illinois at Urbana Champaign and partici-
pated in the experiments in exchange for course credit or pay ($8 per hour). Informed consent was obtained 
from all participants. Sample size was determined based on previous studies in our lab showing that averaging 
the data of twenty subjects produces stable estimates of the group means of reaction times and search slopes for 
a given search  condition12–14,17, and is sufficient to obtain substantial differentiation between  models4,45–47. For 
each experiment, two inclusion criteria were used: search accuracy should be higher than 90% and the indi-
vidual’s average response time should fall within two standard deviations of the group average response time. 
Data collection was stopped as soon as 20 participants met these two criteria. As a result, 20 and 21 participants 
participated in Experiment 1A and 1B, respectively; 21, 21 and 20 participants participated in Experiment 2A, 
2B and 2C, respectively. One participant from Experiment 1B (group accuracy = 0.99, mean RT = 691.25 ms, 
sd = 106.92), one participant from Experiment 2A (group accuracy = 0.98, mean RT = 631.53 ms, sd = 76.03), and 
one participant from Experiment 2B (group accuracy = 0.99, mean RT = 644.45 ms, sd = 101.12) were excluded 
because they did not meet the response time criterion. No participant was excluded from Experiments 1A 
(group accuracy = 0.98, mean RT = 662.07 ms, sd = 109.94) and Experiment 2C (group accuracy = 0.99, mean 
RT = 612.70 ms, sd = 80.02).

Note that the present study was pre-registered on OSF (link: https ://osf.io/br965 ). The goal of the pre-reg-
istration was to propose to re-run Experiments 2A–C with new groups of naïve participants to confirm the 
results of the model comparison in a separate independent sample. In the pre-registration, we proposed to run 
35 participants in each group in the confirmatory study to improve the precision of RT estimates. Unfortunately, 
due to the onset of the Covid-19 pandemic, all data collection at our institution was halted. At that time, we had 
collected a total of 16, 19, and 8 participants in the three two-feature dimensions experiments. The results from 
this partial sample are shown in Fig. 6, as a comparison.

Figure 6.  Reaction time prediction accuracy of Eqs. (6)–(8) according to the Best Feature Guidance Model 
(left panel), the Orthogonal Contrast Combination Model (middle panel), and the Collinear Contrast 
Integration Model (right panel), respectively, based on the unfinished confirmatory study. Error bars on each 
data point indicate the standard error of the observed reaction time for each specific condition. Once again, the 
Orthogonal Combination Model outperformed the other two models.

https://osf.io/pkh68/
https://osf.io/br965
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Apparatus and stimuli. All experiments were programmed in Matlab using Psychophysics Toolbox 3.0 
extension and run on 64-bit Windows7 PCs. All stimuli were presented on a 20-CRT monitors at an 85 Hz 
refresh rate and with a 1024 × 768 resolution. Stimuli were about 45 × 45 pixels in size, 1.88 × 1.88 degrees in 
visual angle, randomly assigned to a location on the display based on two circular grids centered at the center of 
the screen. The larger grid had a diameter of 557 pixels (22.74 degrees in visual angle), and the smaller grid had 
a diameter of 300 pixels (12.39 degrees in visual angle). All the stimuli were gray, shown on a white background. 
Only one type of distractors was shown on the display on a given trial (i.e., displays were homogeneous). In all 
experiments, the stimuli had a black square on either the left or right side of the shape and participants were 
asked to report the location of the square on the target stimulus.

In Experiment 1A (shape search), the stimuli shared the same texture, a white cross on a grey background. 
The stimuli varied in their shape: the target was an octagon and the distractors were either triangles, squares, 
or houses.

In Experiment 1B (texture search), the stimuli shared the same shape, a grey octagon but differed in terms of 
the texture included in the shape. The target had a white cross and the distractors had either white dots, white 
lines forming a tilted pound key, or a solid gray texture.

In Experiment 2A–C, the target was an octagon with the white cross on a gray background. In Experiment 
2A, the distractors were either squares with white dots, houses with a tilted pound key, or triangles with a solid 
gray background. In Experiment 2B, the distractors were either houses with white dots, triangles with a tilted 
pound key, or squares with a solid gray background. In Experiment 2C, the distractors were either triangles with 
white dots, squares with a tilted pound key, or houses with a solid gray background.

Design. In all five experiments (Experiments 1A, B and 2A, C), there was a target-only condition where no 
distractors were presented. For each type of distractors, there were four distractor set sizes: 1, 4, 9, 19. In each 
experiment, three types of distractors were tested. In total, each experiment contained 13 conditions that were 
repeated 48 times, summing up to a total of 624 trials.

Procedure. Each trial began with a black cross appearing for one second at the center of the screen over a 
white background. A search display followed. Participants were asked to search for the target among distractors 
and report if the square was on the left or right side of the target by pressing the left or right arrow key on the 
keyboard. The search display remained on the screen for 5 s or until a response was made by the participants, 
whichever occurred earlier. If the participant made an error or did not respond, a short beep occurred imme-
diately after the trial. After each trial, there was an inter-trial interval lasting 127 ms. Eye movements were not 
restricted or monitored. In the data analysis, we only included response time from the correct trials.

Analyses. Model comparison was conducted by computing the AIC relative likelihood across the three 
models (Best Feature Guidance Model, Orthogonal Contrast Combination Model, Collinear Contrast Integra-
tion Model), using exp((AICmin −  AICi)/2). Note that to make the AIC value of the Orthogonal Contrast Com-
bination Model (winning model) comparable to the one from the Reciprocal of RT Model, we restricted the 
predictions to the same observations predicted by the Reciprocal of RT model, that is, the nine points observed 
at set size 20 across Experiments 2A–C.

Data availability
The data and code are available on OSF, link: https ://osf.io/pkh68 /.
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