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Exact dimer phase with anisotropic 
interaction for one dimensional 
magnets
Hong‑Ze Xu1, Shun‑Yao Zhang1, Guang‑Can Guo1,2,3 & Ming Gong1,2,3* 

We report the exact dimer phase, in which the ground states are described by product of singlet 
dimer, in the extended XYZ model by generalizing the isotropic Majumdar–Ghosh model to the 
fully anisotropic region. We demonstrate that this phase can be realized even in models when 
antiferromagnetic interaction along one of the three directions. This model also supports three 
different ferromagnetic (FM) phases, denoted as x‑FM, y‑FM and z‑FM, polarized along the three 
directions. The boundaries between the exact dimer phase and FM phases are infinite‑fold degenerate. 
The breaking of this infinite‑fold degeneracy by either translational symmetry breaking or Z

2
 

symmetry breaking leads to exact dimer phase and FM phases, respectively. Moreover, the boundaries 
between the three FM phases are critical with central charge c = 1 for free fermions. We characterize 
the properties of these boundaries using entanglement entropy, excitation gap, and long‑range spin–
spin correlation functions. These results are relevant to a large number of one dimensional magnets, 
in which anisotropy is necessary to isolate a single chain out from the bulk material. We discuss the 
possible experimental signatures in realistic materials with magnetic field along different directions 
and show that the anisotropy may resolve the disagreement between theory and experiments based 
on isotropic spin‑spin interactions.

The spin models for magnetism are basic topics in modern solid-state physics and condensed matter  physics1. In 
these models, only a few of them mostly focused on low dimensions, can be solved exactly. In general, we may 
categorize these solvable models into two different groups according to the methods these models are solved.

In the first group, the models can be solved exactly using some mathematical techniques based on their 
 symmetries2 and the dual relation between fermions and spins. Typical examples are the transverse Ising model, 
the XY model, the XXZ  model3–5, the XYZ  model6–8, and the toric code  model9, 10. Here, the XY model and Ising 
model can be mapped to the non-interacting p-wave superconducting model by a non-local Jordan-Wigner 
transformation, which can then be solved by a unitary transformation in the momentum  space11–15. The XXZ 
model is a prototype model for the exact calculation by the Bethe-ansatz approach. In combination with the 
Jordan-Wigner transformation, the XXZ model is mapped to the interacting Hubbard model, for which reason 
some of the Hubbard models may also be solved using the Bethe-ansatz approach by Lieb and  Wu16. The XYZ 
model can also be solved analytically by the off-diagonal Bethe-ansatz  method6 and modular transformations 
 method7, 8. The Bethe-ansatz approach has broad applications in many-body physics. With the above approaches, 
their spectra, partition function and correlation functions of these models can be obtained exactly. Recently, the 
spinon excitations in these models have been directly measured in experiments by neutron  diffraction17–19. In 
the two dimensional models, the Kitaev toric code model can be solved exactly by considering the gauge sym-
metries in each  plateau9, 10. These solvable models have also played an essential role in the understanding of the 
non-equilibrium dynamics, phase transitions, and entanglement in the many-body  systems15, 20–23.

In the second group, which is most relevant to the research in this work, only the ground states (GSs) of 
the Hamiltonian can be obtained. For example, in the most representative spin-1/2 Majumdar–Ghosh (MG) 
 model24–29, which reads as
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with

This model can be obtained from the Fermi-Hubbard by second-order exchange interaction, thus J > 0 for anti-
ferromagnetic interaction. The GSs of the above model can be expressed exactly as the product of singlet dimers. 
This model preserves the three Z2 symmetries by defining sxi → −sxi  , syi → −s

y
i  and szi → szi  and its index rota-

tion. Using the above Jordan–Wigner transformation, the next-nearest-neighbor interaction and the coupling 
along the z-direction can yield complicated many-body interaction, thus this model can not be solved analytically 
using the approach in the first group. However, the GSs can be constructed using some special tricks with the help 
of the projector operators. Let us define � = si + si+1 + si+2 , with s2i = (sxi )

2 + (s
y
i )

2 + (szi )
2 = 3

4 , we can obtain

with S = 1
2 or 32 from the decoupling 12 ⊗ 1

2 ⊗ 1
2 = 1

2 ⊕
1
2 ⊕

3
2 . The above result means that the total spin space 

can be decoupled into three different irreducible representations. Let us define the corresponding projectors for 
these subspaces as PS(i, i + 1, i + 2) , then we have

The projectors have the feature that PS(i, i + 1, i + 2)PS′(i, i + 1, i + 2) = δSS′PS(i, i + 1, i + 2) and 
�ψ |PS(i, i + 1, i + 2)|ψ� ≥ 0 for any wave function. Then MG model of Eq. (1) can be rewritten as

Here the project in the singlet subspace P1/2 is absent from the Hamiltonian. The GSs energy of HMG is given by 
− 3

8L , which means that for any i, the ground state |G� should satisfy

This constraint requires J > 0 ; otherwise, the triplet state(s) should have much lower energy. To this condition, 
there must be a singlet in the three adjacent sites for the eigenvectors of P1/2(i, i + 1, i + 2) . Mathematically, the 
two exact dimer GSs can be written as

where [i, i + 1] = 1√
2
| ↑i↓i+1 − ↓i↑i+1� represents the singlet dimer between neighboring sites (see Fig. 1b with 

solid bounds). This idea was generalized to the Affleck–Kennedy–Lieb–Tasaki (AKLT) model in a spin-1 chain 
with

(1)HMG = J

L
∑

i

(h0i,i+1 + αh0i,i+2),
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x
j + s

y
i s

y
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z
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2
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Figure 1.  (a) The model in Eq. (9) with nearest J and next-nearest-neighbor interaction Jα . (b) The schematic 
illustration of the two exact dimer states, in which each singlet dimer is represented by a solid bound (see the 
exact definition of the wave function in Eq. (7)).
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which was one of the most important models for the Haldane  phase30–33. The degeneracy of the GSs of this 
model can be solved using the above constructive approach. The AKLT model is also one of the basic models 
for the searching of symmetry protected topological (SPT) phases, which are frequently searched by the above 
construction method.

The MG model may be relevant to a large number of one dimensional magnets in experiments in solid materi-
als, such as CuGeO3

34–36,  TiOCl37, 38, Cu3(MoO4)(OH)4
39, DF5PNN40, (TMTTF)2PF6

41, (o-Me2TTF)2NO3
42 and 

MEM(TCNQ)2
43, etc. In these materials, the lattice constant along one of the directions is much smaller than 

the other two directions, rending the couplings between the magnetic atoms along the shortest lattice constant 
direction is much stronger than along the other two directions, giving rise to one dimensional magnets. To date, 
most of these candidates are explained based on the isotropic spin models. It was found that these isotropic 
models are insufficient to understand all results in  experiments44–46.

There are two major starting points for this work. Firstly, we hope to generalize the physics discussed in the 
isotropic models to the fully anisotropic models, which may contain some beautiful mathematical structures. 
Secondly, we hope to provide a possible model to study the one dimensional magnets observed in experiments, 
as above mentioned, which contain some more possible tunable parameters while the fundamental physics 
is unchanged. In other words, the physics based on isotropic interaction can be found in some more general 
Hamiltonians. Our model harbors not only the exact dimer phase, but also three gapped ferromagnetic (FM) 
phases, denoted as x-FM, y-FM and z-FM, according to their magnetic polarization directions. We can determine 
their phase boundaries analytically based on a simplified model assuming exact dimerization. We find that the 
boundaries between exact dimer phase and FM phases are infinite-fold degenerate, while the boundaries between 
the FM phases are gapless and critical with central charge c = 1 for free fermions. Thus these two phases repre-
sent either the translational symmetry breaking or the Z2 symmetry breaking from the infinite-fold degenerate 
boundaries. We finally discuss the relevance of our results to one dimensional magnets and present evidences 
to distinguish them in experiments, showing that it explains both the exact dimer phase and the anisotropic 
susceptibility, which are simultaneously obtained in experiments.

This manuscript is organized as the following. In “Model and Hamiltonian”, we present our model for the 
generalized MG model with anisotropic XYZ interaction. In “Exact dimer phase”, we present a method to obtain 
the exact dimer phase and the associated phase boundaries. We will map out the whole phase diagram based on 
this analysis and confirm our results with high accuracy using exact diagonalization method and density matrix 
renormalization group (DMRG) method. In “Ferromagnetic phases”, we will discuss the three ferromagnetic 
phases. In “Model and Hamiltonian” to “Ferromagnetic phases”, we mainly discuss the physics in the MG point 
with α = 1/2 for the sake of exact solvability; however, the similar physics will be survived even away from this 
point. In “Experimental relevant and measurements”, we will show how this model can find potential applications 
in some of the one dimensional magnets away from the MG point. Finally, we conclude in “Conclusion”. Details 
about the phase boundaries and the general theorem will be presented in the “Appendix”.

Model and hamiltonian
We consider the following spin-1/2 model directly generalized from the isotropic MG model (see Fig. 1a),

where α = 1
2 (MG point) and J > 0 . For the anisotropic Heisenberg interaction, we have

with x, y, z ∈ R . Hereafter, we let J = 1 , unless specified. The case when x = y = z > 0 corresponds to the well-
known MG model with exact dimer phase based on isotropic  interaction24, 25. Anisotropy can be introduced 
to this model by letting x = y > 0 , in which when z > −x/2 the GSs are also exactly dimerized with XXZ 
 interaction47–49.

There are several ways to extend this model to more intriguing and more realistic conditions, considering 
the possible anisotropy in real materials. For example, in the presence of some proper long-range  interactions50, 
the GSs can still be exactly dimerized using the constructive approach in “Introduction”. When this model is 
generalized to integer spins, it may support SPT  phases51–54. However, in the presence of anisotropy as discussed 
above, which can not be solved analytically, the physics is largely unclear.

Exact dimer phase
Our phase diagram of the exact dimer phase for Eq. (9) is presented in Fig. 2. This phase has the advantage to be 
determined exactly with even small lattice sites with periodic boundary condition (PBC). We will confirm the 
analytical phase boundary with high accuracy using numerical methods.

Phase boundary. The exact dimer states in Eq. (7) are independent of system parameters, indicating that it 
is also exact even in a finite system. To this end, we consider the simplest case with L = 4 with Hamiltonian as

(8)HAKLT = J
∑

i

si · si+1 +
1

3
(si · si+1)

2,

(9)H(x, y, z) = J

L
∑

i

hi,i+1 + αhi,i+2,

(10)hi,j = xsxi s
x
j + ys

y
i s

y
j + zszi s

z
j ,
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This model can be solved analytically with eigenvalues given below

The last two states with two-fold degeneracy correspond to the exact dimer phase with eigenvectors in the form of 
Eq. (7). One can verify that this model can be solved analytically only at the MG point with α = 1/2 . To request 
the exact dimer states have the lowest energy, we request Edimer

15−16 < Ei for i = 1− 14 , which yields

This is the major phase boundary determined for the exact dimer phase (see boundaries in Fig. 2). Let’s assume 
x + y > 0 , then the second equation yields the exact phase boundary

The same boundary can be obtained for L = 6 and 8 with high accuracy from the eigenvalues and ground state 
degeneracy (see Fig. 3). By this result, the GSs energy for the exact dimer phase for a chain with length L (L is 
an even number), following Eq. (12), is given by

This result naturally includes the previously known results in the MG model with x = y = z > 050 and the 
extended XXZ model with x = y > 0 and z > −x/247–49. The accuracy of this boundary will be checked by the 
order parameters in the next subsection.

As discussed in the section of the introduction, the ferromagnetic interaction with J > 0 is essential for the 
exact dimer states; otherwise, the triplet state is more energetically favorable (see Eq. (5)). Here, Eq. (13) can 
lead to an interesting conclusion beyond this criterion that the exact dimer states can be found in the anisotropic 
model with some kind of antiferromagnetic interaction. For the three parameters in Eq. (9), we find that this 
exact dimer phase can be realized when only one of the anisotropic parameters is negative valued. It can be 

(11)H4 = h12 + h23 + h34 + h41 + α[h13 + h24 + h31 + h42].

(12)
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Figure 2.  Phase diagram for the fully anisotropic XYZ model in Eq. (9). We have assumed x = cos(θ) and 
y = sin(θ) . The phase boundaries between exact dimer phase and FM phases are determined by Eq. (13), while 
the dots are boundaries determined by order parameters, with absolute difference |zc − zex| ( zex is the exact 
boundary given by Eq. (13)) less than 3.0× 10−4 . In the exact dimer phase, the deep red regions can not be 
explained by mixing of two anisotropic dimer models; see Eq. (17). The classical limits are denoted as H(1, 0, 0), 
H(0, 1, 0) and H(0, 0, 1) and the dashed lines are conditions for exact FM states.
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proven as follows. Let y and z be negative values, then x > |y| + |z| > 0 . However, the second condition in Eq. 
(13) means 1x > 1

|y| +
1
|z| . The multiply of these two inequalities yields an obvious contradiction. For the case 

with two negative parameters, one may compute −H , which may support exact dimer states in its GSs. In this 
way, the highest levels of H can be exactly dimerized when Eq. (13) is satisfied.

Then, how to understand the phase boundary in Eq. (13)? Whether this boundary contains some nontrivial 
region that can not be explained by the known results in the previous literature? To this end, we first need to 
prove another model for the exact dimer phase. For z = 0 and x > 0 , y > 0 , let us define

where hηi = 1
2

∑

i s
η
i s

η
i+1 + s

η
i s

η
i+2 + s

η
i+1s

η
i+2 . We can prove that the minimal energy of hηi  is −1/855 , thus the 

GSs energy Eg ≥ −(x + y)L/8 , which can be reached by states in Eq. (7). With this model, we may construct a 
mixed Hamiltonian (see the general theorem for this decoupling in the “Appendix”),

where z′ > −x′/2 , x′′ > 0 , y′′ > 0 and β ∈ [0, 1] . We require that both H(x′, x′, z′) and H(x′′, y′′, 0) have the same 
exact dimer GSs of Eq. (7). Then, according to Eq. (13), we can find the exact dimer GSs when

and

which can always be fulfilled for the given condition. So the decoupling of Hx provides a general approach to 
construct exact dimer GSs from some simple (known) models, which can be used to understand the exact dimer 
states in some of the regions in the phase diagram of Fig. 2. Nevertheless, not all regions in the phase diagram can 
be understood in this way. In Eq. (17), one may replace the XXZ model by the anisotropic XYZ model and prove 
that this decoupling only allows solution when z > − 1

2min(cos(θ), sin(θ)) for θ ∈ [0,π/2] , z > −2 cos(θ) for 
θ ∈ (π/2,π − arctan(2)) , and z > −2 sin(θ) for θ ∈ (3π/2+ arctan(2), 2π) (see the light red regions in Fig. 2. 
The detailed analysis can be found in the “Appendix”. Beyond these three regions, the exact dimer phase can not 
be understood by the mechanism of Eq. (17), which indicates of non-triviality for this phase.

Order parameters and infinite‑fold degeneracy. The boundary condition in Eq. (13) automatically 
satisfies the permutation symmetry of H. This boundary is numerically verified with extraordinary high accu-
racy (see the dots in Fig. 2). A typical transition from the exact dimer phase to the z-FM phase is presented in 
Fig. 4a–c, which is characterized by the dimer order �d

54, 56, magnetization Mη
57 and entanglement entropy (EE). 

We define these two order parameters as

(16)Hxy = H(x, y, 0) =
∑

i

xhxi + yh
y
i ,

(17)Hx = βH(x′, x′, z′)+ (1− β)H(x′′, y′′, 0),

(18)β(2x′ + z′)+ (1− β)(x′′ + y′′) > 0,

(19)β2(x′2 + 2x′z′)+ (1− β)2x′′y′′ + β(1− β)(x′′ + y′′)(x′ + z′) > 0,

(20)�d = �si · si+1 − si+1 · si+2�, Mη =
∑

i

�sηi �.

Figure 3.  Energy spectra of the lowest three levels for small lattice sites with PBC based on exact 
diagonalization method. (a, b) show the exact dimer phase boundary ( zex = −xy/(x + y) = −0.2928531 ) at 
θ = π

7
 with L = 6 and L = 8 . (c, d) show the exact dimer phase boundary ( zex = −xy/(x + y) = 1.1830127 ) at 

θ = 2π
3

 with L = 6 and L = 8 . In the exact dimer phase, the GS energy of the two-fold degenerate states is given 
by Eq. (15) (red dashed lines).
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Physically, the first order parameter reflects the translational symmetry breaking for dimerization; and the second 
one reflects the time reversal symmetry breaking for the FM phases. To further characterize the entanglement 
feature, or quantumness, in these phases, we can calculate the EE of a finite block A with size n, which is defined 
 as58–60,

where ρA is the reduced density matrix by tracing out its complementary part. In the exact dimer phase, 
�d = 3/4 , Mz = 0 , and the central cut EE equals to 0 (at n = L/2 ) or ln 2 (at n = L/2+ 1 ) due to formation of the 
singlet dimer state. In Fig. 4d, we show a typical result for oscillating of EE. In the z-FM phase, Mz − L/2 ∝ 1/z2 
(from second-order perturbation theory), �d = 0 ; and with the decreases of z, the cut EE tends to be zero when 
z approaches the exact FM phase limit of H(0, 0,−1) (see “Exact FM states”). The boundary determined by these 
order parameters is precisely the same as that from Eq. (13), with absolute difference less than 3× 10−4 . The 
similar accuracy has been found for all dots at the boundaries in Fig. 2. In Fig. 4e,f, we show that at the phase 
boundary, the excitation gaps defined as δEn1 = En − E1 for n ≥ 2 collapse to zero, indicating of infinite-fold 
degeneracy when extending to infinite length. In Ref.49, Gerhardt et al. have proven that the infinite-fold degen-
eracy of the GSs at point x = y , z = −x/2 by considering the n-magnon states

(21)SA(n) = −Tr ρA ln ρA,

Figure 4.  (a) Dimer and (b) magnetization orders at θ = π/7 from density matrix renormalization 
group (DMRG) method with open boundary condition (OBC). The numerical determined boundary is 
zex = −0.29283 , while the exact boundary from Eq. (13) is zc = −0.29285 . (c) The cut EE (see definition in the 
inset) as a function of z at θ = π/7 . At the phase boundary, the EE exhibits a sharp peak. (d) A typical result 
for oscillating of EE due to singlet dimer state. (e) Excitation gaps δEn1 from z-FM to exact dimer phase. (f) The 
enlarged excitation gaps near the critical point. Data are obtained for L = 16 from exact diagonalization (ED) 
with PBC. (g) The degeneracy of the GSs at the phase boundary as a function of L and θ , which scales as O(L/2) . 
(h) The degeneracy of the GSs of H(1, 0, 0) with scaling of O(2L/2).
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which can be obtained by n-fold application of the raising operator S+(p) =
∑

l e
ipls+l  . Here, |FM�zexact = | ↓�

⊗

L 
is FM state (see also the more general definition in Eq. (31)). One can see that the n-magnon states are eigenstates 
of the Hamiltonian

for p = 2π/3 and p = 4π/3 , where the FM state energy is given by

This conclusion is achieved using

where |2p, j� =
∑

l e
2ipl|l, l + j� are the two-magnon states with two spin excitations at sites l and l + j (see Eq. 22). 

The right-band side disappears when p = 2π/3 and p = 4π/3 . At this point, the eigenvalues Edimer
g  of the exact 

dimer states are degenerate with the energy EFMg  of the FM states, which also implies that the n-magnon states 
are GSs of H(x, x,−x/2) . Thus the GSs energies are degenerate with respect to total spin Sz = 0 , 1, 2, . . . , L/2 
 sectors49. Therefore, in the thermodynamic limit, the degeneracy of the GSs is at least of the order of O(L/2) . 
In Fig. 4g, we show the degeneracy of the GSs at the phase boundary with PBC. We find that the degeneracy 
increases with some kind of oscillation from the finite size effect with the increasing of L, which scales as O(L).

At the phase boundary, we also find three classical points H(1, 0, 0), H(0, 1, 0) and H(0, 0, 1), with GSs degen-
eracy increases exponentially with the increasing of system size L. Here, H(0, 0, 1) is relevant to the boundary 
defined in Eq. (13) in the limit of x = −y and z → ∞ . Let us consider H(x, 0, 0) = xH(1, 0, 0) for x > 0 ,  and55

where σi = sxi + sxi+1 . This new operator takes three different values; however, the minimal value −1 from 
the product of the operators can not be reached due to the restriction |σi − σi+1| = |sxi − sxi+2| = {0, 1} . Thus 
σiσi+1 ≥ 0 and the GSs energy is Eg = −L/8 . Let us consider a special case, that is, σ2i = 0 , and σ2i+1 = {1, 0} 
or {−1, 0} . All these states have the same GSs energy Eg = −L/8 . This means that the degeneracy of the GSs is 
at least of the order of O(2L/2) , which is infinite-fold degenerate in infinite length (see verification in Fig. 4h). 
From this boundary, the system may undergo two different spontaneous symmetry breakings. When it breaks 
to the exact dimer phase, the system breaks the translational symmetry with �d  = 0 ; while to the FM phases, 
it breaks the Z2 symmetry with Mη  = 0 and �d = 0 . Since we have three different Z2 operators for symmetry 
breaking, we have three different FM phases.

Ferromagnetic phases
We find three different FM phases polarize along the three orthogonal directions x, y and z. From the point 
of view of symmetry breaking, these FM phases correspond to the spontaneous Z2 symmetry breaking along 
the three axes. The transitions between them are phase transitions and the boundaries are gapless and crit-
ical. The three boundaries for the FM phases are z = x for θ ∈ (π/2, 5π/4) , z = y for θ ∈ (5π/4, 2π) , and 
z > x = y = −1/

√
2 . Across these boundaries, the polarization of magnetizations will change direction. In the 

following, we use several complementary approaches to characterize these phase transitions.

Properties of FM phases. The phase boundaries of the three FM phases can be obtained by performing 
the dual transformation

For example, by performing Ry , H(x, y, z) is transferred to H(z, y, x). This transformation means that the total 
Hamiltonian is invariant when z = x . Therefore, the boundaries are self-dual lines, which are gapless and critical. 
In order to verify these boundaries, we consider the EE in a finite chain with PBC  as58–60,

where c refers to central charge and s0 is a non-universal constant. The results are presented in Fig. 5a,b. We find 
that the central charge c = 1 at the phase boundary, which is a typical feature of free fermions. In Fig. 5c, we show 
the central cut EE defined as S(L/2) as a function of z at θ = 7π/6 for different L and bond dimension m. At the 
phase boundary, we find that the EE exhibits a sharp peak, and its value increases with the increasing of lattice 

(22)S+(p)n|FM�zexact,

(23)H(x, x,−
x

2
)S+(p)n|FM�zexact = EFMg S+(p)n|FM�zexact,
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3xL

16
.
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(
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(
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)
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site L, reflecting gapless and criticality. In the z-FM phase, with the decreasing of z, it will approach the exact FM 
phase limit H(0, 0,−1) , so the central cut EE tends to zero. However, in the x-FM phase, as z increases, the central 
cut EE first decreases (at the exact FM state point z = sin(7π/6) , it equals to zero) and then increases (close to 
the infinite-fold degeneracy point H(0, 0, 1)); see details in “Order parameters and infinite-fold degeneracy”.

This phase transition may also be characterized by their long-range spin–spin correlation functions

In Fig. 5d, we show the Cη(L) as a function of z at θ = 7π/6 for L = 400 . As expected, in the z-FM phase, 
Cx,y(L) = 0 and Cz(L)  = 0 , while in the x-FM phase, Cy,z = 0 and Cx(L)  = 0 . In Fig. 5e, we study the correlation 
function Cz(r) near the phase boundary. In the fully gapped z-FM phase with long-range order, this correlation 
function approaches a constant in the large separation limit. At the boundary, Cz(r) ∝ |r|−γ , which is a typical 
feature of critical phase. In the x-FM phase with spin polarization along x-direction, the correlation function 
Cz(r) decays exponentially to zero; on the contrary, lim|r|→∞ Cx(r) approaches a constant.

We also study the excitation gaps, which is defined as the energy difference between the excited states and 
the ground state as

At the phase boundaries, we find �En1(∞) = 0 , which also means that the boundaries are gapless and critical 
(see Fig. 5f). These features are consistent with the finite central charge ( c = 1 ) observed from central cut EE.

Exact FM states. There exist some special lines in the FM phases to support exact FM states  as61

where |η� is the eigenvector of sη . As shown in Ref.49, when y = x > 0 and z < −x/2 , the ground state is an 
exact FM state spontaneously polarized along z-direction (thus breaks Z2 symmetry along z axis). In our model, 

(29)Cη(r) = �sη1 s
η
r �, η = x, y, z.

(30)�En1 = En − E1 = �En1(∞)+
An

L
, n = 2, 3, . . .

(31)|FM�ηexact = |η�⊗L,

Figure 5.  (a) and (b) show EE and central charge c at the boundary between z-FM and x-FM phase at 
θ = 7π/6 with zzx = −0.86602 , by DMRG method with PBC. The dashed lines in (b) are fitted by Eq. (28) 
with x = ln( L

π
sin πn

L ) , yielding c = 1 . (c) Central cut EE as a function of z at θ = 7π/6 for different L and 
bond dimension m. (d) Spin–spin correlation functions Cη(L) ( η = x, y, z ) as a function of z at θ = 7π/6 for 
L = 400 . (e) Spin–spin correlation function Cz(r) at θ = 7π/6 . At the phase boundary, Cz(r) ∝ |r|−0.32 , by 
DMRG method with OBC. (f) Scaling of excitation gaps δEn1 ∝ 1/L for all n at the boundary ( θ = 7π/6 with 
zzx = −0.86602 ) as a function of chain length, indicating of gapless and criticality.
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we also find another exact z-FM phase when z < x = y = −1/
√
2 . This state can be mapped to the exact 

FM state along the other two directions by dual rotation Rx,y , which induces permutation among the three 
directions. We find that the other two exact FM states at z = y for θ ∈ (π − arctan(2), 5π/4) and z = x for 
θ ∈ (5π/4, 3π/2+ arctan(2)) . These special cases are presented in Fig. 1 with dashed lines, in which the arrows 
mark the evolution of these dual mapping starting from z → −∞ . One should be noticed that when z → −∞ , 
it equals to −H(0, 0, 1) , which can be mapped to −H(1, 0, 0) and −H(0, 1, 0) by dual rotations. The GSs of these 
points should be two-fold degenerate with exact FM states in Eq. (31). This exact two-fold degeneracy can also 
be proven exactly by considering −H(0, 0, 1) using the method in Eq. (26). In these exact FM states, the cor-
responding ground state energy can be written as

Notice that the GSs of −H(1, 1, 1) is infinite-fold degenerate, while in H(1, 1, 1) it is exactly dimerized. This may 
provide an interesting example for the relation between the wave functions of the GSs and the highest energy 
states.

Experimental relevant and measurements
Let us finally discuss the relevance of this research to experiments in one dimensional magnets and their possible 
experimental signatures. The results in the previous sections are demonstrated at the exact MG point for the 
sake of exact solvability; however, these physics can be survived even when slightly away from this point, which 
can happen in real materials. These states are still characterized by the order parameter �d  = 0 with a finite 
energy gap; however, it is no longer the exact dimer phase discussed before with wave function given in Eq. (7). 
These physics needs to be explored using numerical methods. In the spin-Peierls compounds, such as CuGeO3
35,  TiOCl37 and (TMTTF)2PF6

41, the strong anisotropy in lattice constants (for example, in CuGeO3 the lattice 
constants are: a = 8.4749 Å , b = 2.9431 Å and c = 4.8023 Å36) is necessary to isolate a single Cu2+ chain (or other 
spin-12 ions) out from the three-dimensional bulk. For this reason, spatial anisotropy is inevitable and in order to 
describe real materials more accurately, anisotropy in the effective spin model is needed. In experiments, it was 
found that when the temperature is lower than the spin-Peierls transition temperature Tsp , the magnetic suscepti-
bility in all directions will quickly drop to almost zero. Anisotropy in magnetic susceptibility will become signifi-
cant in the FM phase when the Zeeman field exceeds a critical value or T > Tsp . In experiments, these observa-
tions are explained by an isotropic J1–J2 model, which may support the dimer phase when α = J2/J1 > 0.241162. 
This isotropic model was also shown to relevant to other anisotropic one dimensional magnets such as CuCrO4 
with α = 0.4363, BaV3O8 with α ≈ 0.564, Cu3(MoO4)(OH)4 with α = 0.4539, Cu6Ge6O18 · 6H2O with α = 0.2765, 
Cu6Ge6O18 ·H2O with α = 0.2965 and Li1.16Cu1.84O2.01 with α = 0.2966. In some of the experiments, anisotropy 
has been reported. For instance, in CuGeO3 in Refs.44–46, the measured spin susceptibilities along the three crys-
tal axes directions are different, differing by about 10–20%, and the parameters are determined to be α = 0.71 , 
Jxx = 48.2 K, Jyy = 47.2 K and Jzz = 49.7 K. In some materials, these parameters may even be negative valued. 
These results motivate us to think more seriously about the dimer phase in these compounds.

We model the experimental measurements by adding a magnetic field along η-direction,

Since there is an energy gap δE = E3 − E1 in the exact dimer phase (note that E1 = E2 for Z2 symmetry), the 
external magnetic field will not immediately destroy the exact dimer phase. The magnetization Mη (see Eq. 20) 
for the exact dimer phase along different directions are presented in Fig. 6a. We find that the breakdown of the 
exact dimer phase takes place roughly at

When h < hc , the magnetization Mη = 0 along different directions, thus χα = ∂Mα/∂h = 0 . The anisotropy 
effect will be important in the region when h > hc or T > Tsp , which gives different susceptibilities for the mag-
netic field along different directions. This result is consistent with the experimental  observations39, 68–71. This 
anisotropy effect has been reported even in the first spin-Peierls compound CuGeO3

34. In Fig. 6b, we show the 
magnetization Mη in the z-FM phase and find that even a small h can lead to a non-zero Mη . These features can 
be used to distinguish these fully gapped dimer and FM phases. In Fig. 6c, we plot the magnetization away from 
the MG point. The similar features can also be found in the dimer phase, and the phase transition can still take 
place at hc ≃ δE . In experiments, the value of α depends strongly on the lattice constants, thus maybe tuned by 
temperature or external  stress72. We plot the boundary for the dimer phase at θ = π

7  and z = −0.2 in Fig. 6d, 
yielding αc = 0.4362 by extrapolation to infinite length  using67, 73

We have also confirmed this boundary from the dimer order �d and the long-range correlation function Cη(r) . 
This critical value is significantly larger than 0.2411 in the isotropic J1–J2 model from the anisotropy effect. From 
the general theorem demonstrated in this work, we see that the dimer phase in the isotropic model will be sur-
vived even in the presence of anisotropy, thus it may find applications in the above materials.

(32)EFMg = −
3L

8
|min{x, y, z}|.

(33)H ′ = h

L
∑

i

s
η
i , η = x, y, z.

(34)hc ≃ δE = E3 − E1.

(35)αc(L)− αc ∝ L−2.
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Conclusion
This work is motivated by the generalization of the isotropic MG model to the anisotropic region, which may 
have applications in realistic one dimensional magnets. We demonstrate that the exact dimer phase can be found 
in a wide range of parameters in a generalized MG model (at point α = 1

2 ) with anisotropic XYZ interaction. 
Due to the presence of the exact dimer phase, the phase boundaries can be obtained analytically using simple 
models, which are verified with high accuracy using some numerical methods. We find that this model support 
one exact dimer phase and three FM phases, which polarize in different directions. The boundaries between the 
exact dimer phase and FM phases are infinite-fold degenerate, while between the FM phases are gapless, critical 
with central charge c = 1 for free fermions. These results may be relevant to a large number of one dimensional 
magnets. Possible signatures are presented to discriminate them in experiments. These results may advance 
our understanding of dimer phases in solid materials, and it may even have application in the searching of SPT 
 phases74–77 from the general theorem proven in this manuscript.

Appendix
The major results in this work are established based on the following general theorem.

Theorem When the Hamiltonians Hi have the same GS wave functions, then these GSs will also be the GSs of the 
Hamiltonian H =

∑

i Hi , in which these Hamiltonians Hi are not necessarily commutative to each other.

We first prove this theorem using two Hamiltonians H1 and H2 , with corresponding GS wave functions as 
|g1� and |g2� . Let us define H = H1 +H2 , with GS as |g� . Then

In particular when H1 and H2 have the same GSs that |g ′� = |g1� = |g2� , then Eq. (36) can be further written as

This means that |g ′� is the ground state of H. This conclusion can be generalized to an arbitrary number of Ham-
iltonians Hi with i = 1 , . . . , n for n > 2 , in which H =

∑

i Hi will have the same GSs as Hi . In the main text of 
Eq. (17), the GSs of H(x′, x′, z′) and H(x′′, y′′, 0) are exact dimerized with wave functions defined in Eq. (7), so 
the GSs of Hx should also be the same dimerized states, following this general theorem.

It should be emphasized that in the above theorem, the different Hamiltonians Hi are not necessarily to be 
commutative to each other. In the main text, we have used two different Hamiltonians H1 = H(x′, x′, z′) and 
H2 = H(x′′, y′′, 0) , which have the same GSs; however, [H1,H2] �= 0 . For this reason, this theorem should be 
different from the concept of the complete set of commuting observables (CSCO) used in textbooks, which state 
that when two operators H1 and H2 are commutate, then they will have the common eigenvectors; however, these 

(36)
�g |H|g� =

〈

g |H1 +H2|g
〉

=
〈

g |H1|g
〉

+
〈

g |H2|g
〉

≥
〈

g1|H1|g1
〉

+
〈

g2|H2|g2
〉

.

(37)
�g |H|g� ≥

〈

g ′|H1|g ′
〉

+
〈

g ′|H2|g ′
〉

=
〈

g ′|H1 +H2|g ′
〉

=
〈

g ′|H|g ′
〉

.

Figure 6.  Magnetizaton Mη at θ = π
7
 . (a) Exact dimer phase with α = 1

2
 , z = −0.2 . The three critical Zeeman 

fields are hcx = 0.044 , hcy = 0.047 and hcz = 0.043 , and excitation gap δE = 0.0425 . (b) z-FM phase with α = 1
2
 , 

z = −0.4 , δE = 0.054 . (c) Dimer phase with α = 0.45 , z = −0.2 , hcx = 0.005 , hcy = 0.006 and hcz = 0.006 , 
δE = 0.0056 . These results are obtained with L = 256 based on DMRG method. (d) Critical boundary for dimer 
phase at θ = π

7
 and z = −0.2 . The critical point αc = 0.4362 is obtained by extrapolating to infinity length (see 

Eq. 35). Inset shows the boundary determined by level crossing between the first and second excited  states67.
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two Hamiltonians may have different GSs. For instance, if we define a folded Hamiltonian as H2 = (H1 − ǫ)2 . 
Apparently, [H2,H1] = 0 . However, the GS of H2 may correspond to the excited state of H1 with energy closes 
to ǫ . Another example, which is much simpler, is H2 = −H1 , in which the GS of H1 is the highest energy state 
of H2 ; and vise versa.

This theorem can be used to explain a part of the exact dimer phase in the phase diagram (see the light red 
regions in Fig. 1), but not all. We can define x = cos(θ) and y = sin(θ) (see Fig. 2), then we have the following 
three cases. These cases have been verified by numerical simulation. We find that including much more decou-
plings will not change these conclusions; in other words, the deep red regions in Fig. 2 can not be explained by 
this decoupling.

(1) For θ ∈ [0,π/2] ; if z > 0 , we have decoupling as

However, if z ≤ 0 , we have

where H(−2z,−2z, z) locates at the phase boundary of XXZ model. Therefore, if the GSs of H(x, y, z) are 
exact dimer states, H(x + 2z, y + 2z, 0) should satisfy x + 2z > 0 and y + 2z > 0 , which yields

(2) For θ ∈ (π/2,π ] , we can make a unitary transformation Ry , which transfers H(x, y, z) to H(z, y, x), then

In order to ensure that the GSs of H(x, y, z) are exact dimer states, the condition z + 2x > 0 and y + 2x > 0 
need to be satisfied, yielding

(3) For θ ∈ [3π/2, 2π] , the exact dimer states can be obtained in a similar method by a unitary transformation 
Rx , the exact dimer phase requires

The above three conditions have been used at the end of “Phase boundary”, indicating that the deep red 
regions in the phase diagram can not be understood based on this approach.

This general theorem may have much broader applications because the validity of this theorem can be applied 
to diverse physical models, including the single-particle models as well as the many-body models. It only requires 
that the Hamiltonians Hi have the same GSs, so it may also have potential application in the construction of 
SPT phases.
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