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Event‑related components are 
structurally represented by intrinsic 
event‑related potentials
Chong‑Chih Tsai1,2,3 & Wei‑Kuang Liang1,2*

The detection of event‑related potentials (ERPs) through electroencephalogram (EEG) analysis is a 
well‑established method for understanding brain functions during a cognitive process. To increase 
the signal‑to‑noise ratio (SNR) and stationarity of the data, ERPs are often filtered to a wideband 
frequency range, such as 0.05–30 Hz. Alternatively, a natural‑filtering procedure can be performed 
through empirical mode decomposition (EMD), which yields intrinsic mode functions (IMFs) for each 
trial of the EEG data, followed by averaging over trials to generate the event‑related modes. However, 
although the EMD‑based filtering procedure has advantages such as a high SNR, suitable waveform 
shape, and high statistical power, one fundamental drawback of the procedure is that it requires the 
selection of an IMF (or a partial sum of a range of IMFs) to determine an ERP component effectively. 
Therefore, in this study, we propose an intrinsic ERP (iERP) method to overcome the drawbacks and 
retain the advantages of event‑related mode analysis for investigating ERP components. The iERP 
method can reveal multiple ERP components at their characteristic time scales and suitably cluster 
statistical effects among modes by using a tailored definition of each mode’s neighbors. We validated 
the iERP method by using realistic EEG data sets acquired from a face perception task and visual 
working memory task. By using these two data sets, we demonstrated how to apply the iERP method 
to a cognitive task and incorporate existing cluster‑based tests into iERP analysis. Moreover, iERP 
analysis revealed the statistical effects between (or among) experimental conditions more effectively 
than the conventional ERP method did.

Event-related potential (ERP) analysis has been employed for decades to investigate the neural mechanisms of 
sensory, motor, and cognitive processes through electroencephalograms (EEGs). This analysis was conducted 
using the average of the time-locked EEG response (in general, for an event or stimulus) over trials with a 
certain experimental condition for each participant. A conventional practice for increasing the signal-to-noise 
ratio (SNR) and stationarity of the EEG data before or after the averaging process involves applying a filter (or 
filters) to the data. Typically, a wideband filter, such as a 0.05–30-Hz filter (which can be achieved using an 
online 0.05–100-Hz bandpass filter during EEG acquisition and an offline 30-Hz low-pass filter in ERP analysis) 
is recommended to avoid the potential distortion of ERP  waveforms1. Conventionally, the filtering procedure 
employed in ERP analysis is performed using Fourier-based filters, such as finite impulse response (FIR), infinite 
impulse response (IIR), and wavelet filters.

In the past decade, an alternative filtering process achieved through empirical mode decomposition (EMD)2,3 
was introduced for analyzing  ERPs4,5, which are referred to as event-related  modes6. In the alternative process, 
EMD serves as a natural dyadic filter  bank7 to decompose the EEG signals of each trial into a finite set of intrinsic 
mode functions (IMFs). An IMF is a function that satisfy two conditions: (1) the number of extrema (minima 
and maximum) and the number of zero-crossings must either be equal or differ at most by one; and (2) at any 
point, the mean value of the upper envelope (defined by all local maxima) and lower envelope (defined by all 
local minima) is zero. The EMD extracts IMFs by a sifting process which removes the local mean of the upper 
and lower envelopes iteratively (see “Materials and methods”). In order to perform the event-related mode 
analysis, IMFs with either the similar frequency distribution or the same order (if there exists high interchannel, 
intertrial, and intersubject frequency distribution consistency in the order of IMFs) in different trials are aver-
aged to obtain the “mode”. Furthermore, the concept of the event-related mode has been extended to include 
the “composite mode” formed by taking the partial sum of two or more above-mentioned “pure modes” (e.g., 
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those modes with frequency distribution corresponding to delta, theta, and alpha oscillations). In contrast to 
Fourier-based filters, this natural filtering strategy may help to give a more physically meaningful  representation2 
of an ERP component. This method has been used for studying ERP components involved in various cogni-
tive functions, such as auditory perception, sentence comparison, olfactory perception, visual perception, and 
attentional  control5,6,8–10. A 2016 study by Hsu et al.11 investigated the event-related mode of a partial sum of two 
consecutive IMFs obtained through ensemble  EMD12 (EEMD) in a task of auditory perception. The event-related 
mode formed by the two IMFs, which had a frequency distribution of 2–8 Hz, had a considerably higher statistical 
power and required fewer trials for each condition than the conventional ERP did for investigating the mismatch 
negativity effect. A common feature of the aforementioned studies is that they utilized an IMF or IMFs obtained 
through EMD or EEMD to generate narrowband data while maintaining an undistorted waveform shape in a 
certain time  range13 to represent their ERP components effectively. The success of these studies indicated that 
an ERP component might have a characteristic time scale and waveform. The concept of "characteristic time 
scale" was introduced in the basic assumption of  EMD2, and was defined by the time lapse between the extrema 
(from a minimum to its following maximum, or vice versa) in a given IMF. Thus, with the appropriate selec-
tion of the IMF(s) corresponding to an ERP component’s characteristic time scale, the ERP component can be 
clearly assessed. However, whether the characteristic time scales of the critical ERP components are similar for 
a cognitive task (e.g., a working memory task) that comprises two or more critical ERP components must be 
determined. When researchers select a specific IMF or a partial sum of IMFs to better resolve one ERP compo-
nent, the resolution of the other ERP components may be negatively affected if the characteristic time scales of 
the ERP components are different. However, further justification is required if a study must use different IMFs 
or partial sums of IMFs to investigate different ERP components. Considering that the number of IMFs is finite, 
to achieve the aim of revealing every critical ERP component in its corresponding characteristic time scale for 
a cognitive task, we propose using all possible IMFs and their various partial sums (i.e., all possible “modes” 
after averaging over trials) to represent ERP components. This goal is difficult to achieve with a conventional 
bandpass filter because an infinite number of combinations of lower and upper cutoff frequencies exist. In order 
to make our proposed representation applicable to practical EEG data analysis, the following two points should 
be considered. First, not all of the IMFs and partial sums are mathematically independent. Second, including all 
possible modes would add a new dimension to ERP representation [i.e., the “mode” dimension in addition to 
the one-dimensional (1D) time or two-dimensional (2D) channel × time dimensions in the conventional ERP 
method], which can result in a number of comparisons several times that of the conventional ERP representation 
[i.e., a more massive multiple comparison problem (MCP)].

To avoid the MCP when exploring ERPs, we propose a method in this study that involves averaging over trials 
for a plausible range of IMFs and their different partial sums as well as using tailored definitions of neighbors in 
different modes for clustering statistical effects. The features of the proposed method are as follows. First, instead 
of the EMD or EEMD methods used in previous studies, we employed an improved complete ensemble EMD 
with adaptive  noise14–16 (CEEMDAN) method for identifying IMFs. The CEEMDAN method offers valuable 
improvements to the EEMD method. Compared with the EEMD method, the CEEMDAN method has a lower 
reconstruction error (i.e., the noise residual within IMFs) and higher consistency of frequency distribution in the 
order of IMFs for different noisy signals. The aforementioned characteristics are critical for the proposed method, 
which requires high consistency of the IMF order across channels, trials, and subjects for a specific frequency 
range of brain oscillation. The CEEMDAN method can also be combined with a complementary approach for 
generating white noise to reduce the final residual noise (see “Materials and methods”). Moreover, exploring the 
ERPs for all possible IMFs and their various partial sums enables the investigation of the ERP effect from the 
narrowest frequency band (i.e., each single IMF) to the widest natural frequency passband (i.e., the sum from a 
specified initial IMF to the final component of the CEEMDAN method). When the aforementioned approach is 
adopted, the statistical effect of a given ERP component becomes pronounced when at least one critical IMF is 
involved. This effect vanishes after exclusion of the critical IMF(s), revealing the characteristic time scale of the 
ERP component. Finally, the proposed method incorporates a procedure for clustering statistical effects from 
various IMFs and their partial sums (i.e., different modes) within a 2D [mode, time] or 3D [channel, mode, 
time] space. In this procedure, two similar modes are identified as neighboring modes if and only if exactly one 
element (one ordinal number of an IMF) is present in the set given by the exclusive OR operation between the 
two sets of ordinal numbers of the constituent IMFs of the two modes. With the aforementioned assignment of 
neighboring modes and use of the same neighbor identification in other dimension(s) (i.e., “time” in the 2D 
space or “channel and time” in the 3D space) as in conventional ERP, any existing cluster-based statistical method 
[e.g., the standard cluster-based nonparametric permutation (CBnPP)  method17 and the threshold-free cluster 
enhancement (TFCE)  method18] can be employed to cluster the statistical effects among various modes. Thus, 
multiple ERP components with various characteristic time scales can be obtained simultaneously. The proposed 
method is hereinafter referred to as the intrinsic ERP (iERP) method because it involves using numerous IMFs. 
The averaged IMFs and partial sums of the IMFs are referred to as iERP modes. The application of the iERP 
method is demonstrated using realistic EEG data acquired from a face perception task and working memory task.

Materials and methods
The iERP method integrates (1) an improved CEEMDAN method, (2) a complementary approach for white 
noise generation, (3) a method for organizing iERP modes, and (4) a method for clustering statistical effects. 
Each of the items (2–4) has a certain degree of novelty. A flowchart of the iERP method is displayed in Fig. 1a. 
Each process in the aforementioned method is detailed in the following text.
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Introduction to EMD. The EMD method decomposes a series of signal into a generally small number of 
IMFs through the sifting process. The steps of EMD and its sifting process are described as follows:

1. Find all minima and maxima of the data x.
2. All the local maxima (minima) are connected by a cubic spline line to acquire the upper (lower) envelope 

first, followed by obtaining the first component h by taking the difference between the data x and the local 
mean of the upper and lower envelopes.

Figure 1.  iERP analysis of EEG/MEG signals. (a) Flowchart of iERP analysis. The iERP method involves 
using the improved CEEMDAN method to obtain IMFs for EEG/MEG data of each trial at each channel for 
each condition and participant. The IMFs and their various partial sums are then averaged over trials within 
each condition for each channel and each participant to form iERP modes. The statistical effects were obtained 
by incorporating a special definition of neighbors for each mode in existing cluster-based statistical tests. (b) 
Illustration of the signal decomposition with the CEEMDAN method and IF distributions of the IMFs.
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3. Treat h as the data and repeat steps 1 and 2 as many times as required to satisfy some stopping criterion. The 
final h is designated as c1, which is the first IMF from the data. Then separate c1 from the rest of the data by 
x − c1 = r1.

4. Treat the residue r1 as the data and repeat steps 1–3 to acquire the second IMF c2 and its corresponding 
residue r2 (obtained by r1 – c2).

5. Continue step 4 by treating the residue rk as the data (k ≥ 2) to retrieve the IMF ck+1 until the final residue rn 
becomes a function from which no further IMFs can be obtained (i.e., no more than two extrema).

In the above EMD process, the data x is decomposed into IMFs, cj, i.e., x =
∑n

j=1
cj + rn , where rn designates 

the residue of the data x, after n number of IMFs are extracted. In this study, all the processes of EMD (within 
the CEEMDAN method) employ a stopping criterion suggested by Wu and  Huang12,19 that fixes the sifting 
number to 10. This stopping criterion would lead to EMD being a “nearly perfect” dyadic filter for white noise 
while keeping the upper and lower envelopes of IMFs almost symmetric to the zero line. This dyadic filtering 
property is especially critical for the current study because it would also lead to the total number of IMFs of the 
“noise-added” data being close to  log2N (N: the number of total data points).

Improved CEEMDAN method. The CEEMDAN method is characterized by its “adaptive noise”. In this 
method, each realization of white Gaussian noise (WGN) is decomposed through EMD to produce “noise IMFs.” 
These noise IMFs given by a number of realizations of WGN form a “complete” ensemble of noises and are added 
to the original signals and the subsequent residues in a consistent order to generate “ensemble mean” IMFs for 
the data. The original notations employed by the developers of the CEEMDAN method are as follows: Ek(.) is the 
operator that provides the kth mode of EMD, and w(i) is a realization of N(0, 1) WGN. The steps of the CEEM-
DAN algorithm are briefly described as follows:

1. Apply EMD to the l realizations of the adaptive-noise-containing data x(i) = x + β0E1(w(i)) to obtain the first 
mode and its residue r1

(i) for each realization. The first mode for each realization is obtained by the sifting 
process, and its residue is the remaining signal once the first mode has been removed from the realization.

2. Calculate the first residue of CEEMDAN by averaging all the residues r1
(i) in the l realizations: r̃1 = �r

(i)
1
� . 

The first IMF is obtained as follows: d̃1 = x − r̃1.
3. Perform EMD on the l realizations r̃1 + β1E2(w

(i)) to acquire the first mode and its residue r2
(i) for each 

realization. Thus, the second residue of CEEMDAN can be estimated as follows: r̃2 = �r
(i)
2
� . The second IMF 

is then obtained as follows: d̃2 = r̃1 − r̃2.
4. Similar to step 3, for k = 3, …, K, recursively perform EMD on the l realizations r̃k−1 + βk−1Ek(w

(i)) to obtain 
the first mode and its residue rk

(i) for each realization. Thus, the kth residue of CEEMDAN can be obtained 
as follows: r̃k = �r

(i)
k � . The kth IMF is then obtained as follows: d̃k = r̃k−1 − r̃k.

The coefficient βk = εkstd(r̃k)/std(Ek+1(w
(i))) is used for controlling the SNR. In the two examples in this 

study, εk was set as 0.2.

Complementary approach for white noise generation. The proposed method also involves using a 
complementary approach for generating adaptive noise. The principle of the adopted complementary approach 
is similar to that of the complementary EEMD method proposed by Yeh et al.20 except that a complementary 
pair of adaptive noises (i.e., IMFs of the WGNs) is used instead of a complementary pair of WGNs. Therefore, 
for each of the aforementioned steps of the CEEMDAN algorithm, when a realization r̃k−1 + βk−1Ek(w

(i)) was 
adopted, its complementary realization r̃k−1 − βk−1Ek(w

(i)) was also included in the analysis to further reduce 
the residual noise in IMFs and the required size of the noise ensemble.

Forming iERP modes. In the proposed method, iERP modes are obtained by averaging each possible IMF 
(i.e., a pure mode) or partial sum of the IMFs (i.e., a composite mode) over trials within each condition for each 
channel and each participant. Optionally, IMFs whose instantaneous frequencies (IFs) are higher than a certain 
threshold (e.g., 30 Hz) can be excluded from the set of constituent IMFs during the generation of iERP modes. 
We expressed iERP modes according to the initial and final orders of the constituent IMFs of each mode. For 
example, the IF distributions of the IMFs of the EEG data displayed in Fig. 1b indicate that oscillatory activity 
below the specified frequency of 30 Hz originated from the second and the following order of IMFs. Thus, the 
organization of iERP modes can be expressed as p:q, where p and q = 2, …, N, with p <  = q. If p = q, the expression 
p:p denotes a pure mode obtained by averaging the pth IMF over trials, otherwise the expression p:q (p < q) desig-
nates a composite mode formed by averaging over trials the partial sum from the pth IMF to the qth IMF. In prac-
tical application, IMFs with IFs below the delta frequency range can be summed to form a single component. For 
example, the IMFs in Fig. 1b with an order equal to or higher than 6 have IFs lower than 2 Hz; thus, these IMFs 
can be summed to produce a single component. The summed single component is denoted by the order of its 
initial IMF of the sum, together with the suffix “+” (i.e., “6+” in the aforementioned example, signifying the com-
ponent is obtained by summing from the sixth IMF to the “trend”). Therefore, “2:6+” indicates that the range of 
the partial sum is not only from the 2nd to the 6th IMF but also includes all IMFs following the 6th IMF. Thus, 
this 2:6+ partial sum yields a wideband iERP mode that is similar to the conventional ERP with a 32 Hz lowpass.

Clustering statistical effects. To determine the experimental effects and overcome the MCP in the iERP 
method, we included a special definition of neighbors for the iERP modes in the proposed method. This neigh-
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bor definition for the iERP modes can be primarily used in cluster-based statistical analysis methods such as the 
 CBnPP17 and TFCE  method18 to cluster the statistical effects of various iERP modes on the basis of 2D [mode, 
time] or 3D [channel, mode, time] adjacency. In the “mode” dimension, the neighbors of a given iERP mode 
(denoted by a) are identified using the following criterion: if the resulting set of the exclusive OR (XOR) opera-
tion between the set of ordinal numbers of constituent IMFs of any iERP mode (denoted by b) and the set of 
ordinal numbers of constituent IMFs of the iERP mode a consists of only one element (i.e., an ordinal number 
of an IMF), then mode b is a neighbor of mode a. For instance, the iERP modes 2:5 and 3:5 are mutual neighbors 
because the XOR between the two corresponding sets of ordinal numbers of constituent IMFs only yields a set 
of one element (i.e., “2”); however, modes 2:5 and 3:6 are not mutual neighbors because the XOR between the 
two corresponding sets of ordinal numbers of constituent IMFs gives a set of two elements (i.e., [2, 6]). For the 
other dimension(s) (i.e., time in the 2D iERP space or “channel and time” in the 3D iERP space), the principle 
of neighbor identification remains the same as that in conventional ERP analysis. Specifically, two channels are 
considered neighbors if their distance is less than a threshold value (e.g., 40 mm), and two time bins are con-
sidered neighbors if they are adjacent to each other. Consequently, in any representation of iERP (i.e., in the 2D 
[mode, time] or 3D [channel, mode, time] iERP space), two data points are identified as “2- or 3-dimensional” 
neighbors if the two data points are mutual neighbors in only one dimension (e.g., “mode”) while sharing the 
same coordinate(s) in the other dimension(s) (e.g., [channel, time]).

The standard CBnPP method employed in the two examples in this study is a strategy for performing multiple 
comparisons while maintaining reasonable statistical power. We use the CBnPP test to reveal the differences of 
iERP between two conditions, and to evaluate the correlations between the iERP and participants’ behavioral 
data (e.g., working memory capacity). Based on the aforementioned 2- or 3-dimensional neighbor relationship, 
the CBnPP test for iERP is described as follows:

1. For every data point in the iERP space, perform a classical parametric statistical test to obtain the correspond-
ing statistical value (e.g., t value for t-test, and correlation coefficient ρ for correlation analysis).

2. Select all data points whose statistical value is higher than some uncorrected threshold based on the sampling 
distribution of the statistical value under the null hypothesis (e.g., 97.5th quantile of a T-distribution, which 
is corresponding to a critical value in a two-tailed t-test at alpha-level 0.05).

3. Cluster the selected data points in connected sets on the basis of the 2- or 3-dimensional neighbor relation-
ship.

4. Calculate the cluster-level observed test statistic by taking the sum of the statistical values obtained in step 2 
within each cluster.

5. Generates the randomized data by a large number (e.g., 5000 times) of permutations on the variable of the 
parametric test statistic adopted in step 1 (e.g., participants’ conditions in a dependent samples t-statistic, 
or participants’ order in a correlation analysis).

6. For each permutation, repeat steps 1–3 for the randomized data and calculate the cluster-level test statistics 
by taking the sum of the statistical values within each randomly occurring cluster. Only the maximum of 
the cluster-level test statistics in each permutation is chosen for constructing the permutation distribution 
of the cluster-level random test statistics.

7. Finally, the cluster-level observed test statistics (i.e., without permutation) are further tested against the 
cluster-level random test statistics (i.e., the permutation distribution) under a prespecified critical alpha-level 
(e.g., α = 0.05, two-sided).

The TFCE method used in an example in this study is an extension of the standard CBnPP test. In the CBnPP 
test, the choice of the initial cluster-forming threshold is arbitrary, but its exact chosen value can have a non-
negligible effect on the results. The advantage of the TFCE method is that it can keep the sensitivity benefits of the 
standard CBnPP test, while avoiding (or, minimizing) the arbitrary thresholding problem. Furthermore, various 
statistical tests have been implemented based on the TFCE approach, including those tests that are not available in 
the standard CBnPP, such as the TFCE version within-subjects and between-subjects one-way analysis of variance 
(ANOVA) and mixed-model two-way ANOVA. When any TFCE-based statistical test is applied to the iERP data, 
the only requirement is to clearly define the 2- or 3-dimensional neighbor relationship in the 2D [mode, time] or 
3D [channel, mode, time] iERP space as we have mentioned above, without modifying its original  algorithm18.

In this study, the codes for demonstrating the cluster-based statistical tests in the iERP method are adapted 
from MATLAB functions in the Mass Univariate ERP  toolbox21 and the ept_TFCE  toolbox22 (https ://githu b.com/
Mense n/ept_TFCE-matla b) for the standard CBnPP and the TFCE method, respectively.

Examples
To illustrate the application of the iERP method to real data, we considered EEG data acquired from a face per-
ception task and working memory task. The conventional ERP method was also applied with the aforementioned 
data to compare its performance with that of the proposed method.

Because of the long history of the application of ERPs in cognitive neuroscience, various a priori hypotheses 
have been introduced into conventional ERP analyses, e.g., an a priori time window or EEG sensor(s) for a certain 
ERP component. Although we suggest performing the iERP analysis without these a priori hypotheses (i.e., in 
the 3D [channel, mode, time] space), in the following two examples, we will also demonstrate how to conduct 
the iERP analysis based on established a priori knowledge to increase the flexibility in using the iERP method. 
Once an a priori knowledge (i.e., a prespecified EEG sensor or time window) is incorporated, the iERP analysis 
including its adopted cluster-based approach will be in a dimensionality-reduced space (i.e., a 2D [mode, time] 
space for an a priori sensor, or 2D [channel, mode] space for an a priori time window).

https://github.com/Mensen/ept_TFCE-matlab
https://github.com/Mensen/ept_TFCE-matlab
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Application of the iERP method with the data acquired from a face perception task. The iERP 
method was first applied to EEG data obtained from a publicly accessible multimodal data set (https ://openn 
euro.org/datas ets/ds000 117/). These data were collected from 16 participants during a face perception task with 
multiple trials of famous, unfamiliar, and scrambled faces (Fig. 2a, left)23,24. The preprocessing procedure was the 
same as that described in chapter 42 of the SPM12 manual (https ://www.fil.ion.ucl.ac.uk/spm/doc/manua l.pdf). 
Thus, the downsampled EEG data set comprised trials with a sampling rate of 200 Hz. Research conducted using 
the conventional ERP method has indicated a greater negative deflection in N170 amplitude for unscrambled 
faces than for scrambled faces in right temporoparietal  channels24.

Single‑sensor analyses with a priori EEG sensor. The iERP method was applied with the CEEMDAN algorithm 
to EEG data from − 500 to 1200 ms relative to the stimulus onset to obtain the IMFs for each trial. The IF distri-
bution of the IMFs (Fig. 2a, middle) suggested that the iERP method could be applied using various partial sums 
from the second IMF (IF distributed mainly in the range of 15–32 Hz) to the last component. In the aforemen-
tioned example, the last component was formed by summing IMFs whose IFs were distributed below the delta 
band (i.e., summing from the sixth IMF to the representative “trend” IMF). These IMFs were denoted as IMF 6+. 
The final iERP was baseline corrected relative to a 100-ms window prior to the stimulus  onset24.

We applied the iERP method for an a priori right temporoparietal  channel24, namely “EEG065” (Fig. 2a, right), 
with TFCE repeated-measures analysis of variance (ANOVA) on the three conditions within the 2D [mode, time 
(50–700 ms)] domain (maximum F = 79.43, minimum P = 0.0002) (Fig. 2b). The yellow time windows in Fig. 2b 

Figure 2.  iERP analysis on EEG data of the face perception task. (a) Illustration of the face perception task 
in the first example, the IF distributions of the IMFs of the 200-Hz EEG data, and the representative right 
temporoparietal EEG channel (EEG065). (b) iERP results for the EEG signals from the EEG065 channel and 
TFCE repeated-measures ANOVA of the three conditions within the 2D [mode, time (50–700 ms)] domain. 
Time windows in yellow indicate P < 0.005 for TFCE. (c) Conventional ERP results corresponding to the 
iERP results in (b). (d) Statistical contrast of the iERPs between unscrambled faces (famous + unfamiliar) and 
scrambled faces (indicated by T values). Regions with completely opaque colors indicate P < 0.025 for TFCE. (e) 
Statistical contrast of the iERP results between famous and unfamiliar faces. Conventions are the same as those 
in (d). (f) Conventional ERP contrast between unscrambled and scrambled faces. (g) Conventional ERP contrast 
between famous and unfamiliar faces.

https://openneuro.org/datasets/ds000117/
https://openneuro.org/datasets/ds000117/
https://www.fil.ion.ucl.ac.uk/spm/doc/manual.pdf
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indicate that P < 0.005 (0.05/10) for TFCE. Thus, in this statistical study, the MCP in the [mode, time] dimen-
sions was resolved through TFCE. Moreover, the MCP was solved in the channel dimension if the number of 
interested electrodes (or electrode collections) for the cognitive task did not exceed 10. For comparison, we also 
used the conventional ERP method by applying a low-pass filter (Butterworth, order 5) with a cutoff frequency 
of 32 Hz to the averaged EEG data (Fig. 2c; with TFCE ANOVA of the three conditions in the time domain, 
P < 0.005). As expected, the results for mode 2:6+ were similar to those obtained with the conventional ERP 
method because these results were the partial sum of all the IMFs (including the trend IMF) whose IFs were 
below 32 Hz. The results for mode 2:6+ and the conventional ERP method revealed a negative deflection from 
140 to 290 ms (N170). This deflection was greater for unscrambled faces than for scrambled faces. From approxi-
mately 315 ms until the end of the epoch, a slow negative potential shift differentiated the conditions. The iERP 
method considered the importance of the P100 component across the 2:4, 2:5, 3:4, 3:5, 4:4, and 4:5 modes. The 
importance of the aforementioned component was ignored by the conventional ERP method and wideband 2:6+ 
mode. The face-related P100 effect has been demonstrated in other  studies25,26. This effect is achieved through 
the filtering of ERPs by using an infrequent passband between 1 and 30  Hz26. The differences in the iERPs among 
conditions were also identified from the statistical contrast between unscrambled faces (famous + unfamiliar) and 
scrambled faces and between famous and unfamiliar faces through the application of dependent-sample TFCE 
in the [mode, time] domain (Ps < 0.025, as displayed in Fig. 2d,e). For comparison, the corresponding results 
obtained with the conventional ERP method are presented in Fig. 2f,g (TFCE in the time domain, Ps < 0.025).

Multi‑sensor analyses. A topographical representation of the iERP method that involves clustering experi-
mental effects in the 3D [channel, mode, time] domain through the standard CBnPP test is presented (the 
maximum distance between channels was set as 40 mm for identifying neighbors). To ensure the accuracy of 
the representation, we averaged the iERP from 20 to 680 ms prior to stimulus onset into 11 time bins of 60 ms 
each. Because the 60-ms bin size is longer than most periods of the second IMF (see the IF distribution of IMF2 
in Fig. 2a), the iERP modes initiated from the second IMF (i.e., mode 2: k, k = 2, …, 6+) could be neglected. 
We only emphasized modes that originated from the third-order IMF or higher. The topographical contrast 
of the iERPs between unscrambled faces (famous + unfamiliar) and scrambled faces and between famous and 
unfamiliar faces is illustrated in Fig. 3a,c, respectively [5000 permutations, α = 0.025 (because we performed two 
comparisons here), two-sided]. The results of the wideband 3:6 + iERP mode (Fig. 3a,c) were similar to those of 
the conventional ERP method (Fig. 3b,d, which correspond to the iERP results in Fig. 3a,c, respectively). Both 
results clearly revealed the N170 effect in the contrast between unscrambled and scrambled faces (see the time 
bin at 140–200 ms). However, compared with the results of the conventional ERP method, the overall iERP topo-
graphical results indicated additional effects for both of the aforementioned contrasts. First, a subtle but signifi-
cant delay in the N170 effect was observed on temporoparietal channels for famous faces relative to unfamiliar 
faces at 200–260 ms. Second, iERP modes 3:4, 3:5, 4:4, and 4:5 exhibited more negative deflection for famous 
faces than for unfamiliar faces on the electrodes at the right frontal brain area at 320–380 ms. This effect was not 
clearly observed in the results for the conventional ERP method or for iERP modes 3:6+ and 4:6+. The afore-
mentioned finding might indicate that when the low-frequency IMF 6+ mode is included in the partial sum, the 
right frontal negative effect, which is used to differentiate between famous and unfamiliar faces, is weakened.

Compact representations. For better visualization of the aforementioned topographical contrasts, a compact 
representation of the iERP results in which the y-axis and x-axis respectively denote the initial and end IMF of 
a mode is displayed in Fig. 4. In this compact form, the iERP effects in a specified electrode cluster are reorgan-
ized among the modes obtained from the aforementioned topographical analysis without the use of any further 
statistical tests. A compact representation of iERP modes within a time bin was generated. For those in which 
the statistical effect of any channel within an electrode cluster was identified as significant in the previous topo-
graphical analysis, with the corresponding P value of the average T value of the electrode cluster below a certain 
threshold (0.025 in this study), the average T value of the mode is presented with completely opaque color. For 
the contrast between unscrambled and scrambled faces, the right temporoparietal electrode cluster (EEG003, 
EEG050, EEG060, and EEG065) demonstrated clear P100 and N170 effects in the time bins at 80–140 and 
140–200 ms, respectively (Fig. 4a,b). However, the P100 effect was pronounced only if IMF 6+ was not included, 
whereas the N170 effect exhibited an increased statistical effect in modes involving IMF 6+. For the contrast 
between famous and unfamiliar faces, the right temporoparietal cluster revealed a negative effect in the time 
bin at 200–260 ms. This negative effect may have resulted from a delay in the N170 waveform for famous faces 
compared with that for unfamiliar faces (Fig. 4c). Furthermore, a more negative deflection was observed in the 
right prefrontal electrode cluster (EEG026, EEG027, EEG037, and EEG038) for famous faces than for unfamiliar 
faces in the time bin at 260–320 ms if a mode included IMF 4 but not IMF 6+ (Fig. 4d).

iERP for visual working memory. The second example demonstrates how to perform iERP analysis on 
the basis of established ERP hypotheses. EEG data for this example were acquired from 20 participants when 
they performed a standard change detection  task27 (Fig. 5a, left). These participants were required to memorize 
a study array comprising 11 colored rectangles and compare it with a subsequent test array (900 ms later) for 
determining whether the color of a rectangle in the left or right visual field changed. A preprocessing procedure 
was performed on the EEG data; thus, an artifact-rejected data set with a passband of 0.05–70 Hz and sampling 
rate of 1000 Hz was  obtained27. This data set was originally used for investigating the ERP components of visual 
working memory (VWM) and the transcranial direct current stimulation effect on these components from the 
perspective of individual differences. Because the aforementioned data set was only used for demonstration 
purposes in the current example, we simply analyzed the iERPs for a part of the original data set that involved 
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only the sham condition (i.e., current fade in and out, with no current applied in between) and investigated its 
relationship with the VWM capacity (i.e., Pashler’s K)28–30.

Figure 3.  Topographical iERP results. (a) Topographical contrast between the iERP results for unscrambled 
faces (famous + unfamiliar) and scrambled faces. Statistical effects were identified using the standard CBnPP 
test in the 3D [channel, mode, time] domain. White circles denote the regions of “cluster P” < 0.025 in the 
testing domain. (b) Topographical contrast between the conventional ERP method results for unscrambled 
and scrambled faces. (c) Topographical contrast between the iERP results for famous and unfamiliar faces. 
Conventions are the same as in (a). (d) Topographical contrast between the conventional ERP method results 
for famous and unfamiliar faces.
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To obtain the IMFs for each trial, iERP analysis was performed using the CEEMDAN algorithm on EEG data 
from 800 ms prior to the study array onset to 600 ms after the test array onset. According to the IF distributions 
for the IMFs (Fig. 5a, middle), the iERP modes were arranged using various partial sums from the fifth IMF (IFs 
distributed mainly in the range of 13–25 Hz) to the final component. In the current example, the final component 
(IMF 9+) was the sum of the IMFs with IFs below the delta range (i.e., from the ninth IMF to the “trend” IMF). 
The iERP was baseline corrected relative to a 200-ms window prior to test array onset (this baseline window was 
often used in ERP research for attention and working  memory31,32) to determine the iERP effects during VWM 
retrieval and comparison.

Contralateral‑sensor analyses. For this task, an established ERP hypothesis is that the ERP effects related to vis-
ual attention or working memory are influenced by the mean difference between the contralateral and ipsilateral 
amplitudes at parietal electrodes relative to the target side [e.g., N2pc, and sustained parietal contralateral nega-
tivity (SPCN)]. A priori time windows, such as the selected window from 250 to 320 ms for analyzing  N2pc27, 
were selected for investigating these ERP effects. According to the aforementioned hypotheses, we first analyzed 
the mean difference between the contralateral and ipsilateral amplitudes of iERP at the parietal electrodes [(PO7, 
PO5, P7, P5) vs. (PO8, PO6, P8, P6)] (Fig. 5a, right) relative to the side of the correctly detected changed item. 
Figure 5b displays the statistical contrast between the iERP results for the contralateral and ipsilateral parietal 
electrodes. The corresponding contrast of the conventional ERP results is also shown at the bottom of Fig. 5b for 
comparison. The aforementioned contrasts were achieved through a one-sample CBnPP test of the differences 
between the contralateral and ipsilateral amplitudes of the iERP within the 2D [mode, time (0–600 ms)] iERP 
domain (for the conventional ERP method, only in the 1D “time” domain). The results of the CBnPP test indi-
cated that the N2pc effect was the most stable effect across almost all modes except those derived from a single 
IMF (i.e., modes 5:5, 6:6, and 7:7) and mode 5:6. Compared with the N2pc effect, the SPCN effect was weaker 
in the iERP and conventional ERP methods. However, the iERP contrast revealed a prolonged negative effect in 
the low-frequency mode 8:9+ from 220 to 570 ms and a short positive marginal effect (cluster P = 0.075) in the 
modes 7:7 and 6:7 from 350 to 450 ms. The aforementioned results might explain why the prolonged negative 
effect could no longer be observed when modes 7:9+, and 6:9+ were summed. Thus, the iERP method might 
have separated these originally overlapping components into their corresponding modes.

Figure 4.  Compact representation of the iERP results, where the y-axis and x-axis denote the initial and 
end IMFs of a mode, respectively. (a,b) For the contrast between unscrambled and scrambled faces, the right 
temporoparietal electrode cluster demonstrated clear P100 and N170 effects at 80–140 and 140–200 ms, 
respectively. However, the P100 effect was pronounced only if IMF 6+ was not included, whereas the N170 
effect exhibited increased statistical effects in modes involving IMF 6+. (c) Compared with unfamiliar faces, 
famous faces exhibited more negative iERP amplitudes in the right temporoparietal cluster at 200–260 ms. (d) 
A more negative deflection of the iERP at the right prefrontal electrode cluster (EEG026, EEG027, EEG037, and 
EEG038) was observed for famous faces than for unfamiliar faces at 260–320 ms if a mode included IMF 4 but 
not IMF 6+.
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Multi‑sensor analyses with a priori time window. We analyzed the topographical iERP of the aforementioned 
task for an a priori time window of 250–320 ms for the N2pc effect. Thus, topographical iERP analysis was 
performed according to the statistical contrast between the correctly detected left and right change trials within 
the 2D [channel, mode] iERP domain (one-sample CBnPP test ,the maximum distance between channels was 
set as 40 mm for identifying neighbors). An antisymmetric pattern with a negative effect on the right parietal 
electrodes and positive effect on the left parietal electrodes was expected. In Fig. 5c, every topographical iERP 
result is displayed with its corresponding conventional ERP result for comparison. The first graph in Fig. 5c illus-
trates the statistical contrast of the topographical iERPs between the hit-left and hit-right conditions (N = 20). 
The aforementioned results revealed a pronounced negative effect across all iERP modes on the right parietal 
electrodes (trough T =  − 5.15, cluster P = 0.0016, α = 0.05) but not a positive effect on the left parietal electrodes. 
Thus, the results were partially consistent with the expected pattern. However, a pronounced positive correlation 
was observed between the differential iERPs (i.e., hit-left condition vs. hit-right condition) and the participants’ 
VWM capacity for the left parietal electrodes (peak r = 0.634, cluster P = 0.045, α = 0.05). This positive correla-
tion indicated that the higher the participants’ VWM capacity, the more their hit-left versus hit-right contrast of 
iERPs was consistent with the expected antisymmetric topographical pattern (Fig. 5c, second graph).

Figure 5.  iERP analysis on EEG data of the VWM task. (a) Illustration of the VWM task in the second 
example, IF distributions of the IMFs of the 1000-Hz EEG data, and parietal electrodes for determining the 
mean difference between the contralateral and ipsilateral amplitudes of the iERPs. (b) Statistical contrast of 
the iERPs between the contralateral and ipsilateral parietal electrodes, with the corresponding conventional 
ERP results shown below for comparison. The statistical results were obtained using a one-sample CBnPP 
test on the differences between the contralateral and ipsilateral amplitudes of the iERPs within the 2D [mode, 
time (0–600 ms)] iERP domain [for conventional ERP, the 1D (time) domain]. (c) Statistical contrast of the 
topographical iERPs between the hit-left and hit-right conditions (first graph), which revealed a pronounced 
negative effect across all iERP modes on the right parietal electrodes (trough T =  − 5.15, cluster P = 0.0016, 
α = 0.05, N = 20) but not a positive effect on the left parietal electrodes. The results in (c) are partially consistent 
with the expected pattern. Pearson correlation analysis revealed a pronounced positive correlation between the 
differential iERPs (i.e., hit-left condition vs. hit-right condition) and the participants’ VWM capacity on the left 
parietal electrodes (peak r = 0.634, cluster P = 0.045, α = 0.05).
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Discussion
In this study, we propose the iERP analysis method and demonstrate its usage and advantages by using two 
examples. Compared with the conventional ERP method, the iERP method can better resolve ERP components 
in their characteristic time scales. In addition, in contrast to the event-related mode analysis method, the iERP 
method can avoid a trial-and-error process for determining the relevant IMF or partial sum of IMFs for each 
studied ERP component.

The CEEMDAN algorithm used in this study is based on the 2014 improvement of the CEEMDAN algorithm 
proposed by Colominas et al.14. Their improved CEEMDAN algorithm overcomes the problems of residual noise 
and spurious modes that were observed in its earlier  version16 and can thus be used to generate IMFs with high 
resistance to the mode-mixing phenomenon and noise residuals. Moreover, we incorporated complementary 
noise pairs into the CEEMDAN algorithm to further reduce the noise residual and improve the interchannel, 
intertrial, and intersubject time scale consistency of the order of IMFs according to the requirements of the 
proposed method. This high interchannel, intertrial, and intersubject time scale consistency in the order of 
IMFs can be investigated through the EEG data of the first adopted example in this study by looking into the 
between-subject (Fig. 6a) and within-subject (Fig. 6b) distribution of instantaneous frequencies for each order of 
IMFs at each channel. Although we cannot completely rule out the possibility of time scale inconsistency in the 
order of IMFs across channels, trials, and subjects in any other data sets that we have not investigated, however, 
this inconsistency can hardly be found in the two adopted examples in this study and in multiple EEG data sets 
that we have explored, as long as the data are acquired and preprocessed with the same procedure. Therefore, 
for the proposed iERP analysis, at this moment we are not inclined to offer a solution to deal with this rarely 
occurred inconsistency, though it is conceivable that a possible solution may be to correct the order of IMFs by 
comparing their frequency distributions.

Because of the high intertrial and intersubject time scale consistency in the order of IMFs, the characteristic 
time scale of an iERP mode is closely related to the order of its constituent IMFs, and this time scale will be 
consistent across subjects. For a pure iERP mode, it is obvious that its time scale will be similar to the charac-
teristic time scale of the corresponding IMF in each trial that constitutes the mode. However, for a composite 
iERP mode, since it is underpinned by its corresponding partial sum of IMFs in each trial, its time scale can 
only be estimated after the mode has been formed (similar to the approach used for an IMF, measured by the 
time lapse between the extrema). For a cognitive task, a critical composite iERP mode may be derived from the 
nonlinear characteristics of the ERP component represented by the mode. This is based on the fact that one of 
the characteristics of a nonlinear oscillation system is that its dynamics can be expressed by an oscillation at its 
fundamental frequency, together with a series of  harmonics33 (multiples of the fundamental frequency). Thus, 
when the degree of nonlinearity of an oscillation system goes high such that it cannot be revealed merely by 
the variation of instantaneous frequency within a single IMF (which is also a character of nonlinearity)34, two or 
more IMFs are required to represent the dynamics of the nonlinear system.

Figure 6.  Time scale consistency in the order of IMFs investigated through the box-and-whisker plots (the box 
depicting the median and the 25th and 75th quartiles and the whisker showing the 5th and 95th percentile) of 
instantaneous frequencies of IMFs of EEG data in the first example. (a) Between-subjects analysis: interchannel 
and intersubject time scale consistency in the order of IMFs. Each box-and-whisker plot represents the 
distribution of subjects’ representative frequencies of a specific IMF order at a given channel. For each subject, 
the representative frequency of a specific IMF order at a given channel is the frequency with the maximum 
occurrence probability in the instantaneous frequency distribution of IMFs of the order at the given channel. (b) 
Within-subject analysis (only for subject 10): interchannel and intertrial time scale consistency in the order of 
IMFs. Each box-and-whisker plot represents the distribution of instantaneous frequencies of IMFs of a specific 
order at a given channel from all trials.
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We note that the iERP analysis is not a method of decomposition, but a method of representation for ERP 
components. The meaning of a pure iERP mode (e.g., mode 4:4 or 6:6) is quite simple: the mean waveform of 
brain activities within a particular frequency band. Because of the natural-filtering property of the CEEMDAN 
(inherited from EMD), the mean waveform can reveal some nonlinear characteristics on the waveform shape. 
Suppose a pure iERP mode has a higher amplitude in one experimental condition as compared to the other 
experimental condition, the next step could be using Hilbert-Huang  Transform2 (HHT) to see whether the 
spectral power of the condition is also higher than the other condition. If it is not, the following step could be 
considering whether the condition has higher inter-trial coherence (ITC), which can be estimated by computing 
the inter-trial phase  clustering35 (ITPC) with instantaneous phases of the corresponding IMF in each trial. If it 
is, then we can conclude that the effect in the pure iERP mode resulted from higher phase consistency across 
trials. In contrast to pure iERP modes, the meaning of a composite iERP mode could be more complicated. In 
addition to the abovementioned issue of the high degree of nonlinearity, it can also be derived by a mechanism 
of cross-frequency phase-phase  coupling36,37 in which instantaneous phases of one IMF couples with instanta-
neous phases of the other IMF in an n:m ratio. In the dyadic structure of IMFs, the phase-phase coupling may 
primarily occur in the 1:2, 1:4, and 1:8 ratios. Thus, when one of these coupled oscillations is also phase-locking 
to a stimulus (i.e., inter-trial coherence) in an experiment, the entire mechanism of phase couplings contributes 
to a pronounced composite iERP mode.

In the proposed method, because the CEEMDAN (as well as EMD and EEMD) is a nonlinear process, differ-
ent from conventional Fourier-based linear filters (e.g., FIR or IIR filters), the order of its application is crucial: 
the CEEMDAN should be performed on each individual trial rather than on averaged data. Therefore, in the 
iERP analysis, the process of averaging over trials for an IMF or a partial sum of IMFs can be executed only when 
the IMFs for each trial have been obtained.

The iERP results obtained in the two adopted examples suggest that clustering statistical effects in the iERP 
2D [mode, time] or 3D [channel, mode, time] domain may enhance the sensitivity of expected effects. Such 
enhancement may be achieved because an ERP effect might be best revealed in a certain iERP mode. The total 
effect within a cluster, obtained through the combination of the effects from all neighboring modes, demonstrated 
high sensitivity of the expected effect. Moreover, research has indicated that ERP components typically overlap 
with their adjacent components in time and  space38, which might cause mutual interference among these com-
ponents, thus limiting the statistical effect from an individual ERP component. The proposed method may be 
able to resolve this “component overlap” problem when temporally adjacent components can be characterized by 
different time scales, as displayed in Fig. 5b. Furthermore, each of the two cluster-based statistical methods (i.e., 
CBnPP and TFCE) demonstrated in the two adopted examples, by the algorithm itself, can avoid the problem 
of overfitting when an addition dimension (i.e., “mode”) is added to the space of testing data. This originates 
from the fact that this kind of cluster-based statistical methods is achieved by testing the cluster-level observed 
test statistics (i.e., without permutation) against the cluster-level random test statistics (i.e., the permutation 
distribution). Therefore, when the clusters of observed test statistics are formed based on the higher-dimensional 
iERP neighbor relationship and get greater observed statistical values (by taking the sum over each cluster), the 
cluster-level random test statistics are also obtained on the basis of the higher-dimensional neighbor relation-
ship and have larger random statistical values. To verify that the iERP analysis is not enhancing the sensitivity of 
distinguishing different experimental conditions at the cost of increasing the possibility of identifying an actually 
null effect as significant, we perform the iERP analysis on a simulated data set in which two conditions should be 
no different. This data set is generated by acquiring the first 30 trials of “unfamiliar faces” from each participant’s 
EEG data at a temporoparietal channel in the first adopted example in this study first. For each participant, the 
next 30 trials, serving as a “pseudo-condition”, are produced by adding white Gaussian noise (WGN) to the first 
30 trials with the signal-to-noise ratio equal to 4. The statistical contrast of iERP between the unfamiliar and 
the pseudo conditions identified by the dependent-sample TFCE in the [mode, time] domain does not show 
any significant effect (N = 16, minimum P = 0.664), as shown in Fig. S1a (see Supplementary Figure S1). This is 
further verified by a cross-validation analysis in which the above TFCE test is performed on 100 sub-datasets of 
the simulated data individually, each formed by randomly choosing 14 participants from the original 16 partici-
pants (i.e., N = 14). Fig. S1b shows that the 100 minimum P values of the cross-validation analysis are distributed 
from 0.15 to 1 (Ps ≫ 0.05), suggesting that the iERP analysis will not introduce an additional probability of false 
alarm and overfitting.

In summary, this study proposes a new approach, namely the iERP method, for investigating ERP compo-
nents by introducing an additional “mode” dimension for ERP representation. Incorporating a special definition 
of neighbors for every mode enables adequate clustering of the statistical effects of iERPs, thus preventing the 
additional dimension from reducing the sensitivity of expected effects. By contrast, the iERP method enhances 
sensitivity in most cases, as indicated by the results obtained for the two examples. Therefore, we recommend 
that all previously presented ERP data, especially those that originally demonstrated “no effect” in their expected 
ERP components, can be re-examined using the proposed approach.

Data availability
A minimal set of data and custom MATLAB codes that can be used for replicating main results in the two 
adopted examples of this work are available from the corresponding project in the public repository: https ://
osf.io/2pnd9 /(DOI:10.17605 /OSF.IO/2PND9 ). These data and codes are open access under the GNU general 
public license (GPL) v2.0.

Code availability
In the aforementioned public repository, the subfolder “ierp_tools_d1” contains a set of necessary functions 
(including an installation guide and an installing script: “install_ierp.m”) for performing iERP analysis as well as 

https://osf.io/2pnd9/(DOI:10.17605/OSF.IO/2PND9)
https://osf.io/2pnd9/(DOI:10.17605/OSF.IO/2PND9)
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their wrappers for analyzing data in SPM12 format (http://fil.ion.ucl.ac.uk/spm/). If functions in "ierp_tools_d1" 
are correctly installed, by following the steps described on the “Home” of the project, readers will be able to 
reproduce results of the two examples and thus apply the proposed method to their own study.
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