
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:6174  | https://doi.org/10.1038/s41598-021-85228-z

www.nature.com/scientificreports

Electrostatic wave breaking limit 
in a cold electronegative plasma 
with non‑Maxwellian electrons
I. S. Elkamash1* & I. Kourakis2 

A one‑dimensional multifluid hydrodynamic model has been adopted as basis for an investigation of 
the role of suprathermal electrons on the wave breaking amplitude limit for electrostatic excitations 
propagating in an electronegative plasma. A three‑component plasma is considered, consisting 
of two inertial cold ion populations of opposite signs, evolving against a uniform background of 
(non‑Maxwellian) electrons. A kappa‑type (non‑Maxwellian) distribution function is adopted for the 
electrons. By employing a traveling wave approximation, the first integral for the fluid‑dynamical 
system has been derived, in the form of a pseudo‑energy balance equation, and analyzed. The effect 
of intrinsic plasma parameters (namely the ion density ratio, the ion mass ratio, and the superthermal 
index of the nonthermal electrons) on the wave breaking amplitude limit is explored, by analyzing the 
phase space topology of the associated pseudopotential function. Our results are relevant to particle 
acceleration in Space environments and to recent experiments based on plasma‑based accelerator 
schemes, where the simultaneous presence of negative ions and nonthermal electrons may be 
observed.

Wave breaking is a topic of fundamental interest in various plasma based applications, including (but not limited 
to) particle acceleration  experiments1–3, laser-assisted fusion  schemes4, collisionless  heating5,6 and heating of the 
solar  corona7,8, to mention a few. The wave (amplitude) breaking limit (WBL) of a nonlinear plasma excitation 
(wave) represents the maximum amplitude of an electric field generated by the space-charge distribution due to 
the wave propagating: beyond this limit, the coherent nature of the wave is destroyed and the electromagnetic 
energy associated with the wave is randomly distributed over the particles, thus effectively heating the  plasma9–11. 
At the wave breaking point, the fluid speed of the inertial plasma component exceeds the phase speed of the wave. 
A multistream flow thus develops and coherent waveforms are destroyed, hence converting localized energy (due 
to collective phenomena) into microscopically randomized (i.e. thermal) energy.

The presence of a fraction of negative ions in a plasma, in so called negative-ion plasmas (NIP), in addition 
to the positive ions needed to maintain overall charge neutrality, has been shown in a number of studies to affect 
the dynamical behavior quite dramatically. Negative ion plasma is not only generated in the  laboratory12–15 but 
also occurs in Space, for instance in the D and F regions of the Earth’s  ionosphere16 and in the inner coma of 
comet  Halley17. NIP are utilized in industrial applications, e.g. injection of a beam to accomplish plasma heating 
in plasma  etching18, in material  processing19 and in fusion  reactors20. These authors recently studied the effects of 
the kinematic viscosity and ion drag on electrostatic (ES) shocks in  NIP21, while the effect of a negative ion beam 
in a collisionless, unmagnetized quantum ultradense plasma was studied in a subsequent  study22; interestingly, 
the coexistence of negative and positive polarity solitary structures was predicted in the latter case.

It is by now established that particle acceleration mechanisms may lead to electron distributions with an 
increased relative weight of the superthermal component of the distribution function, where a power-law depend-
ence may be  observed23. A standard approach to take this situation into account is by adopting a so-called kappa 
distribution function. The kappa ( κ ) distribution was originally introduced phenomenologically to model the 
(non-thermal) particle distribution observed in the magnetosphere instruments onboard the OGO-1 and OGO-3 
 satellites24. The real parameter kappa ( κ ), after which the kappa distribution is named, is the spectral index of the 
distribution function: for small values of κ , distributions feature a long tail and hence a large portion of superther-
mal particles (the Maxwellian distribution is recovered for very large values of κ , viz. κ → ∞ ). Hellberg et al.25 
derived the generalized plasma dispersion function for electrostatic waves in kappa-distributed plasmas. Baluku 
et al. later modeled the propagation of dust ion-acoustic waves via a kinetic  description26. A fluid description 
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has been adopted to showcase the effect of a kappa-distributed background on ionic scale excitations in Ref.27 
(also see the references therein). The effect of superthermal (kappa-distributed) electrons on multicomponent 
plasma expansion into vacuum was recently  investigated28.

Akhiezer and  Polovin29 were the first to consider a cold relativistic plasma (where the massive ions provide a 
fixed charge neutralizing background for electron motion), introducing the maximum (wave breaking) ampli-
tude limit of an electron plasma (Langmuir) wave. They predicted that this amplitude limit approaches infinity 
as the phase velocity of the wave approached the speed of light c. Using a Lagrangian description,  Dawson9 
derived the WBL Ewb limit for a cold classical (non-relativistic) plasma in a fixed ion background.  Coffey30 later 
investigated thermal effects in non-relativistic plasma, by employing a one-dimensional (1D) waterbag model 
for the electrons: thermal pressure was, in fact, shown to reduce the WBL, in comparison with cold classical 
plasma. Back to the relativistic regime, for a cold plasma with immobile ions, Katsouleas and Mori analytically 
studied the  WBL31; as in the nonrelativistic  case30, they have found that including finite electron temperature 
suppresses WBL growth, so that is does not approach infinity as the phase speed becomes strongly relativistic, 
as predicted  in29. Ionic motion in a cold relativistic electron-ion plasma was later considered by Khachatryan 
in an extension of earlier  studies32. In fact, a larger ion mass (i.e. a decrease of the electron-to-ion mass ratio) 
was shown to decrease the WBL (amplitude limit). The WBL behavior for arbitrary phase speeds in a 1D warm 
relativistic electron plasma model was investigated in Ref.33, where the correspondence between wave break-
ing and background particle trapping was discussed for the first time. Using a Lagrange variable methodology, 
Maity et al. have introduced an exact space time-dependent solution for nonrelativistic upper hybrid oscillations 
at breaking point, in the presence of an inhomogeneous magnetic  field34 and, later, of relativistic upper-hybrid 
oscillations in a cold homogeneous magnetized  plasma35. Their study was later extended to cover electron and 
positron oscillations in a collisionless, unmagnetized, non-relativistic electron—positron-ion  plasma36. In a 
recent study, Karmakar et al.37 adopted a travelling wave approximation and a pseudopotential formalism, to 
derive analytical predictions for the relativistic wave-breaking limit for the existence of the electrostatic plasma 
waves, in a cold relativistic electron-positron-ion plasma. They showed that adding of a fraction of massive ions in 
a pure electron-positron plasma leads to a reduction in the value of the maximum allowed electric field amplitude 
to be sustained before wave-breaking. In Ref.38, Karmakar et al. have studied the effect of an external magnetic 
field on the wave-breaking limit for relativistic upper-hybrid (RUH) oscillations in a cold magnetized plasma. 
They have shown that the wave-breaking amplitude of RUH wavepackets is suppressed (decreases) as the ambient 
magnetic field gets stronger. Pramanik et al. have examined the impact of the external magnetic field on phase-
mixing and wave breaking phenomena, with respect to electrostatic oscillations in cold classical (nonrelativistic) 
electron-positron-ion  plasmas39,40. The relevant cold fluid equations for nonrelativistic electron-positron-ion 
plasmas have been numerically solved to investigate the wave-breaking of a Langmuir wave and to distinguish 
between the predicted wave-breaking and phase-mixing time (scales)41. Jana et al.42 analytically estimated the 
maximum sustainable electric field amplitude associated with nonlinear relativistic electron acoustic waves in 
homogeneous, unmagnetized plasma in a two-electron plasma model. influence of thermal electron motion 
on relativistic plasma oscillations (breaking) was discussed In Ref.43, where it was shown that wavebreaking is 
suppressed entirely due to conversion of plasma oscillations into travelling waves beyond a certain electron tem-
perature. Frolov et al.44 investigated the role of the initial electron density profile (distribution) on the breaking 
of nonlinear Langmuir oscillations. Using a 1D particle-in-cell (PIC) code, Rathee et al. explored the effect of the 
electron temperature and of the background inhomogeneity on the wave-breaking limits in warm, electron–ion 
 plasmas45, and pinpointed the existence of a critical electron temperature beyond which wave-breaking does not 
occur. More recently, Adak et al. discussed the wave-breaking limit for nonlinear ES waves in a non-relativistic 
warm two-ion-species plasma  model46. They pointed out that an increase in temperature leads to a decrease in the 
maximum amplitude of ES wavepackets, while the latter mildly increases with an increase in the ion mass ratio.

In this paper, we have undertaken an investigation of the wave-breaking amplitude of one-dimensional 
electrostatic waves in cold electronegative plasma in the presence of suprathermal electrons. Understanding the 
laws governing the dynamical evolution of self-sustained electric fields is of crucial importance for plasma-based 
particle acceleration schemes, as this is among the critical parameters that determine the maximum energy gain 
by the accelerated  particles47–49. As we have mentioned, negative-ion plasma occurs in various environments, 
both in Space and in the lab, and this is always characterized by the existence of accelerated (suprathermal) elec-
trons in the background. Our investigation outcomes will be useful in the interpretation of particle acceleration 
mechanisms in both laboratory and astrophysical environments.

The fluid model
We shall now consider a collisionless, unmagnetized, homogeneous plasma containing positive ion species with 
mass m1 and positive charge q1 = +z1e , negatively charged—ion population, with mass m2 , charge q2 = −z2e ) 
and nonthermal electrons ne modelled by the kappa-distribution function; e denotes the elementary (absolute) 
charge, as usual. We assume that any spatial variation of the plasma state variables essentially takes place in the 
longitudinal direction (only), hence a 1D geometry is adopted for simplicity.

In 1D planar geometry, the fluid model equations can be written as :

(1)
∂n1

∂t
+

∂

∂x
(n1u1) = 0,

(2)m1n1

(

∂u1

∂t
+ u1

∂u1

∂x

)

= −z1en1
∂φ

∂x
,
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The plasma state variables nj , uj respectively indicate the number density and the flow fluid velocity, of species(s) 
j = 1 (for the positive ion fluid) or j = 2 with (for the negative ion fluid), where mj and zj respectively indicate 
the mass and charge state of species j (for j = 1 or 2), while ǫ0 is the susceptibility of vacuum. Note the definition 
of the electrostatic potential φ , related to the electric field by E = −∇φ.

The density of the κ distributed electrons is given  by50,51:

where Te is the electron temperature and κ is the spectral index; recall that κ > 3/2 for physically realistic 
solutions.

For simplicity in algebraic manipulation, the model evolution equations can be rescaled as:

where all quantities are dimensionless. The normalized electron density  reads50,51

The closed system of Eqs. (7)–(12) will form the basis of our analysis to follow. We have defined the dimension-
less quantities: µ = m2

m1
 , Q = q2

q1
 where q1 = z1e , q2 = z2e.

In the above fluid equations, time t and space x have respectively been normalized by (the positive ion 
plasma period) ω−1

p,1 = (z21e
2n1,0/ǫ0m1)

−1/2 and by (the positive ion Debye length) �D,1 =
(

ǫ0kBTe/z1e
2n1,0

)1/2 . 
The number density nj was normalized by the respective unperturbed number density nj0 (for each fluid; viz. 
j = e, 1, 2 for electrons, ions 1 and ions 2), while the fluid speed uj variable(s) was (were both) normalized by 
the characteristic speed cs = (z1KBTe/m1)

1/2 . The electrostatic potential φ is normalized by kBTe/e . We retain 
in the following the definition of the parameters

i.e. the negative-to-positive ion density ratio and the electron-to-positive-ion density ratio, respectively. At 
equilibrium (where nj,0 = 1, ∀j ), overall charge neutrality dictates:

Travelling wave approximation: pseudopotential formalism
Anticipating stationary-profile solutions in a reference frame moving at M(= Vph

cs
 ) where Vph denotes the phase 

speed of the electrostatic solitary wave and cs is the sound speed (reference value, in e-i plasmas), we shall express 
all state variables as functions of a single moving coordinate ξ = x −Mt , viz.

(3)
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Time variation is ignored, since stationary-profile solutions are expected. Any stationary solution (in the moving 
frame) will break down once the condition of existence of such solutions is violated, i.e. as soon as large-scale 
particle trapping occurs. In classical plasma theory of electrostatic solitary  waves52,53 M is termed the “Mach 
number”, in analogy to sound waves in air, which are modeled by similar equations.

Equations (7)–(11) are thus transformed into a system of (coupled) ordinary differential equations (ODEs):

After some manipulation, Eqs. (15)–(19), the dimensionless velocity and density variables of the fluids read:

The plasma state variables nj and uj should obviously be real. The reality requirement of the positive ion fluid 
speed and density imposes the constraint 0 < φ < 1

2
M2 . Physically speaking, as the value of the ES potential φ 

approaches the critical value φcr,p (= 1
2
M2) , the peak fluid speed approaches the phase speed of the wave and 

the (positive) ion density becomes infinite (infinite compression limit). The analogous expression for the second 
(negative) ion fluid reads: φcr,n = − µ

2QM
2 < φ < 0 . Note the subscript “cr” (for “critical”), denoting the critical 

values for the positive (p) or for the negative (n) ions, respectively. While both limits should be considered in a 
given plasma (due to the simultaneous occurrence of the positive and negative ion fluids), hence both negative 
and positive displacements from the equilibrium state are bounded (in absolute value), it is clear that the topol-
ogy of the energy curve will determine the maximum value of the wave energy (i.e. one only—and not both—of 
these limits may be accessible by the dynamics). This point will be further elaborated upon in the following.

Using the latter two expressions to eliminate nj in Eq. (19), the system of equations (15)–(19) can be reduced 
to a second-order differential equation for φ in the form:

where the nonlinear function U(φ) is given by:

Note that Eq. (21) has the form of a 1D equation of motion for a (unit mass) particle moving in a field with 
potential U(φ) ; the values φ , ∂φ

∂ξ
 , and ∂

2φ

∂ξ2
 represent the displacement (from equilibrium), the velocity and the 

acceleration, respectively, of this fictitious particle; the independent variable ξ represents “time” in this 
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pseudomechanical analogy. The pseudopotential U(φ) is equal to zero at a point φ = 0 where the electric field 
reaches a local maximum. The dynamical features of the electric field associated with the propagating wave can 
therefore be determined by studying the topology of the pseudopotential function U(φ).

For δ → 0 , and κ → ∞ , we get:

which recovers the known form of the pseudopotential curve for cold positive ions plasmas with Maxwellian 
 electrons52,53. The latter expression therefore describes large-amplitude (nonlinear) periodic ion-acoustic waves 
in cold electron-ion plasmas (i.e. in the absence of negative ions).

On the other hand, for δ → 1 , Q → 1 and µ → 1 , we obtain:

which is the expression of the pseudopotential in the cold pair-ion fluid plasma  model54,55. Expression (24) 
therefore describes large-amplitude (nonlinear) periodic ion-acoustic waves in pure pair-ion—e.g. fullerene—
plasmas (i.e. in the absence of electrons).

Carrying out an integration in Eq. (21), the first integral of motion can be obtained in the form:

i.e.

where I is an (arbitrary) integration constant. Eq. (25) represents a conservation law of a fictitious particle with 
unit mass, where the first term on the left hand side represents the kinetic energy while the second term is the 
potential energy, hence I can be identified as the total pseudo-mechanical-energy of the particle. Recalling 
that the self-generated electric field is related to the electrostatic potential φ as E = −∇φ (i.e. in 1D geometry 
E = −∂φ/∂ξ in the moving frame), we see that the right-hand side of the latter algebraic expression provides 
the range of value(s) to be attained by the E−field.

The occurrence of plasma waves within the above model relies on ensuring, within the analytical model, the 
reality of the potential U(φ) ; this fact imposes constrains on the permitted values the pseudopotential U(φ) and 
hence on the values of the electrostatic potential φ supported by the plasma waves. Therefore, the amplitude of the 
electric field will not achieve an arbitrarily large amplitude due to the limitations on the allowed values of U(φ) . 
To determine the maximum attainable electric field associated with the plasma waves, i.e. the wave-breaking 
limits for the electrostatic waves, we must consider the maximum “allowed” values of U(φ) (say, Umax ). Therefore, 
our fictitious particle will vibrate inside the potential well with the highest possible amplitude determined by the 
largest allowed value of U(φ) , i.e. φmax . In simple words, the dynamics will not “visit” any values of U(φ) above 
Umax (calculated at φmax ), where the integration constant I in the Eq. (25) determines the maximum energy, i.e. 
I = U(φ = φmax) = Umax . For a given (prescribed) value of I, the wave-breaking amplitude Ewb of the electric 
field to be supported in the plasma reads:

where Umax is the maximum allowed value of U(φ) , Ewb is the maximum electric field of the sustainable wave 
amplitude beyond which the wave is broken and the wave coherence is destroyed. Also, at the critical value of 
the potential U(φ) , the occurrence of wave breaking is associated with the nonreality of the plasma density, 
which physically indicates the infinity density compression and density gradients. At the onset of wave break-
ing, wave coherence is destroyed and the wave energy is converted to random particle energy leading to particle 
acceleration.

From the expression of nj , we can find that the number density is real only in the range φcr,n ≤ φ ≤ φcr,p 
where φcr,n = − µ

2QM
2 and φcr,p = 1

2
M2 represent the lower and upper bounds for the wave breaking field, 

respectively. Our expression of U(φ) indicates that it is not real in the whole parameter space of our system but 
only in the constrained values of the electrostatic potential φ , i.e., U(φ) is real only in the domain [φcr,n , φcr,p] , 
elsewhere U(φ) is not real and can not support the nonlinear periodic plasma waves. Therefore, on the negative 
side, beyond φcr,n and on the positive side beyond φcr,p , the solution does not support the existence of nonlinear 
periodic ion acoustic waves.

On the positive φ side, periodic solutions are possible upto Umax,p calculated at φ = φcr,p , where 
Umax,p = U(φ = φcr,p) . Consequently, the wave-breaking amplitude reads

On the negative φ side, periodic solutions are possible upto Umax,n calculated at φ = φcr,n , where 
Umax,n = U(φ = φcr,n).
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(
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As a consequence, the maximum permissible value of U(φ) , i.e. Umax = min{Umax,p,Umax,n} and hence the actual 
wave-breaking amplitude limit will be Ewb = min{Ewb,p,Ewb,n} =

√
2Umax  . Accordingly, the electrostatic poten-

tial will take values between two extrema, viz. φmin < φ < φmax , whose values satisfy U(φmin) = U(φmax) = I . 
Note that U(φ) is not an even function in its argument, i.e. the curve will not be symmetric, in general. (To see 
this, note that U(−φ) = U(φ) , with the sole exception of pair-ion plasma—described by Eq. (24) above—which 
is not our focus in this study and will not be considered further.) As a consequence, anharmonic (nonlinear) 
periodic electrostatic waves will not be symmetric in the ES potential, i.e. φmin  = φmax in general, nor is any 
symmetry expected in the electric field either.

In the textbook case of cold positive ions with Maxwellian electrons in an e-i plasma, i.e. with δ = 0 and 
κ → ∞ , we obtain:

Considering a different limit now, that of cold pair-ion plasmas. i.e. δ = Q = µ = 1 , one is led to:

which agrees precisely with Eq. (17) in Ref.46 with µ = M = 1.

Wave breaking limit parametric analysis
We shall now discuss the impact of various plasma parameters, such as the superthermality index κ , the ion 
density ratio δ , the ion mass ratio µ , and the phase speed (“Mach number”) M on the pseudopotential profile 
U(φ) and on the maximum electric field (wave breaking limit) Ewb.

The influence of superthermal particles (manifested via the superthermality index κ ) on the pseudopotential 
U(φ) profile is investigated in Fig. 1a. We note that the width of the pseudopotential curve (U) on the positive side 
(of the electrostatic potential φ ) increases as the superthermal index κ decreases (implying a stronger deviation 
from the Maxwellian), while it remains practically unaffected on the negative side of φ . Figure 1b depicts the 
wavebreaking limit Ewb = min{Ewb,p,Ewb,n} . Assuming an increased number of particles in the suprathermal 
region of the electron distribution, i.e. a lower value of κ , clearly results in a lower value of the maximum ampli-
tude (wave-breaking limit). The physical origin of this behavior can be sought in the impact of the superthermal-
ity index κ on the charge (Debye) screening mechanism. It is known that the charge screening length is shorter 
in plasmas where the electron background deviates from the Maxwell-Boltzmann, i.e. �D,κ < �D,Maxwell ; see 
e.g.27,56. This is certainly correlated physically with the behavior of the wavebreaking limit (as it varies with κ ), as 
observed here. For comparison, localized waves in the same model (i.e. supersonic solitary waves, associated with 
localized S-shaped bipolar E−field structures) witness an increase in their amplitude, for lower κ (i.e. for stronger 
electron super-thermality)51,56. In our case here (for anharmonic i.e. nonlinear periodic waves), it appears that 
the maximum amplitude is suppressed by small values of κ , as shown in Fig. 1b. (Recall that values of κ between, 
say, ≃ 2 and ≃ 6 are characteristic—and actually ubiquitous—in Space environments.) Note that an asymptotic 
value (e.g. Ewb,∞ ≃ 0.448 in Fig. 1b) is reached for large values of κ , since the electron distribution is practically 
of Maxwell-Boltzmann type at those values.

It is interesting to point out the existence of a cutoff in κ , for instance below κ ≈ 2.2 in Fig. 1b, below which 
waves cannot propagate. This is due to the fact that the quantity under the square root in (27)–(29) above 
(27)–(28) may take negative values for certain combinations of parameter values, thus rendering Ewb imaginary. 
Assuming fixed values of δ and µ , the cutoff value for κ is actually a function of M, hence it will depend on the 
phase speed. Notice e.g. the difference between Fig. 1b,c, which differ only in the value of M. This means that 
different values of κ affect the phase speed (range of values). A strong deviation from the thermal (Maxwell-
Boltzmann) picture may actually even prevent the wave from occurring; cf. Fig. 1b,c. This is reminiscent of the 
properties of dispersive (linear) waves in kappa-distributed  plasmas27 and, again, is a manifestation of the effect 
of suprathermal particlaes on the Debye screening mechanism.

Figure 2a shows the impact of the concentration of the negative ion density δ (for fixed—arbitrary—values 
of κ , Q, µ and M), on the profile of the Pseudopotential U(φ) . The pseudopotential well becomes wider as the 
negative-to-positive ion density ratio δ decreases. Actually, the pseudopotential becomes more asymmetric with 
decreasing δ (so so will the wavepacket form be expected to be). The electric field (maximum) amplitude increases 
with δ . Interestingly, the electric field limit Ebw is zero below δ ≈ 0.12 . This is due to the topology of the curve 
U = U(φ)—see e.g. Fig. 2c—that actually acquires negative values below that point (actually, near δ ≃ 0.12 in 
Fig. 2c). On the opposite trend, no waves will exist below a certain threshold for δ . As discussed above, this will 
be a matter of balance among the values of δ , M, µ and κ.

We see in Fig. 2b that a higher concentration of negative ions (i.e. a higher value of δ ) enhances the electric 
field (maximum amplitude) Ewb . In a picture analogous to that of Debye screening in e-i plasmas, the reason 
for this enhancement may lie in the increase of the Debye screening length due to the presence of negative ions 
in the plasma, which agrees with the outcome of linear  analysis57. This enables higher E-field amplitudes to be 
reached within the extent of the Debye (shielding) sphere.

The role of the ion mass ratio µ = m2/m1 on the pseudopotential shape U(φ) , and on the associated wave-
breaking limit Ewb is investigated in Fig. 3. The width of the pseudopotential remains practically unaffected on 
the positive side of φ , while it increases dramatically on the negative side (of φ ) as the mass ratio µ increases, 
as seen in Fig. 3a.

(29)Ewb,n =
√

2Umax,n

(30)Ewb,p =
[

2
(

1− e
M2

2 +M2
)

]1/2

.

(31)Ewb,p = 1.08239M.
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From Fig. 3b, the maximum allowed electric field amplitude Ewb increases sharply for µ ≤ 1 and reaches its 
maximum Ewb = 0.71 at µ = 1 , i.e. pair-ion plasmas, in agreement with Eq. (11) and Fig. 2 in Ref.32 and with 
Fig. 3 in  Ref46. Two extreme cases are worth discussing, physically. As the mass ratio µ → 0 , i.e. as m1 ≫ m2 , 
the maximum allowed electric field Ewb approaches zero. On the other hand, as the mass ratio µ → ∞ , i.e. 
m2 → ∞ , the maximum allowed electric field Ewb has a horizontal asymptote, i.e. µ → 0,∞ , as seen in Fig. 3b. 
Therefore, for large values of m2 ≫ m1 , the maximum allowed electric field Ewb approaches a fixed value, e.g. 
Ewb,(m2≫m1) ≈ 0.707 (for δ = 0.5 , κ = 2.5 , Q = 1 and M = 1 ) in our Fig. 3b. A qualitative explanation of these 
two extreme behaviors could be that when the inertia of one of the two plasma components becomes ∞ , that 
species becomes stationary (immobile) and does not contribute much to the electric field; this leads to a decrease 
in the maximum electric field. Apparently, the main driver in this process will be the negatively charged compo-
nents. As µ → 0 ( m1 ≫ m2 ), the positive species is practically stationary, and there is no contribution to Ewb from 
the positive ions. On the other hand, as µ → ∞ ( m2 ≫ m1 ), the negative ion species becomes stationary, so there 
is no contribution to Ewb from the negative ions but there is still a significant contribution from the electrons. It 
can be noted that the case µ > 1 (i.e. heavier negative ions) was not covered in the studies by  Khachatryan32 or 
Adak et al.46. The extreme case µ → ∞ (ultralarge mass negative ions) in particular could be very important, 
as it actually represent the situation where the secondary species is dust grains, in a dusty (complex) plasma.

For fixed δ = 0.5 , κ = 2.5 , µ = 1 and Q = 1 , the pseudopotential U(φ) becomes wider with increasing val-
ues of the phase speed (Mach number M), as observed in Fig. 4a. As M increases, the wave-breaking limit Ewb 
increases upto 1 (one, representing the ion sound speed in scaled units) and then decreases sharply thereafter, 
as seen from Fig. 4b. analytically speaking, the sharp angle separating the two regions is due to the fact that the 
two limits given in Eqs. (28)–(29) above exchange their relative ordering at this point. (Recall that only the lower 
value is relevant, in the dynamics, as explained above).

Conclusions
In this article, we have relied on a multifluid plasma model, to study the dynamics of a plasma consisting of posi-
tive ions, negative ions and nonthermal (non-Maxwellian, kappa-distributed) electrons. We have derived a first 
integral for the system describing stationary profile excitations at a moving reference frame. Explicit analytical 
relations for the evolution of the electrostatic potential and of the associated electric field have been obtained. 
Considering anharmonic (nonlinear) periodic waveforms (wavepackets), we have determined the wave-breaking 

Figure 1.  (Color online) (a) The effect of the variation of the superthermality index κ on the pseudopotential 
U(φ) is depicted versus the electrostatic potential φ for M = 1 . (b) The variation of the wave-breaking limit 
(electric field amplitude) Ewb is depicted versus the value of the spectral (superthermality) index κ . (c) As the 
previous panel, but shifting the value of M to 0.3 (all other parameter values being the same). The parameter 
values adopted in these graphs are: δ = 0.5 , µ = 1 , and Q = 1 . The numerical values adopted here, as imposed 
by the maximum allowed value(s) of U(φ) , i.e. Umax = I , are presented in Table I (see Online Appendix A).
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( E−field amplitude) limit, both analytically and numerically, and have discussed its parametric dependence on 
the intrinsic plasma (configuration) parameters.

The maximum electric field (amplitude) was shown to decrease monotonically with an increase in the suprath-
ermal electron component, i.e. for lower values of the spectral index κ : weaker electrostatic wavepackets are thus 
expected to occur in strongly non-Maxwellian plasmas.

Figure 2.  (Color online) (a) The effect of the variation of the negative-to-positive ion density ratio δ on the 
pseudopotential U(φ) is depicted, versus the electrostatic potential φ . (b) The variation of the minimum 
normalized wave-breaking electric field amplitude Ewb versus the negative ion density ratio δ . (c) The 
pseudopotential U(φ) is depicted for different values of δ near the cutoff point. The parameter values are: 
κ = 2.5 , µ = 1 , Q = 1 and M = 1 . The numerical values adopted here, as imposed by the maximum allowed 
value(s) of U(φ) , i.e. Umax = I , are presented in Table II (see Online Appendix A).

Figure 3.  (Color online) (a) The effect of the variation of the ion mass ratio µ = m2/m1 on (a) The 
pseudopotential U(φ) is depicted, versus the electrostatic potential φ . (d) The variation of the minimum 
normalized wave-breaking electric field amplitude Ewb versus the ion mass ratio µ . The parameter values are: 
δ = 0.5 , κ = 2.5 , Q = 1 and M = 1 . The numerical values adopted here, as imposed by the maximum allowed 
value(s) of U(φ) , i.e. Umax = I , are presented in Table III (see Online Appendix A).
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The presence of the negative ion component clearly leads to an increase in the wavebreaking limit and hence 
the maximum allowed E−field amplitude. This effect is less pronounced for heavier negative ions (i.e. for larger 
negative ion mass m2 , as compared to m1).

Finally, the wavebreaking limit increases for values of the phase speed not exceeding the (e-i plasma) char-
acteristic sound speed ( cs ∼ (kBTe/m1)

1/2 ), hence faster E−field waveforms will be larger below that point. The 
opposite trend is witnessed above that point ( cs ), where faster E−field wavepackets may be weaker.

The wave-breaking amplitude determines the maximum energy gain of energetic particles, both in Space 
(where particle may be accelerated via various mechanisms e.g. by cosmic rays) and in plasma-based particle 
acceleration schemes in the laboratory. The results presented in this article should therefore contribute towards 
an improved understanding of the dynamics of electrostatic disturbances in particle acceleration scenaria in 
plasma environments where non-Maxwellian electrons and negative ions may coexist.

It may be added, for rigor, that the electron inertia has been neglected in our model (a standard assumption, 
in account of the large mass disparity between the electrons and the—much heavier—ions). As a consequence, 
the model adopted in this article is adequate for the description of acoustic electrostatic wavepackets in a plasma 
(such as ion-acoustic waves, for instance) but fails to properly account for electron plasma waves (Langmuir 
waves): indeed, these are associated with a different dispersion law, namely characterized by a finite angular 
frequency (and an infinite phase speed but a zero group velocity) in the long wavelength limit, thanks to the 
electron inertia. Contrary to this picture, the wave’s phase speed has a finite value everywhere (including the 
infinite wavelength limit).
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