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Predictive model for the 5‑year 
survival status of osteosarcoma 
patients based on the SEER 
database and XGBoost algorithm
Jiuzhou Jiang1,2,4, Hao Pan3,4, Mobai Li1,2, Bao Qian1,2, Xianfeng Lin1,2* & Shunwu Fan1,2*

Osteosarcoma is the most common bone malignancy, with the highest incidence in children and 
adolescents. Survival rate prediction is important for improving prognosis and planning therapy. 
However, there is still no prediction model with a high accuracy rate for osteosarcoma. Therefore, 
we aimed to construct an artificial intelligence (AI) model for predicting the 5‑year survival of 
osteosarcoma patients by using extreme gradient boosting (XGBoost), a large‑scale machine‑learning 
algorithm. We identified cases of osteosarcoma in the Surveillance, Epidemiology, and End Results 
(SEER) Research Database and excluded substandard samples. The study population was 835 and was 
divided into the training set (n = 668) and validation set (n = 167). Characteristics selected via survival 
analyses were used to construct the model. Receiver operating characteristic (ROC) curve and decision 
curve analyses were performed to evaluate the prediction. The accuracy of the prediction model was 
excellent both in the training set (area under the ROC curve [AUC] = 0.977) and the validation set 
(AUC = 0.911). Decision curve analyses proved the model could be used to support clinical decisions. 
XGBoost is an effective algorithm for predicting 5‑year survival of osteosarcoma patients. Our 
prediction model had excellent accuracy and is therefore useful in clinical settings.

Osteosarcoma is the most common bone malignancy, with the highest incidence in children and  adolescents1–3. 
Osteosarcoma is the eighth most common cancer among childhood  cancers1. The incidence rate of childhood 
and adolescent osteosarcoma ranges between 4 and 7 per million persons per year among different  ethnicities1. 
The 5-year survival rate is usually used for evaluating treatments or risk  factors1–5. In the 1950s, the 5-year 
overall survival (OS) rate of patients with osteosarcoma was 22%6, but it has increased to 55–70% owing to the 
advancements in medicine in recent  years1,3,7–9.

The Surveillance, Epidemiology, and End Results (SEER) program, sponsored by the National Cancer Insti-
tute (NCI), is a system of population-based cancer registries that currently covers approximately 28% of the US 
population from geographically defined  areas10. Survival prediction models for osteosarcoma patients have been 
constructed  previously11–13. However, the results of these studies have not been very satisfactory and they did not 
use data from the SEER database. Hence, further studies for better prediction models are needed.

For preparing prediction models for cancer, artificial intelligence (AI) models—constructed by machine 
learning (ML) algorithms—are common. However, most models are based on traditional ML algorithms created 
in the last century, including back propagation neural network (BPNN), multi-layer perceptron (MLP), decision 
tree, support vector machine (SVM), and Bayesian  network14.

Extreme gradient boosting (XGBoost) is a large-scale machine-learning algorithm that was first officially 
published in  201615. It is an improvement over the gradient boosting decision tree (GBDT). A single decision 
tree is a simple and weak classifier, but a tree ensemble model could be much better, such as the random  forest16 
and  GBDT17. XGBoost is constructed by iterations for minimizing the loss of  function15. Compared with GBDT, 
XGBoost uses a technique called ‘feature sub-sampling’, which is used in random forest to prevent over-fitting15. 
The XGBoost algorithm has been used widely in industries but rarely in medical research. Compared with tradi-
tional ML algorithms, XGBoost is more novel and complex. An important advantage of XGBoost over traditional 
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ML algorithms is having random seeds that make the model better by repetitive operation even if the parameters 
are not changed. On comparison, SVM is not good at dealing with a problem with many samples and  variables18, 
and the Bayesian network is easily and quickly trained, but is not complex enough.

Therefore, in the current study, we built an AI classifier by using the XGBoost algorithm to predict the 5-year 
survival of osteosarcoma patients, and aimed to construct a better AI prediction model. We extracted the samples 
from the SEER program database to train and cross-validate our prediction model. Additionally, to compare 
XGBoost to other traditional ML algorithms, we also built two other models by using SVM and the Bayesian 
network, which are common and representative ML algorithms in medical research. Receiver operating charac-
teristic (ROC) analysis, area under the ROC curve (AUC) and decision curve analysis (DCA) of cross-validation 
were used for the evaluation of these three different models.

Results
Characteristics of the study population. The overall survival curve for 2694 osteosarcoma patients 
from the SEER program database declined much rapidly before the 5-year cut-off, compared with a slow down-
ward trend in patient survival after 5 years (Fig. 1). Thus, predicting 5-year survival of osteosarcoma patients 
is of clinical value for treatment planning systems. We performed exclusion as shown in the flow chart (Fig. 2). 
Finally, 835 patients were included in our study. The study population was randomly divided into a training set 
(n = 668; 80%) and a validation set (n = 167; 20%).

There was no significant difference between the training and validation sets considering the 15 characteristics 
except primary tumor number (Table 1). The most common primary tumor sites were the arms and legs i.e., 
limbs (81.89% and 76.05% in the training and validation sets, respectively); few patients had local lymphatic 
metastasis (2.99% in the training and validation sets, both). Patients were more likely to have distant metastasis 
(21.21% and 19.76% in the training and validation sets, respectively). Most patients underwent surgery at the 
anatomical location (90.57% in the training set and 88.62% in the validation set) (Table 1).

Survival analyses. According to the Kaplan–Meier survival curves (Fig. 3) and log-rank tests for categori-
cal variables, sex (P = 0.060), chemotherapy (P = 296) and primary tumor number (P = 0.500) were not signifi-
cant factors influencing survival, but anatomical location (P < 0.001), histological grade (P = 0.001), tumor exten-
sion (P < 0.001), radiation (P < 0.001), local lymphatic metastasis (P < 0.001), distant metastasis (P < 0.001) and 
surgery (P < 0.001) significantly affected patient survival (Table 2). In the Cox proportional hazards regression 
model, the hazard ratio (HR) was used for evaluating the relationship between the corresponding variable and 
patient survival. Age (HR 1.682, 95% CI 1.538–1.840; P < 0.001) and tumor size (HR 1.266, 95% CI 1.185–1.353; 
P < 0.001) were significantly related to patient survival (Table 2). But year of diagnosis was not (HR 1.010, 95% 
CI 0.895–1.141; P = 0.867).

We selected following characteristics into model construction: anatomical location, histological grade, tumor 
extension, radiation, local lymphatic metastasis, distant metastasis, surgery, age and tumor size. These charac-
teristics were significantly in the survival analyses. In addition, we take chemotherapy into our model as it is an 
important predictor of survival.

Figure 1.  Overall survival curve for the 2694 osteosarcoma patients from the Surveillance, Epidemiology, and 
End Results (SEER) program database (2004–2014). The red line is the 5-year cut-off. The figure was created by 
using GraphPad Prism 7 (https ://www.graph pad.com/).

https://www.graphpad.com/
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Model evaluation. Our model was tested and adjusted repeatedly, and the parameters were confirmed for 
the best model. The details of our model are shown in the supplementary materials (Material S1). To determine 
the accuracy of our models, we performed cross-validations. The ROC curves of the predictions for the train-
ing set (n = 668) and the validation set (n = 167) were constructed and the corresponding AUC was calculated. 
The XGBoost model had a better performance in the training set (AUC = 0.977, 95% confidence interval [CI] 
0.968–0.986), compared with SVM (AUC = 0.817, 95% CI 0.785–0.852) and the Bayesian network (AUC = 0.817, 
95% CI 0.785–0.849) (Fig. 4a.). In the validation set, the accuracy of the XGBoost model for predicting survival 
was higher (AUC = 0.911, 95% CI 0.865–0.956) than SVM (AUC = 0.801, 95% CI 0.726–0.876) and the Bayesian 
network (AUC = 0.781, 95% CI 0.689–0.873) (Fig. 4b). Our XGBoost model was better in predicting the 5-year 
survival of osteosarcoma patients as the AUC was over 0.9 in cross-validation (in both sets), compared to the 
other models.

Decision curves of the three models were constructed in our study (Fig. 5). The y-axis of the decision curve 
represents the net benefit, a decision analytic measure judging whether clinical decisions have more benefit 
than harm. Each point on the x-axis represents a threshold probability that differentiates between patients with 
5-year survival and those without. The decision curve of XGBoost was greater than that of the other two models 
because the net benefit was the highest for most of the thresholds.

Discussion
Survival prediction for patients with malignancy is usually difficult but important, as it influences treatment 
planning and patient  decision19. Compared with the empirical prediction from clinicians, our prediction model 
gives a more reliable choice for predicting the 5-year survival status of osteosarcoma patients. When clinicians 
prepare the plan for interventional or long-term therapy for patients, the expected survival time could be an 
influencing factor. Considering this, our prediction model could help prepare a reasonable therapy plan for 
personalized medicine.

Several survival prediction models have been used for osteosarcoma patients, including those based on 
nomograms (constructed by regression models)13, tomography  images12, or the ML  algorithm11. A 1-year survival 
prediction model using the Bayesian network was constructed in  201711, with an AUC of 0.767. However, this 
was a single-center study. Moreover, the 1-year survival rate of osteosarcoma patients is much higher than 5-year 

Figure 2.  Flow chart showing the inclusion and exclusion process of patients in our study. The figure was 
created by using GraphPad Prism 7 (https ://www.graph pad.com/).

https://www.graphpad.com/
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survival rate (Fig. 1), and is therefore not as meaningful as the 5-year survival. Furthermore, a 5-year survival 
prediction model for predicting the survival of patents with high-grade osteosarcoma was prepared using radiom-
ics of tomography  images12. It was an innovative model, with an AUC of 0.86 in the training cohort and 0.84 in 
the validation cohort. However, this model used radiomics of tomography images to calculate a radiomics score 
for each patient and developed a multiple logistic regression model using radiomics score with the addition of 
several other characteristics. Logistic regression is a regular algorithm that can be replaced by a more complex 
algorithm. Thus, compared to these two studies, our study was a multicenter study and used a more accurate and 
stable algorithm to construct the prediction model. Therefore, our AI model based on XGBoost had a higher 
accuracy in predicting the 5-year survival of osteosarcoma patients (AUC = 0.977 and 0.911 in the training and 
validation sets, respectively); the accuracy of a prediction model is considered the most important  quality14.

All the characteristics in our model were related to osteosarcoma patient prognosis. Histological grade and 
tumor extension influence survival time of patients. The histological grade of cancer is an indicator of the dif-
ferentiation of tumor cells, and the tumor extension is used to express the degree of cancer  progression20,21. 
Moreover, age, tumor site, metastasis, therapy, and tumor size are important prognostic factors for osteosarcoma 

Table 1.  Characteristics of 835 patients included in the study. Continuous variates are reported as mean ± SD 
(standard deviation); classification variates are reported as numbers and percentage.

Characteristics Training set (N = 668) Test set (N = 167) P-value

Sex 0.807

Male 377 (56.44%) 96 (57.49%)

Female 291(43.56%) 71 (42.51%)

Vital status 0.466

Alive 355 (53.14%) 94 (56.29%)

Dead 313 (46.86%) 73 (43.71%)

Survival month 60.61 ± 39.34 62.28 ± 40.56 0.756

Age at diagnosis 27.66 ± 19.49 29.19 ± 20.65 0.687

Year of diagnosis 2007.30 ± 2.36 2007.37 ± 2.36 0.759

Anatomical location 0.069

Head and neck 55 (8.23%) 13 (7.78%)

Trunk 66 (9.88%) 27 (16.17%)

Limb 547 (81.89%) 127 (76.05%)

Histological grade 0.650

Grade I 21 (3.14%) 7 (4.19%)

Grade II 50 (7.48%) 16 (9.58%)

Grade III 191 (28.60%) 48 (28.74%)

Grade IV 406 (60.78%) 96 57.49%)

Extension 0.914

Distant 155 (23.20%) 39 (23.35%)

Localize 194 (29.04%) 51 (30.54%)

Regional 319 (47.76%) 77 (46.11%)

Tumor size (mm) 101.71 ± 61.78 93.86 ± 53.61 0.071

Primary tumor number 0.015

One primary only 637 (95.36%) 166 (99.40%)

More primaries 31 (4.64%) 1 (0.60%)

Local lymphatic metastasis 1.000

Yes 20 (2.99%) 5 (2.99%)

No 648 (97.01%) 162 (97.01%)

Distant metastasis 0.897

Yes 135 (20.21%) 33 (19.76%)

No 533 (79.79%) 134 (80.24%)

Surgery 0.450

Yes 605 (90.57%) 148 (88.62%)

No 63 (9.43%) 19 (11.38%)

Radiation 0.588

Yes 59 (8.83%) 17 (10.18%)

No/unknown 609 (91.17%) 150 (89.82%)

Chemotherapy 1.000

Yes 560 (83.83%) 140 (83.83%)

No/unknown 108 (16.17%) 27 (16.17%)
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Figure 3.  Kaplan–Meier survival curves to evaluate the influence of the ten classified characteristics (sex, 
anatomical location, histological grade, radiation, chemotherapy, tumor extension, primary tumor number, local 
lymphatic metastasis, distant metastasis, and surgery) for osteosarcoma patient survival. Anatomical location, 
site of the primary tumor. The figure was created by using GraphPad Prism 7 (https ://www.graph pad.com/).

Table 2.  Survival analysis (Log-rank test and Cox regression model) evaluating the influence of characteristics 
for osteosarcoma patient survival.

Characteristic χ
2 P-value

Sex 3.541 0.060

Anatomical location 65.177  < 0.001

Histological grade 13.155 0.001

Primary tumor number 0.455 0.500

Local lymphatic metastasis 60.638  < 0.001

Distant metastasis 223.389  < 0.001

Extension 248.116  < 0.001

Radiation 67.922  < 0.001

Chemotherapy 1.093 0.296

Surgery 141.786  < 0.001

Hazard ratio (95%)

Age at diagnosis 1.682 (1.538, 1.840)  < 0.001

Year of diagnosis 1.010 (0.895, 1.141) 0.867

Tumor size 1.266 (1.185, 1.353)  < 0.001

https://www.graphpad.com/
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 patients6,7,9. In most previous prognostic models, age and tumor size were usually transformed to classified 
 variables11–13. The use of the method for transforming variables could help calculate the risk for different kinds 
of patients and help list the risk in a table. In our prediction model, we preferred to calculate the 5-year survival 
probability of a specific patient. This gives a more detailed and personalized prediction, which provides medical 
plans as detailed and customized as possible rather than similar medical plans for a class of patients. Personal-
ized medicine and precision medicine have been focus areas in recent years, both of which are based on large 
omics, molecular diagnostics, and high-throughput  technologies22–24. Additionally, AI is an important tool for 
personalized  medicine25,26, and our AI-based prediction model could help in personal therapy planning, thereby 
assisting in personalized medicine. For example, a clinician could not decide to recommend a patient to perform 
surgery or not. He could use our model with the variable “Surgery” as “yes” and “no”. Comparing the results 
given by the two conditions could help for his decision.

XGBoost has outstanding performance for processing large-scale and high-dimensional  data27. However, for 
the first time, this algorithm has been used to construct prediction models for osteosarcoma patient survival. As 
XGBoost is good at dealing with complex problems, it is suitable for most other types of complex classification 
 problems27–29.

Figure 4.  Receiver operating characteristic curves showing the predictions of the three models: XGBoost, SVM, 
and the Bayesian network. (a) The training set, (b) the validation set. XGBoost, extreme gradient boosting; 
SVM, support vector machine. The figure was created by using GraphPad Prism 7 (https ://www.graph pad.
com/).

Figure 5.  Decision curve analysis graph showing the net benefit against threshold probabilities based on 
decisions from model outputs. Three curves were based on predictions of the three different models, and the two 
curves were based on two kinds of extreme decisions. The curve called ‘All’ represents the prediction that all the 
patients would survive for 5 years, and the curve called ‘None’ represents the prediction that all the patients were 
dead at 5 years. (a) The training set, (b) the validation set. XGBoost, extreme gradient boosting; SVM, support 
vector machine. The figure was created by using R Version 3.4.4 (https ://www.r-proje ct.org/).

https://www.graphpad.com/
https://www.graphpad.com/
https://www.r-project.org/
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Our study had some advantages. First, the SEER database provided complete information of patients covering 
widespread areas. Second, our AI model could provide personalized survival prediction for patients, thereby 
providing individualized therapy. Finally, our AI model can be used to determine survival for more osteosar-
coma patients because all the information used for predicting survival is easily accessible and our model can be 
optimized as a software-based or web-based tool.

However, the study has some limitations. First, our study was retrospective; prospective randomized clini-
cal trials will be needed to provide high-level evidence for clinical application. Second, we could not acquire 
the socioeconomic status, obviously related to patient survival, and the incidence of pathologic fractures, an 
important prognostic factor for osteosarcoma. Finally, in the SEER data, “no” and “unknown” combined in one 
category in chemotherapy and radiation. We could not ignore the underreporting of chemotherapy and radiation.

In conclusion, we used the XGBoost algorithm to construct an AI model predicting the 5-year survival of 
osteosarcoma patients. Age, primary tumor site, histological grade, tumor extension, tumor size, local lymphatic 
metastasis, distant metastasis, radiation, chemotherapy and surgery were the characteristics contributing to the 
model. Our AI prediction model had excellent accuracy according to ROC analyses. As the clinical value of the 
model was confirmed considering DCA, we believe the developed AI model could be used as a clinical tool for 
helping clinicians in making better treatment decisions for osteosarcoma  patients1.

Materials and methods
Study population. We identified all cases of osteosarcoma listed in the SEER Research Database (2004–
2014). The accession number is 10467-Nov 2018. There were 2694 cases and all were confirmed histologically 
as osteosarcoma. SEER*Stat Software (version 8.3.5) was used to extract these cases. We constructed a survival 
curve for the 2694 patients to evaluate the overall survival of osteosarcoma patients. However, most of the cases 
were excluded according to our inclusion and exclusion criteria. The inclusion criteria were as follows: (a) com-
plete information about survival and follow-up available, (b) diagnosis of osteosarcoma as the primary malig-
nant tumor. The exclusion criteria were as follows: (a) death due to other causes; (b) alive but survival < 5 years at 
the follow-up cut-off date; (c) information about tumor site, grade, tumor size, metastasis or therapy unavailable.

Variable selection. After comprehensive analyses for prognostic factors of osteosarcoma considering our 
clinical knowledge and previous  studies7–9,30–33, we selected 15 characteristics to be evaluated, including patient 
information (age, sex and year of diagnosis) and survival information (survival period and status at the follow-
up cut-off date). Moreover, tumor information including the anatomical location, histological grade, tumor 
extension, tumor size, primary tumor number, local lymphatic metastasis, distant metastasis, radiation, chemo-
therapy and surgery was also taken into consideration.

We performed survival analyses using the patient and tumor information to determine the characteristics 
that significantly influenced patient survival. These analyses were performed before the exclusion of patients 
who alive but survival < 5 years at the follow-up cut-off date.

Construction of the prediction model. Our prediction model was based on XGBoost, a scalable tree 
boosting system. The model was trained using the training set and tested using the validation set to determine 
model accuracy. Before running the training program, a response variable was obtained for survival informa-
tion. It reflected the survival status of patients at 5 years, in which 1 = survival and 0 = death. One-hot encoding 
was performed for the three multi-classified variables (anatomical location, histological grade, and tumor exten-
sion). Normalization was performed for the two continuous variables (age and tumor size).

Bagging (bootstrap aggregating) and boosting are ensemble learning methods that can integrate decision trees 
to reduce the model  error34. XGBoost combines the advantages of these two methods and effectively reduces 
the bias-related error and variance-related error of the model (Fig. 6). In our prediction model, the number of 
ensemble decision trees was 30 and the maximum depth of each tree was 12. This was calculated via repeated 
tries to get the best accuracy and avoid overfitting. The outcomes of XGBoost were continuous outputs between 
0 and 1, which represented the probability of the corresponding patient survival for > 5 years.

Figure 6.  Schematic representation of the XGBoost model. XGBoost, extreme gradient boosting; GBDT, 
gradient boosting decision tree. The figure was created by using GraphPad Prism 7 (https ://www.graph pad.
com/).

https://www.graphpad.com/
https://www.graphpad.com/
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Model evaluation. ROC curves were constructed for prediction in the training and validation sets. The 
AUC was used to evaluate the performance of our model. An AUC value between 0.5 and 1.0 is an important 
statistical property to evaluate binary  classifiers35.

DCA that evaluates and compares prediction models incorporating clinical consequences was another way 
to evaluate our  model36. Compared with traditional measures such as AUC that only represents the predictive 
accuracy, DCA give information about the clinical value of  models37. In our study, decision curves were con-
structed to calculate the net benefit across different threshold probabilities of our prediction.

For comparing XGBoost with other ML classifiers, we constructed two other prediction models, respectively, 
based on SVM and the Bayesian network.

Statistical analyses. The Mann–Whitney U test and chi-squared test were used to compare continuous 
variables and categorical variables, respectively. Kaplan–Meier survival analysis and log-rank test were per-
formed to analyze the relationship between categorical variables and patient survival. A multivariate Cox pro-
portional hazards regression model was constructed to analyze the relationship between continuous variables 
and patient survival. These test and analyses were performed using SPSS 25.0 software (IBM, Armonk, NY). 
R Version 3.4.4 (R Foundation for Statistical Computing, Vienna, Austria) was used to construct, train, and 
validate the prediction models with “xgboost” package. The decision curve analysis was also performed using R 
Version 3.4.4. A P-value of < 0.05 was considered statistically significant.

Ethical considerations. We obtained permission to access the files of SEER database. The personal iden-
tifying information was not involved in this study so that the informed consent was not required. This study 
was reviewed and approved by the Medical Ethic Committee of Sir Run Run Shaw hospital affiliated to Medical 
College of Zhejiang University. And the study approval number is SRRSH2017092101.

Ethical approval. Medical Ethic Committee of Sir Run Run Shaw hospital affiliated to Medical College of 
Zhejiang University waived the informed consent off because all the information of patients were accessed from 
SEER database (https ://seer.cance r.gov/data/). We declare that all methods were performed in accordance with 
the relevant guidelines and regulations (Declaration of Helsinki).
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