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Cycling hypoxia selects 
for constitutive HIF stabilization
Mariyah Pressley1,2, Jill A. Gallaher1, Joel S. Brown1, Michal R. Tomaszewski3, Punit Borad3, 
Mehdi Damaghi3, Robert J. Gillies3 & Christopher J. Whelan3*

Tumors experience temporal and spatial fluctuations in oxygenation. Hypoxia inducible transcription 
factors (HIF-α) respond to low levels of oxygen and induce re-supply oxygen. HIF-α stabilization 
is typically facultative, induced by hypoxia and reduced by normoxia. In some cancers, HIF-α 
stabilization becomes constitutive under normoxia. We develop a mathematical model that predicts 
how fluctuating oxygenation affects HIF-α stabilization and impacts net cell proliferation by 
balancing the base growth rate, the proliferative cost of HIF-α expression, and the mortality from not 
expressing HIF-α during hypoxia. We compare optimal net cell proliferation rate between facultative 
and constitutive HIF-α regulation in environments with different oxygen profiles. We find that that 
facultative HIF-α regulation promotes greater net cell proliferation than constitutive regulation with 
stochastic or slow periodicity in oxygenation. However, cell fitness is nearly identical for both HIF-α 
regulation strategies under rapid periodic oxygenation fluctuations. The model thus indicates that 
cells constitutively expressing HIF-α may be at a selective advantage when the cost of expression is 
low. In cancer, this condition is known as pseudohypoxia or the “Warburg Effect”. We conclude that 
rapid and regular cycling of oxygenation levels selects for pseudohypoxia, and that this is consistent 
with the ecological theory of optimal defense.

Phenotypic plasticity, the production of alternative phenotypes in response to variable environments, is ubiq-
uitous in  nature1. Phenotypic plasticity confers flexibility that allows an organism to survive in the face of often 
unpredictable and rapid changes in its environment. Many organisms, from microbes to humans, vary gene 
expression facultatively. In this way phenotypic expression matches  demand2,3. In contrast, when environments 
are constant, or are predictably variable, an intermediate and constitutive level of expression may be favored 
over facultative  expression4,5.

Inducible or facultative defenses, such as defensive chemicals in plants, and spines and projections in zoo-
plankton such as rotifers and cladocerans, include remarkably diverse and well-studied examples of pheno-
typically plastic responses to biotic and abiotic threats or stressors. Biotic threats include herbivores, predators, 
pathogens, and parasites. An important abiotic threat is hypoxia, a reduction in oxygen availability. Hypoxia may 
be either acute, intermittent, or chronic, and it may be experienced at the organismal, tissue, or cellular levels. 
Cells respond to hypoxia via stabilization of the Hypoxia-inducible Factor (HIF), an inducible defense against 
both acute and chronic hypoxia within the cellular environment. HIF is a heterodimeric α/β transcription fac-
tor that induces expression of genes that lead to tissue re-oxygenation. The evolution of inducible defenses, like 
HIF, appears to be favored by unpredictability of environmental conditions, reliable cues of those conditions, 
and a high cost of the  defense6–8.

Oxygen levels in normoxic or hypoxic tissues encompass a wide range of values depending on several factors, 
including gender, time of day, tissue type, and degree of  vascularization9,10. In tumors, significant heterogeneity 
in oxygen levels result from both a dynamic ecosystem of blood vessels of varying functionality, and cancer cells 
with different tolerances to hypoxia. Within a nascent tumor ecosystem, cancer cells, which can somatically 
evolve, experience both acute and chronic hypoxia due to rapid growth, limited blood supply, and disorganized 
vascular delivery  systems11. This leads to complex cycles of oxygenation and hypoxia, characterized as “waves” 
and “tides”12–14. Thus, an intermittent or temporal instability in oxygen supply is a cardinal feature of tumors. 
We have proposed that this generates strong evolutionary selection pressures for more aggressive cancer cell 
 phenotypes15.

Like nearly all metazoan cells, cancer cells possess mechanisms to respond to heterogeneity in the supply 
of oxygen, including activation of a family of hypoxia-inducible transcription factors (HIF-1α, HIF-2α, and 
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HIF-3α)16,17, cell cycle arrest, a coordinated decrease in oxidative phosphorylation with an increase in glycolysis 
(Pasteur Effect), and secretion of angiogenic factors to promote blood vessel  formation18–23. Although each HIF-
1-3α plays some role in a cell’s response to hypoxia, those roles are best understood for HIF-1α and HIF-2α24. 
HIF-3α comes in a number of variants, and each seems to have a different role in cell  function17. Although 
HIF-1α and HIF-2α are known to differ both mechanistically and physiologically, their kinetics of stabilization 
and transactivation are generally  similar25. Here we refer to recognized roles of HIF-1α and HIF-2α (hereafter 
HIF-α) in response to hypoxia. HIF-α is ubiquitously and continuously expressed in all cells. In well-oxygen-
ated environments (normoxia), HIF-α is hydroxylated and ubiquitinated and is thus recognized and degraded 
by  proteasomes21. In an oxygen-depleted state, hydroxylation and hence, degradation of HIF-α is inhibited, 
promoting the transcription of genes that regulate  proliferation26,27, cellular  metabolism21,  angiogenesis28 and 
 erythropoiesis29, 30. If well-regulated, the recruitment of blood vessels to the site of HIF-α stabilization increases 
the supply of oxygen. Once  O2 levels return to normal (normoxia), HIF-α returns to baseline levels. It has also 
been observed that aggressive cancers constitutively express hypoxia-related proteins (HRPs) even in the pres-
ence of oxygen, a condition known as pseudohypoxia31. The most common manifestation of this phenotype is the 
fermentation of glucose under normoxia, known as “aerobic glycolysis” or the “Warburg Effect”32–34.

Maintenance of HIF-α levels under cycling hypoxia involves tradeoffs. Under prolonged hypoxia without 
stabilization of HIF-α, cells die. In contrast, HIF-α stabilization under normoxia comes at a non-lethal fitness cost. 
Accumulation of HIF-α in well-oxygenated environments costs energy and resources for the synthesis of HIF-α 
client proteins that may not be necessary for survival, including activating energetically inefficient glycolysis and 
expression of the exofacial acidifying pH–stat, carbonic anhydrase isoform 9, CA-IX35. As seen in the develop-
ment of some tumors, regulation of HIF-α switches from a facultative state, where the environment induces the 
changes in regulation, to a constitutive state, where HIF-α client proteins remain above baseline regardless of the 
 environment15,31. As this phenotype is associated with cancer progression and aggressiveness, understanding the 
microenvironmental conditions that select for pseudohypoxia is fundamentally important. Although increased 
HIF-α stability is a tumor promoting condition in many cancers, there are studies showing that HIF-α may play 
a role as a tumor suppressor, such as murine models of  AML36,37. In the current study however, we developed 
our model using a cost–benefit analysis of expressing HIF under normoxic and hypoxic conditions, and thus 
downstream tumor promotion or suppression was not taken into account.

Here, we develop a mathematical model with the goal of determining a cancer cell’s optimal level of HIF-α 
expression with respect to differences in fluctuating levels of oxygen availability within tumor microenviron-
ments. Specifically, we seek to determine what tumor conditions may cause the evolution of constitutive HIF-α 
regulation (“hard wired” HIF-α stabilization) from facultative regulation. To do so we compare the maximal 
expected payoff (net cell proliferation rate) between facultative and constitutive HIF-α regulation in environments 
with different oxygen profiles. We hypothesize that predictable and rapid cyclic fluctuations from normoxia to 
hypoxia will favor constitutive HIF-α stabilization based on similar ideas in optimal defense theory (ODT)4,38. 
Optimal defense theory was developed to explain allocation of resources into defenses employed by plants in 
response to attack by herbivores. Optimal defense theory predicts that when herbivore damage is highly probable, 
plants should invest in constitutive defenses, but when the probability of herbivore attack is low, plants should 
invest in inducible defenses.

Our model investigates how cells may respond to changes in oxygenation with HIF-α expression. In a perfect 
world, cells would instantaneously optimize HIF-α levels in response to fluctuating oxygen concentrations. As 
the environment shifts from normoxia to hypoxia, cells would immediately accumulate HIF-α, and vice-versa. 
However, attaining the appropriate HIF-α level for the current environment is not immediate. There will be 
time lags in upregulating or down regulating HIF-α. HIF-α production and proteosomal degradation occur 
 continuously20,31. When oxygenation levels decline, HIF-α degradation slows, and production permits HIF-α to 
increase at a relatively slow rate to counter the hypoxic  conditions20. Upon re-oxygenation, HIF-α can be rapidly 
degraded. We model cellular regulation of HIF-α as the concentration of oxygen within the tumor and surround-
ing microenvironment changes temporally—both with regular periodicity and stochastically. The model was 
informed by empirical evidence for the rates of HIF-α accumulation and degradation as the cells’ microenviron-
ment shifts between normoxia and hypoxia, and vice-versa39–41.

Results
We compared how different HIF-α regulation strategies influence cell fitness under different oxygenation envi-
ronments. Here, we define a cell’s fitness by its net proliferation rate, or “payoff ”. In this model, we assume that 
the expected payoff depends on the base proliferation rate, the metabolic cost of expressing HIF-α, and the 
mortality risk of not expressing HIF-α during hypoxia. We use the following expression for a cancer cell’s payoff 
at time t, G(t):

where r is the baseline proliferation rate of a cancer cell, c is proliferation cost of using HIF-α strategy u at time 
t, m is the cell mortality when conditions are hypoxic, q is the fraction of time spent in normoxic conditions, 
k is a cell’s intrinsic tolerance to hypoxia in the absence of HIF-α stabilization, and b is the benefit of HIF-α 
expression u in reducing mortality when conditions are hypoxic. See Table 1 for definitions, units and values of 
all parameters used in the models.

We compare three HIF-α strategies across a variety of oxygenation environments: perfect, constitutive, and 
facultative. A perfect strategy means instantaneous HIF-α switching in response to normoxic and hypoxic con-
ditions. While this strategy is idealized and unrealistic, it provides a useful point of comparison for the other 

(1)G(t) = r − cu(t)−
m
(

1− q
)

k + bu(t)
,
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strategies as a perfect strategy would yield the highest possible payoff. A constitutive strategy assumes that the 
HIF-α level is constant over time, and a facultative strategy assumes that the HIF-α levels can change at a finite 
rate in response to oxygen levels. Representative examples of these strategies in a fluctuating environment are 
shown in the Methods (Fig. 7), along with more detailed definitions and explanations of each strategy.

The perfect strategy. A perfect strategy does not mean perfect fitness in all environments. Mortality and 
the metabolic costs of HIF-α stabilization mean that fitness declines with more time spent in hypoxic conditions. 
The expected payoff of the perfect strategy (see Eq. (2) in Methods) is shown to decline linearly with the propor-
tion of time spent in hypoxia (Fig. 1A).

The constitutive strategy. The optimal constitutive strategy can be found by maximizing the payoff for a 
constant HIF-α level, u* (see Eq. (3) in Methods). The expression for the payoff can then be analytically solved 
(see Eq. (4) in Methods). We found that the constitutive strategy payoff is always less than or equal to the perfect 
strategy payoff (Fig. 1A), being equal only when the environment is always hypoxic (q = 0) or always normoxic 
(q = 1). The payoff over different HIF-α regulation strategy values u for different fractions of time spent in nor-
moxia q is plotted in Fig. 1B, along with the optimal constitutive values u*. As expected, we find that the payoff is 
highest when HIF-α expression is lowest (u = 0) under constant normoxic conditions. With constant normoxia, 
as u is increased, the payoff slightly decreases, showing the minor cost of unnecessarily producing HIF-α. How-

Table 1.  Definitions, units, and values of parameters used in the models. The terms Y and u are normalized 
and are therefore unitless. We normalize k to 1 because it appears as m/k when u = 0 and appears as b/k in u*. 
The value of c is calculated such that u* = 1 when the environment is hypoxic (q = 0; c = m/[b(1 + k/b)]2).

Parameter Description Units Values References

r Baseline proliferation rate of a cell min−1 0.00048 Estimated

c Cost to proliferation rate when using strategy u min−1 0.0001328 Calculated

m Hypoxia induced cell death rate min−1 0.00083 Guo et al.  200957

k Cell tolerance to hypoxia in the absence of HIF-α stabilization Unitless 1 Set

b Cell benefit in hypoxic environments due to HIF-α stabilization Unitless 4 Guo et al.  200957

α0 Upregulation rate of HIF-α min−1 0.01155 Pagé et al.  200239

α1 Downregulation rate of HIF-α min–1 0.0462 Marxsen et al.  200440

umin Baseline production of HIF-α Unitless [0, 1] Optimized

umax Maximum production of HIF-α Unitless [0, 1] Optimized

u HIF-α expression Unitless [0, 1] Calculated

Y Level of oxygenation Unitless [0, 1] Variable

q Fraction of time the environment is fully oxygenated (Y = 1) min−1 [0, 1] Variable

Figure 1.  Expected payoffs for perfect and constitutive strategies. (A) The payoff (G) for perfect and optimal 
constitutive (u*) strategies for different fractions of time in normoxic conditions, q. (B) The payoff versus HIF-α 
level, u, for different q’s. The lines represent all u values, while the red dots represent the optimal u expression 
(u*) for each q that maximizes the payoff. Parameter values are given in Table 1.
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ever, as conditions become more hypoxic with a low HIF-α expression, the mortality term dominates, and the 
payoff is drastically reduced into negative values where the cell cannot survive. With constant hypoxia, HIF-α 
needs to increase in order for G ≥ 0 for survival. The optimal values u*, shown as red dots, reflect this for all values 
of q in between.

Facultative expression of HIF-α. With the facultative strategy, u changes over time according to Eq. (5) 
in the Methods. This expression allows u to increase in hypoxia and decrease in normoxia at the rates given in 
Table 1. The rates were based on empirical measurements from a variety of cell  lines39–41, which found that on 
average HIF-α down-regulation occurs about four times faster than HIF-α up-regulation. Here, we used these 
average rates to explore optimal strategies given different temporal oxygen fluctuations. In a later section, we 
measured these rates experimentally from two ovarian cancer cell lines to augment values from the literature, 
discern the range of values, and provide additional values for exploring how upregulation and downregulation 
rates affect fitness payoffs. The optimal facultative strategy involves selecting a baseline umin and an upper bound 
umax that maximizes the expected payoff. For simulations we began with a period of normoxia and a start-
ing value of HIF-α halfway between constitutive expression and the specified umax. For fixed cycle lengths, the 
expected payoff converges quickly to a steady state, and we use the payoff in Eq. (6) in the Methods to numeri-
cally solve for the optimal lower and upper bounds, u*min and u*max.

We compared the optimal facultative response between two different periodicities (either 10 min or 120 min 
intervals) of full oxygenation followed by the same for deoxygenation (q = 0.5 in both cases). Initially we com-
pared the payoffs of a constitutive strategy and facultative strategy in the same environment to determine the 
selection coefficient, which we defined as the fitness advantage for using a facultative strategy (details in the 
Methods). The selection coefficients over the full range of possible umin and umax are shown in Fig. 2A. For longer 
cycling periods, the facultative strategy has a larger selection coefficient for any given combination of umin and 
umax than for shorter cycle times. Under many circumstances the difference in the selection coefficients for the 
two strategies are so small as to be negligible. Under such circumstances one might expect the constitutive 
strategy to prevail as the facultative strategy does have a lethal component, whereas the constitutive does not.

We further explored HIF-α expression using the umin and umax combination that produced the greatest payoff. 
When the environment fluctuates with time intervals of 10 min, the cell’s payoff was optimized at u*min = 0.540 
and u*max = 1. The fluctuation in HIF-α expression occurred rapidly and the u*min, while always less than, came 
close to the constitutive value, while u*max remained at 1 (Fig. 2B). By increasing time intervals to 120 min, the 
cell’s payoff was maximized at u*min = 0.305 and u*max = 1. The longer cycle times resulted in larger fluctuations 
in HIF-α expression and a greater superiority of the facultative strategy compared to the constitutive strategy. 
With the longer cycle time, the optimal facultative strategy resulted in a lower value for u*min, while u*max always 
remained at 1.

Comparing over all strategies, we found that perfect matching of HIF-α expression to fluctuating levels of 
oxygenation always produces the highest cell payoff (Fig. 2C). However, for facultative and constitutive strategies 
that work on non-instantaneous time scales, we found that the superiority of the facultative over the constitutive 
strategy was low for short cycles and high for longer cycles.

HIF-α expression under stochastic fluctuations. For stochastic oxygen fluctuations, we convert the 
cycle times to rates of switching and use these probabilities to create a timeline of stochastic fluctuations com-
parable to the fractions of time spent in each environment. Specifically, we let  PN→H = 1/TN be the probability 
of switching from normoxia to hypoxia, and  PH→N = 1/TH be the probability of switching from hypoxia to nor-
moxia, and we evaluated the facultative strategy in stochastic environments where  PN→H =  PH→N.

An example simulation with a high probability of switching (left) and a low probability of switching (right) 
is shown in Fig. 3A. When there is a high probability of switching oxygenation states,  PN→H =  PH→N = 0.1  min-1, 
the optimal facultative strategy occurs at u*min = 0.504 and u*max = 1. Decreasing the probability of switching to 
0.0083  min−1 leads to a decrease in u*min to 0.216, while u*max remains unchanged at 1. For comparison, when 
 PN→H =  PH→N, assuming q = 0.5, the optimal constitutive strategy is u* = 0.634. All results for stochastic switching 
are reported as the mean values of u*min and u*max for 10 simulations insuring a small standard error (< 0.01) for 
u*min and u*max, respectively (Suppl. Figure 1).

Quantification of stabilization/de-stabilization times in vitro. In the simulations above, we needed 
estimates for the rates of upregulation and downregulation of HIF-α. We used average rates based on values in 
the literature from both normal and cancer cell lines. Yet, such rates will vary with cell line and the values from 
the literature were not collected with our model in mind. To compare to previous values and to our model, we 
empirically measured HIF-α upregulation and downregulation rates in two different ovarian cancer cell lines, 
TOV112D and A2780s. The kinetics of HIF-α stabilization were measured under 0.2% hypoxia in vitro. For 
TOV112D, HIF-α upregulation and stabilization required at least one hour and was maximal at 4 h (Fig. 4A, left 
panel). For A2780s cells, stabilization required 4 h (Fig. 4A, right panel). We then measured the length of time 
required for these cancer cell lines to return to normal HIF-α expression after being exposed to hypoxic condi-
tions for 72 h. After restoring normoxia, TOV112D returned to normal HIF-α expression in about one minute 
(Fig. 4B left), while A2780s cells returned to normal HIF-α expression in about five minutes (Fig. 4B right). 
These are significantly more rapid than prior  reports39–41.

We then estimated the upregulation (α0) and downregulation (α1) rates of HIF-α. Using Eqs. (S1) and (S2), 
and assuming that umax = 1, umin = 0, we estimated the rate of upregulation of HIF-a by finding values of α0 that 
would allow HIF-α to increase to 90% of its maximum stabilization values (in arbitrary units) in 60 min and 
240 min for TOV112D and A2780s cells, respectively. Similarly, we estimated the rate of HIF-α downregulation 
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by finding values of α1 that allow HIF-a to decline to 10% of its maximum stabilization values within 1 min and 
5 min for TOV112D and A2780s cells, respectively. These yielded estimates for α0 ~ 0.038  min−1 for TOV112D 
and α0 ~ 0.01  min−1 for A2780s and estimates of α1 ~ 2.3  min−1 for TOV112D and α1 ~ 0.46  min−1 for A2780s. 
We incorporated these experimentally derived rates into the model to compare the facultative and constitutive 
strategies in fixed interval environments. As with our previous results, we find greater selection for a facultative 
strategy in environments that remain in their current state of oxygenation or lack thereof for longer time periods. 
The superiority of the facultative strategy over the constitutive depends heavily on up- and down-regulation rates. 
Decreasing the rate at which HIF-α accumulates reduces the advantage of being facultative over constitutive 
even in environments with longer cycles. In general, the model suggests that TOV112D cells should exhibit a 
facultative strategy and A2780s cells a constitutive (see Suppl. Figure 2).

Figure 2.  Comparison environments with fixed intervals of short (10 min) and long (120 min) periods of 
cycling hypoxia. (A) Heatmap of the selection coefficients for the facultative strategy for all umin and umax 
combinations. Each star denotes the umin and umax combination that maximizes payoffs for the facultative 
strategy for each fixed interval time. (B) HIF-α (u) levels over time using the optimal facultative strategy. The 
unshaded areas represent periods of full oxygenation while the shaded grey areas represent periods of hypoxia. 
(C) Payoffs for separate strategies of HIF-α expression normalized to the perfect strategy. Parameters are given 
in Table 1.
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Oxygen fluctuations in vivo. Intra-tumoral fluctuations in oxygenation are key for empirically evaluating 
whether a constitutive strategy may be favored over a facultative one. Furthermore, fluctuations within a tumor 
may vary spatially. Thus, different regions of a tumor may select for different HIF-α levels and strategies. To gain 
empirical insights, we measured spatio-temporal variation in oxygen delivery in different regions of a mouse 
pancreatic adenocarcinoma tumor. We used in vivo MR quantification of dynamic T2* changes that are sensitive 
to levels of deoxy-Hb and are thus an approximation of oxygenation. Significant heterogeneity was observed 
within the tumor both in the mean (Fig. 5A) and the temporal variance (Fig. 5B) of T2* values, indicating areas 
of variable blood flow and oxygenation. The temporal profiles of fluctuations were distinct in different areas, 
and consistent with different blood vessels feeding these regions. Interestingly, while short fluctuations were 
observed in some areas (Fig. 5C), some displayed changes at much longer time scales (Fig. 5D) in both directions 
of normoxia to hypoxia and hypoxia to normoxia. We might expect a constitutive strategy to be favored in the 
former regions and facultative in the latter.

Discussion
Facultative regulation of HIF-α in response to fluctuating levels of oxygenation is ancestral and highly conserved 
across  phyla42–44. For this reason, the evolution of constitutive HIF-α regulation has drawn wide interest across 
many biological disciplines, including cancer. Herein, we developed a theoretical model to explore the conditions 
under which constitutive versus facultative HIF-α orchestration of the cellular response to temporal changes in 
oxygen supply will optimize a cell’s fitness, as measured by the net growth rate, or payoff. Our modeling indicates, 
unsurprisingly, that the perfect matching strategy for HIF-α regulation in response to fluctuating oxygenation 
levels always delivers a greater payoff than either the facultative or the constitutive strategies. However, cellular 

Figure 3.  HIF-α regulation under stochastic fluctuations in oxygenation. (A) Optimal facultative HIF-α 
expression in stochastically hypoxic environment; r = 0.00048, α0 = 0.01155, α1 = 0.0462, m = 0.00083, b = 4, 
c = 0.0001328, and k = 1. Left graph illustrates HIF-α stabilization when the probability of fluctuations 
in oxygenation states is high (P = 0.1) and low (P = 0.0083). (B) Selection for a facultative strategy over a 
constitutive strategy for fixed interval and stochastic environments. Because selection is optimized numerically 
in fixed interval environments, the selection gradient is continuous. Selection in stochastic environments is 
presented as the average of 10 simulation results.
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Figure 4.  Quantification of HIF-1α stabilization/de-stabilization times in vitro. Using two ovarian cancer cell 
lines, HIF-1α expression is found in whole lysate by Western blot analysis. Tubulin is used as control of loading 
the same amount of proteins. (A) To measure the stabilization time, cancer cells were cultured in separate 
dishes, incubated in hypoxia chambers, and collected at several time points. (B) To measure the destabilization 
time, cancer cells were grown for 72 h under hypoxia, and collected at several time points after switching to 
normoxic conditions. See Methods for more details.

Figure 5.  Oxygen fluctuations in vivo. (A) Mean T2* value and (B) standard deviation of the T2* changes in 
time are shown for a representative slice. Small regions of interest, marked with red rectangles, were drawn to 
illustrate distinct temporal T2* kinetics in tumor, plotted in (C) (ROI 1) and D (ROI 2s and 3).



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5777  | https://doi.org/10.1038/s41598-021-85184-8

www.nature.com/scientificreports/

transcriptional and translational machinery has significant inertia and is unable to instantaneously respond to 
fluctuations in oxygenation and thus unable to provide a perfect match. Thus, it must respond either facultatively 
or constitutively. Under facultative regulation, the upper and lower bounds for rates of HIF accumulation are 
critical for calibrating the rate at which the cancer cells stabilize their oxygen environment. Our model predicts 
that the upper bound should be set very high to rapidly respond to hypoxia. Conversely the lower bound insures 
a non-zero level of stabilization. This increased baseline level of stabilization for the facultative strategy is only 
slightly below what would be expected with constitutive regulation of HIF-α. Importantly, this demonstrates 
the larger penalty of not upregulating HIF-α quickly enough when the environment becomes hypoxic than the 
cost incurred of needlessly stabilizing HIF-α during normoxia. Thus, cells constitutively expressing HIF-α may 
be at a selective advantage under some conditions, with little cost.

Our model indicates that facultative expression of HIF-α always promotes a greater payoff than constitutive 
expression. Importantly, however, the difference in the payoffs between facultative and constitutive HIF-α expres-
sion depends on the nature of the fluctuations between normoxia and hypoxia. With short cycling times, the 
difference between facultative and constitutive HIF-α stabilization is small and perhaps negligible, so facultative 
expression may be indistinguishable from constitutive regulation. In contrast, long cycling times or stochastic 
fluctuations favor facultative HIF-α regulation.

Our modeling results match expectations from nature. For instance, plants rely on inducible (facultative) and/
or constitutive defenses against herbivores or pathogens. Optimal defense theory (ODT)4,38 predicts deployment 
strategies for these plant defenses. ODT states that: (1) defenses should be preferentially invested in those tissues 
that most affect individual fitness, and (2) the reliance on an inducible defense should depend on the probability 
or predictability of attack (Fig. 6). When the probability of attack is low, there should be greater reliance on induc-
ible versus constitutive defense, and vice-versa when the probability of attack is high. Indeed, as the probability 
of attack nears 100%, ODT states that fitness is maximized when defenses are constitutive.

Applying this reasoning to HIF-α expression under cyclic hypoxia, fixed periodicities with rapid fluctuations 
of oxygenation equate to a 100% certainty that a cell will experience  hypoxia45. Hence, ODT predicts that cells 
should regulate HIF-α expression constitutively. In our simulations, when oxygenation states switch rapidly at 
fixed intervals, we found that payoffs are virtually identical between facultative and constitutive HIF-α regulation 
(Fig. 2C). When fluctuations are fixed, and with short periods of normoxia interspersed between long periods 
of hypoxia, the selective advantage of facultative HIF-α regulation is only slightly greater than with constitutive 
HIF-α regulation (Fig. 3B). Under both scenarios, any mutation that results in constitutive HIF-α regulation (e.g. 
mutations in VHL ubiquitin ligase) will be selectively permissive, i.e. it will not be strongly selected against. We 
speculate that the loss of VHL observed in renal cell cancer implies a constitutive response strategy due to rapid 
fluctuations in oxygenation early in its development. Cells with a mutation that results in constitutive HIF-α 
regulation will thus be able to coexist with cells with facultative HIF-α regulation. This mirrors the case in many 
tumors, in which some cells express the wild-type (normal) HIF-α phenotype (facultative HIF regulation), and 
some cells express the Warburg phenotype (constitutive HIF-α regulation). Our modeling also suggests that cells 
evolving under rapid switches in oxygenation may retain facultative HIF-α regulation, but they may set their 
upper and lower bounds of HIF-α in a way that is effectively pseudohypoxic (Fig. 2B). Under these conditions, 
the distinction between facultative and constitutive HIF-α regulation becomes moot.

With stochastic fluctuations in oxygenation states, in contrast, the probability of hypoxia is less certain or 
predictable. Then, as predicted with ODT, facultative HIF-α regulation should be favored. In our simulations, 
stochastic changes in oxygenation always resulted in greater selection coefficients for facultative relative to 
constitutive HIF-α stabilization (Fig. 3B). Under this scenario, cells with mutations that produce constitutive 
HIF-α regulation will be less fit than cells with facultative HIF-α regulation, and these cells would be eliminated 
or reduced to a minor population through competition.

Figure 6.  Optimal defense theory. Optimal defense theory predicts that tissues with a low probability of being 
attacked should rely primarily on inducible defenses, whereas those with a high probability of attack should rely 
primarily on constitutive defenses.
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The imaging results presented provide in vivo insight into the dynamics of tumor oxygen environment 
through indirect measurements of blood oxygen level changes in the local vascular network. The apparent fluc-
tuations observed highlight the importance of understanding the cellular mechanisms of adaptation to dynamic 
conditions. In particular, the measured spatial heterogeneity of the temporal profiles suggests likely coexistence 
of the different HIF-α regulation strategies within one tumor. With intra-tumoral variation in oxygenation 
regimes, we expect to see not only variation in the level of HIF-α expression but also the coexistence of cancer 
cells exhibiting different HIF-α strategies. In the future, spatial relationships can be incorporated into our model 
to elucidate the nature of these interactions.

Our review of the literature on the dynamics of up- and down-regulation rates, and confirmed by our own 
experiments indicate that HIF-α response dynamics vary considerably between experimental cell lines (our 
results above)39–41. These differences may represent genetic, epigenetic, or phenotypically plastic differences 
among tissue types within  organisms46,47 or evolved differences between  species47,48. Such heterogeneity may 
reflect tissue-specific fluctuations in oxygenation, or fluctuations in oxygenation specific to the environments 
inhabited by different species. This means that cancers initiating from different cell types within different tissues 
may start with quite varied rates for upregulating and downregulating HIF-α; and these upregulation and down-
regulation strategies may vary with cancer cell evolution and progression. These differences may later influence 
the emergence of pseudohypoxia via constitutive HIF-α expression or epigenetic stabilization of downstream 
products of HIF-α such as CAIX. Of note, though, is the near universality of pseudohypoxia (Warburg Effect) in 
malignant cancers, indicating that this provides a fitness advantage regardless of the trajectory used to acquire 
this  phenotype31.

Previous mathematical models of hypoxia and HIF-α regulation fall into four general  categories49: (1) under-
standing the switch-like behavior of the HIF-α response to fluctuating  O2

50; (2) analysis of the role of molecular 
elements of the microenvironment during the HIF-α  response51; (3) elaborating how asparaginyl hydroxylase 
factor inhibiting HIF-1 (FIH) affects the HIF-α  response52–54); and (4) capturing the temporal dynamics of the 
HIF-α  response52,54. All of these modeling studies have helped elucidate the core elements that shape the activity 
and the dynamics of the HIF-α response to cycling hypoxia. Our model, in contrast, addresses the conditions 
that select for the evolution of constitutive regulation of HIF-α from the ancestral facultative regulation. Our 
model examines the consequences of different HIF-α regulation strategies on cell fitness within the complex 
and dynamic tumor ecosystem. We find that constitutive HIF-α regulation is favored when the probability of 
hypoxia is high—a finding that is consistent with ecological models of defenses to biotic threats like predation 
and herbivory.

The current study is the first of its kind to apply ecological defense theory to the expression of stress responses 
(e.g. HIF) in cancer cells. Hence, it is not without its limitations. First, the endpoint for our simulations to model 
fitness was simply net growth rate, as represented by our payoff function. There are many other components to 
fitness that were not considered in this study. For example, the expression of some pseudohypoxic gene prod-
ucts, e.g. CAIX or VEGF, may confer upon cells additional selection advantages, such as an increased ability to 
invade and colonize adjacent  tissues55, thus increasing the fitness of the pseudohypoxic phenotype. A second 
limitation is that the study investigated only the kinetics of stabilizing HIF-1α. There are at least two other HIF-α 
proteins, each with different activation kinetics and portfolios of client proteins. Moreover, the kinetics of the 
transcriptional and translational machinery induced by HIF-α are not known with certainty, and presumably do 
not respond instantaneously. Knowledge generated by investigating these limitations will improve subsequent 
models.

Methods
Mathematical model and major assumptions. We modeled three different strategies by which a cell 
can respond to the presence or withdrawal of oxygen in an environment: perfect, constitutive, and facultative 
(Fig. 7). If a cell responds perfectly to an environment, the fluctuating oxygen profile would be matched by the 
cell instantaneously responding with the appropriate HIF-α expression. With constitutive regulation, HIF-α is 
constantly maintained at an above baseline level regardless of the  O2 levels. With facultative regulation, HIF-α 
levels change in response to environmental fluctuations in oxygen at fixed rates of accumulation (slow) and deg-
radation (fast). It is important to note that we use “HIF-α” to represent the constellation of cellular responses to 
hypoxia. While the transcription factor HIF-1α is undoubtedly central to this, we do not wish to imply that its 
levels are solely responsible for a cell’s fitness under different conditions of oxygenation.

Environment creation. Let Y ∈ [0, 1], describe the level of oxygenation in the cell’s tumor microenviron-
ment. In all scenarios, we assume that the environmental switch between fully oxygenated (Y = 1) or deoxygen-
ated (Y = 0) is effectively instantaneous whereas the accumulation and degradation of HIF-α is based on intrinsic 
rates. Let u(t) be the HIF-α response of a cell at time t whether it has a perfect, constitutive, or facultative 
response, where u ∈ [0, 1]. For the fixed interval environment, normoxic (Y = 1) and hypoxic (Y = 0) periods 
switch back and forth at fixed time intervals. A perfect, constitutive, and facultative response to these changing 
oxygen profiles will exhibit different HIF-α expression levels. (Fig. 7).

The perfect strategy. With the perfect strategy, the switching response to the environment is instantane-
ous. Therefore, u = 0 during periods of normoxia and u = 1 during periods of hypoxia. We can thus simply take 
the sum of the payoffs spent in each environment using Eq. (1), and expected payoff becomes:
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The constitutive strategy. With the constitutive strategy, HIF-α levels remain constant and do not change 
in response to the temporal fluctuations in oxygen. When u is fixed, the expected payoff for the constitutive 
HIF-α strategy can be separated into the payoff during normoxia, GN(u) = r − cu, and the payoff during hypoxia, 
GH(u) = r − cu- m(1-q)/(k + bu), so that the total payoff is:

The optimal value for HIF-α expression depends only on the fraction of time spent in each state, q. Therefore, 
the optimal constitutive strategy value, u*, can be calculated analytically by maximizing expected G with respect 
to u. We take the first order necessary condition for this optimum, dGdu = 0 , and solve for u*, resulting in:

The constitutive level of HIF-α production declines with its proliferation cost, c, the cell’s intrinsic tolerance 
to hypoxia in the absence of HIF-α stabilization, k, and the fraction of time spent normoxic, q. HIF-α production 
increases with cell mortality when conditions are hypoxic, m. The relationship between optimal HIF-α production 
and the benefit of HIF-α expression, u, in reducing mortality when conditions are hypoxic, b, is hump shaped. 
If HIF-α expression is ineffective (small b) then there is no point, and if HIF-α expression is extremely effective 
(large b) then little is needed. The u* can then be substituted into the payoff G to determine the maximal payoff 
available to the constitutive strategy given the micro-environmental and fitness parameters:

The facultative strategy. Under the facultative strategy, when the environment is depleted of oxygen, 
we assume that the cell accumulates HIF-α at a finite rate α0, and when the environment is fully oxygenated the 
cell degrades HIF-α at a finite rate α1 (1). We allow a baseline production of HIF-α (umin) even under normal 
oxygen conditions and assume that the cell targets a maximum accumulation of HIF-α (umax) in an oxygen-
depleted environment (2). We assume that the changes in expression occur at a rate proportional to the differ-
ence between some desired level and the current level, such that:

(2)Gperfect = r0 −
(

1− q
)

(

c +
m

k + b

)
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(

1− q
)
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(
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)2
m
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Figure 7.  Comparison of 3 HIF-α response strategies to changes in oxygen supply within the tumor (cell) 
microenvironment. The perfect strategy is instantaneous and used as an upper bound for comparison. 
Constitutive is constant over time, and facultative has a rate-limited response. The unshaded areas represent 
periods of full oxygenation while the shaded grey areas represent periods of hypoxia.
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For the facultative strategy, the dynamic u(t) requires that the expected payoff be calculated as the cumulative 
payoff over the normoxic and hypoxic periods, TN and TH, respectively. Because the HIF-α fluctuations become 
periodic, the total cumulative payoffs can be averaged over a cycle separated into the time spent in normoxia 
and the time spent in hypoxia:

The payoff can be analytically solved to:

where T = TN + TH, β = 1− e−α0TH−α1TN , βN = 1− e−α1TN , and βH = 1− e−α0TH . The derivation is provided 
in the supplemental material.

The payoff for the facultative HIF-α strategy in a stochastic environment is calculated similarly. But, because 
the HIF-α dynamics cannot settle into a dynamic equilibrium, the payoff is calculated over discretized time 
intervals and then taken as an average over the entire simulation.

Finding the optimal u*min and u*max for the facultative strategy. Constrained optimization by lin-
ear approximation (COBYLA) was used to determine values of u*min and u*max that maximize a cell’s payoff. For 
stochastic environments, a search space was created by linearly separating 250 values between 0 and 1. These 
values were used to create combinations of umin and umax for which 0 ≤ umin < umax ≤ 1. After u(t) was computed 
for each combination of umin and umax, the payoff, G(u(t)), was calculated as an average of all payoff values at 
each time point. The combination of umin and umax that produced the maximum averaged payoff was considered 
optimal. For a given  PN→H =  PH→N, we ran 10 replicate runs for 2000 time units. With this number of time units, 
the estimated values of u*min and u*max were very similar across replicate runs (standard error of the mean < 0.01).

Selection coefficient for facultative expression. We define the selection coefficient (SC) as the fit-
ness advantage for using a facultative rather than a constitutive strategy. We calculated the SC as the difference 
between the payoff for facultative expression, GF, and the payoff for constitutive expression, GC, normalized by 
the payoff for constitutive expression, SC = (GF-GC)/GC.

Cell lines and culture conditions. A2780s and TOV112D ovarian cancer cells were obtained through 
American Type Culture Collection (ATCC). Cells were grown in RPMI supplemented with 10% fetal bovine 
serum (FBS). For both normoxic and hypoxic treatment environments, all cells were grown in 5%  CO2 and at 
37 °C in a humidified atmosphere.

Stabilization/degradation of HIF. A Biospherix X-Vivo Hypoxia Chamber was used to incubate cells 
under hypoxic conditions. For hypoxic conditions, cells were incubated at 0.2%  O2:94.8%  N2:5%  CO2. Reoxy-
genation was performed by transferring flasks or plates containing cells from the hypoxic chamber to an incuba-
tor under atmospheric conditions at 5%  CO2. For time points shorter than 4 h, media pre-equilibrated under 
hypoxic conditions was used. Then, the hypoxic media was added to the cells inside a hypoxic (0.2%  O2) working 
chamber within the Biospherix complex.

Western blot analyses. Western blots were performed on A2780s and TOV112D ovarian cancer cells 
to validate the expression of HIF at the protein level at different time points. Cells grown in hypoxic chambers 
were frozen at the time points mentioned in the results section and harvested all together by lysing in Radioim-
munoprecipitation assay buffer (RIPA buffer) containing 1 × protease inhibitor cocktail (Sigma-Aldrich). For 
each sample, a 30 μg aliquot was loaded onto pre-cast polyacrylamide-SDS gels from BioRAd that were then 
transferred onto nitrocellulose. Membranes were incubated with primary antibodies against HIF-1α (#610958, 
BD Biosciences), Tubulin (#2144, CST) or β-Actin (A5441, Sigma, 1:4000) overnight at 4° C, followed by flu-
orescent-conjugated secondary antibodies (IRDye® 800CW Goat anti-MouseIgG and IRDye® 8680CW Goat 
anti-rabbit IgG). An Odyssey chemiluminescence-fluorescence system was used for protein detection. Proteins 
detected ran at the expected molecular weights, as verified using molecular weight standard markers.

MRI tumor imaging of hypoxia. In vivo measurements of oxygenation fluctuations were obtained by 
Intrinsic Susceptibility Magnetic Resonance Imaging (IS-MRI)56. Panc02 mouse pancreatic adenocarcinoma 
cells were implanted subcutaneously into a C57BL/6 mouse. When the tumor reached a volume of ~  1500mm3, 
as measured by calipers, the animal underwent MR imaging with a 7 T/30 cm Bruker Biospec® imaging spec-
trometer as follows. Mice were anaesthetized using 3% isoflurane and subsequently maintained with 1.5–2% 
isoflurane mixed with 100% oxygen. Anatomical images were acquired using T2-weighted coronal and axial 
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scans to identify the middle of the tumor and facilitate outlining the tumor. To capture the spatial and temporal 
dynamics of oxygenation, quantitative T2* mapping was then performed continuously every 55 s for 18 series 
(Multi-Gradient Echo, TR = 270 ms, 10xTE = 2.5–47.5 ms, flip angle 40 degrees, 5 slices, 1 mm/1 mm slice thick-
ness/gap, 35 mm FOV, 128 × 128 points). A monoexponential function was fitted for each voxel at each time-
point (MATLAB 2018b, Mathworks) to reconstruct the local T2* magnetic resonance time, which is modulated 
by changes in deoxyhaemoglobin levels in the blood, hence reflecting the fluctuations in blood oxygen level.

Approval for animal experiments. All procedures were in compliance with the ARRIVE guidelines 
and with the Guide for Care and Use of laboratory Animal Resources (1996), National Research Council, and 
approved by the Institutional Animal Care and Use Committee (IACUC), at the University of South Florida 
under the protocol 4778.

Code availability
Code and interactive website available at https ://githu b.com/press leym/pseud ohypo xia/wiki/Cycli ng-hypox ia-
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