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Classification of sleep apnea 
based on EEG sub‑band signal 
characteristics
Xiaoyun Zhao1,2,3, Xiaohong Wang2, Tianshun Yang4, Siyu Ji4, Huiquan Wang2,5, 
Jinhai Wang2,5, Yao Wang2,4,5* & Qi Wu6*

Sleep apnea syndrome (SAS) is a disorder in which respiratory airflow frequently stops during sleep. 
Alterations in electroencephalogram (EEG) signal are one of the physiological changes that occur 
during apnea, and can be used to diagnose and monitor sleep apnea events. Herein, we proposed a 
method to automatically distinguish sleep apnea events using characteristics of EEG signals in order 
to categorize obstructive sleep apnea (OSA) events, central sleep apnea (CSA) events and normal 
breathing events. Through the use of an Infinite Impulse Response Butterworth Band pass filter, we 
divided the EEG signals of C3‑A2 and C4‑A1 into five sub‑bands. Next, we extracted sample entropy 
and variance of each sub‑band. The neighbor composition analysis (NCA) method was utilized for 
feature selection, and the results are used as input coefficients for classification using random forest, 
K‑nearest neighbor, and support vector machine classifiers. After a 10‑fold cross‑validation, we found 
that the average accuracy rate was 88.99%. Specifically, the accuracy of each category, including OSA, 
CSA and normal breathing were 80.43%, 84.85%, and 95.24%, respectively. The proposed method 
has great potential in the automatic classification of patients’ respiratory events during clinical 
examinations, and provides a novel idea for the development of an automatic classification system for 
sleep apnea and normal events without the need for expert intervention.

Sleep apnea, a common sleep disorder, is characterized by the frequency of more than five apneas per hour during 
sleep or the stopping time of respiratory airflow for more than 10  s1,2. Sleep apnea can cause daytime fatigue, a 
lack of energy, impaired memory, and may also cause several diseases, including high blood pressure, coronary 
heart disease and  stroke3. There are three types of sleep apnea, including obstructive sleep apnea (OSA), central 
sleep apnea (CSA), and mixed apnea (MSA)4. Among these, OSA accounts for the largest proportion. It manifests 
as repeated upper respiratory tract attacks, where the respiratory rhythm is still maintained. In CSA, respiration 
is either diminished or is completely absent. MSA is a mixture of these two types, defined as a central apnea in 
a relatively short time interval followed by obstructive  apnea4. When conducting a diagnosis, the type of sleep 
apnea that each patient has is determined by the specific type of sleep apnea event. Patients with OSA mostly 
experience events obstructive events, while patients with CSA mostly experience central events. Mixed events are 
usually accompanied by both central and obstructive events. In the event of mixed events, if obstructive event is 
dominant, it is diagnosed as OSA. Otherwise, it is diagnosed as  CSA5. Sleep apnea hypopnea index (AHI) refers 
to the number of apneas plus hypopneas per hour of sleep, and is related to the severity of apneas. According 
to Chicago standards, the severity of apnea is classified into four categories, including normal (AHI<5), mild 
sleep apnea syndrome (5<AHI<15), moderate sleep apnea syndrome (15<AHI<30), and severe sleep apnea 
syndrome (AHI>30)6.

The gold standard for conducting a diagnosis of sleep apnea is through the use of sleep  polysomnography7, 
which is a set of variables that record a variety of electrophysiological and pneumological signals continuously 
and  simultaneously8. The signals that are recorded include electroencephalogram (EEG), electrocardiogram 
(ECG), electromyogram (EMG), electro-oculogram (EOG), oronasal airflow, ribcage movements, abdomen 
movements and oxygen  saturation9. However, this method of diagnosis requires sleep technologists to monitor 
and diagnose sleep apnea events, which is complicated, expensive, and time-consuming10. Therefore, there is a 
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need for an automatic method of diagnosis for sleep apnea events that are both low cost and can be carried out 
in a relatively simple manner.

In recent years, an increasing number of studies have used the characteristics of a single signal to carry out 
an automated diagnosis of sleep apnea  events11. Using respiratory airflow, oxygen saturation  (SpO2), and pho-
toplethysmography (PPG) alone can help identify apnea events, which have achieved many research  results12,13. 
Although these signals have the advantage of being easily acquired, they have certain limitations. First, the 
diagnosis of sleep apnea is based on sleep  staging14. These methods cannot judge a patient’s sleep state and sleep 
stage, while may cause deviations with regards to diagnosis of sleep apnea. EEG signals are commonly used in 
sleep staging, as the use of EEG signals can help ensure the patient’s sleep state, and the classification of sleep 
apnea events is relatively accurate. Secondly, in certain scenarios, such as during any chest and abdomen surger-
ies or limb surgeries, there is no or inconvenient respiratory airflow monitoring,  SpO2 monitoring, and PPG 
monitoring. Even for patients that suffer from irregular breathing or obvious arrhythmia, respiratory airflow 
monitoring,  SpO2 monitoring, and PPG monitoring may lose their utility. However, the use of EEG signals alone 
in the above cases can help identify sleep states, as well as various apnea events, which have important clinical 
significance. In addition, EEG signals reflect electrical activity of the brain and can obviously be used to evaluate 
sleep stages and  problems15–17. At the same time, sleep quality is affected by sleep problems such as sleep apnea 
 events18. In summary, the main purpose of this research is to classify sleep apnea events based on EEG signals.

Many studies emphasize the function of EEG signals in the automatic classification and detection of sleep 
 apnea19,20. Talluk et al. used bispectrum analysis to extract the secondary phase coupling amount of each fre-
quency band as a feature of  EEG21. Almuhammadi et al. used the energy and variance of brain electronic band 
signals as characteristics that would allow identification of OSA patients from normal control groups, and 
achieved an accuracy of 97.14%22. Zhou et al. used trend fluctuation analysis (DFA) to extract the scale index 
of EEG signals as features, and used support vector machine (SVM) to identify apnea patients, which led to an 
average accuracy of 95.1%23. These studies are able to distinguish sleep apnea patients from healthy subjects, but 
the automatic detection of sleep apnea patients’ apnea events is an important task. There has been abundant lit-
erature reporting use of EEG signals to study the automatic classification of sleep apnea events. What these studies 
have in common is that they are only able to distinguish between sleep apnea and non-apnea events, but do not 
involve the specific subclassification of apnea event types (OSA or CSA). Bhattacharjee et al. used the Rice density 
function to model the feature changes of sub-frames, and used these modeling parameters and other statistical 
parameters as the input of the K-nearest neighbor (KNN) classifier, which led to an accuracy rate of 98.02%24. 
Saha et al. proposed feature extraction using multi-band entropy methods, and reported 87.64% as the average 
accuracy of the KNN classifier. They also characterized the energy ratio between frequency bands of multi-band 
EEG signals, which led to an average accuracy of 92.21%25. Ahmed et al. obtained statistical features from the 
time pattern of beta band energy and applied them to the classifier, leading to an average accuracy of 82.28%26. 
Shahnaz et al. adopted the feature extraction method based on the power ratio of incremental frequency band 
of the Delta sub-frame. When using SVM and KNN, the average accuracy was found to be 84.07% and 84.83%, 
 respectively27. Sachin et al. proposed a Hermite decomposition algorithm based on particle swarm optimization 
(PSO), which utilized the Hermite function (HFs) optimized by particle swarm optimization to extract Hermite 
coefficients from EEG signals to identify SA events. The classification accuracy rate was 98.82%28. Additionally, 
the Hermite function (HFs) optimized by the evolution technology (ETS) was utilized to represent the EEG 
signal, and the artificial bee colony (ABC) algorithm was carried out for feature extraction based on Hermite 
coefficients, which led to an accuracy as high as 99.53%29.

Correctly detecting and distinguishing apnea events is the first step in diagnosing the type of apnea. The main 
purpose of this study is to develop a method for automatic classification of OSA events, CSA events and normal 
breathing events, based on feature extraction of EEG sub-band signals. After preprocessing the data, the features 
of the EEG signal were obtained, and the set after feature selection was used as the input for the classifiers. Finally, 
the effectiveness of the method was evaluated.

Materials and methods
EEG data. The data used in this study was obtained from the night polysomnography monitoring database 
of patients in the Tianjin Chest Hospital. The data is composed of overnight polysomnography data recorded by 
the PHILIPS RESPIRONICS ALICE5 sleep monitor, that was made in the United States. The C3-A2 and C4-A1 
EEG signals of 30 patients were selected on random as the research subjects. The 30 patients included 23 men 
and 7 women, between the ages of 37-78 (average 55.17 ± 11.90 years), with a BMI range of 19.83–39.26 kg/m2 
(average 29.20 ± 4.47 kg/m2), and an AHI range of 8.2-68.9(average 29.18 ± 4.46 events/h). All normal breath-
ing events or apnea events were taken during the patient’s sleep and were marked by experienced sleep experts 
according to the AASM 2012 guidelines. Among them, from the overnight sleep data of 30 patients, there were 
1229 epochs of OSA events, 812 epochs of CSA events, and 1418 epochs of normal breathing events. The sam-
pling frequency of the EEG signal was 100 samples/second.

Ethics approval and consent to participate. This study was approved by the Ethics Committee of 
Tianjin Chest Hospital and with the 1964 Helsinki declaration and its later amendments or comparable ethical 
standards.

Informed consent. Informed consent was obtained from all individual participants included in the study.

The proposed method. First, EEG signals were deconstructed into five sub-bands, after which the sample 
entropy and variance of each sub-band are extracted. Next, we applied the nearest neighbor component analysis 
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(NCA) algorithm to feature selection in order to acquire the optimal feature set. Finally, the results were utilized 
as inputs for the classifiers. The steps for the method are shown in Fig. 1, All procedures of data processing were 
written in MATLAB R2019b. Figure 1 was obtained with Microsoft Visio 2010.

Data pre‑processing. For data pre-processing, we used an Infinite Impulse Response Butterworth Band 
pass filter to deconstruct the EEG signals of C3-A2 and C4-A1 into five sub-bands: delta (δ, 0.5–4 Hz), theta 
(θ,4–8 Hz), alpha (α,8–12 Hz), sigma (σ,12–16 Hz) and beta (β, 16–40 Hz), while filtering out the sensed noise 
interference outside the frequency band of interest.

Sub‑band feature extraction. Sample entropy. The EEG signal is a standard non-linear signal, and the 
state of the signal may appear randomly on the time scale. Sample entropy, a non-linear statistical method for 
measurement of the complexity of time series, can effectively handle the randomness of EEG  signal30. The larger 
the value of the sample entropy of the signal x, the more complex the sample sequence. The definition of sample 
entropy is outlined  below31.

If there is a time series of N sample points {x(i)} = x (1), x (2), …, x(N), where the dimension is m (the value 
of m is generally 1 or 2; in this study the value of m is 2):

Then, the distance between the vector X(i) and X(j) can be calculated as:

For a given x(i), we can calculate the number of j so that the distance between x(i) and x(j) is lower than or 
equal to r (r is a real number, which represents the measure of "similarity"). Generally, r=0.1~0.25*std(data); 
herein, we select 0.2 times. For each i, we can calculate:

Bm(r) and Bm+1(r) is defined as follows:

Therefore, the sample entropy is calculated as:

Variance. Variance refers to the measure of dispersion of a random variable or a set of data. It is the average 
of the squared of deviations (the differences between each data point and the mean of the variable). The greater 
the variance, the greater the deviation from the mean of each sample of signal x, and the greater the degree of 
dispersion. The formula is for variance is:

where σ2 refers to the variance, N refers to the total number of samples, xi refers to the sample value of each 
epoch, x refers to the average.

(1)X(i) = [x(i),x(i + 1),...,x(i + m - 1)],i = 1,2,..,N - m + 1

(2)d[X(i),X(j)] = maxk = 0,...m - 1(
∣

∣x(i+ k) - x(j+ k)
∣

∣)

(3)Cm
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Figure 1.  Flow chart of the proposed method, where NB is referred to as normal breathing.
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Feature selection. Feature selection is a technique that eliminates irrelevant or repetitive features from the 
original feature set, and chooses a small feature subset, thus decreasing the data dimension and improving the 
algorithm’s execution  speed32. The objective of the NCA algorithm, a non-parametric feature selection algorithm 
for supervised learning, is to learn feature weighing vectors through the use of optimized regular parameters that 
will allow maximization of the classification  accuracy33. The algorithm can provide the weight of features, which 
will allow us to select important features. The steps of NCA algorithm are listed as follows:

 1. Divide the data into a training set and a test set
 2. Divide the training data into 5 folds (four as the training set and one as the test set) for NCA feature selec-

tion
 3. Use fivefold cross-validation to tune the regularization parameter λ.
 4. For each λ, use the corresponding training set to train the NCA model.
 5. Use the trained NCA model to measure the loss of classification of the corresponding test set and obtain 

the loss value.
 6. Repeat steps 2-4.
 7. Calculate the average loss of each λ worth 10% cross-validation.
 8. Identify the best λ that corresponds to the minimal average loss.
 9. Use the test data to determine the weight of each feature using the best λ.
 10. Select important features based on feature selection criteria using the relative threshold (T):

In which τ is a fixed value of 0.02 and ω is the characteristic  weight34.
In this algorithm, the best λ is associated with the best classification loss. The average loss of cross-validation is 

dependent on the choice of λ. When λ gets too large, all the feature weights tend to be 0, which causes redundant 
or irrelevant feature subsets. Hence, the value of λ should be adjusted to minimize the average  loss34. Herein, we 
selected a λ value of 16, with equally spaced points from 0 to 15/N.

Classifiers. Support vector machine (SVM) and K-nearest neighbor (KNN) are the more common clas-
sifiers that are utilized in apnea classification problems, largely due to the fact that the supervised model has 
learning ability to distinguish binary categories. The random forest (RF) model is an ensemble algorithm, which 
combines multiple weak classifiers. Then, the final result is voted or averaged, and the result of the overall model 
has higher accuracy and generalization  performance35. Therefore, we used RF in this study, as well as SVM and 
KNN, as classifiers to validate the features obtained above. Due to the imbalance of the data used, the traditional 
learning algorithm has greater limitations. To solve this problem, we adopted the class weighting method to 
improve the classification performance by adjusting the weights of different classes to favor minority classes.

K‑nearest neighbor. The KNN classification algorithm, an extension of the nearest neighbor method, is a 
supervised learning method that belongs to a nonlinear classifier within the classification  process36,37. KNN clas-
sifies by measuring the distance between various feature values. Specifically, if the data and labels of the training 
set are known, then the characteristics of the test data are compared to the corresponding features within the 
training data, which can help determine the most similar top k data within the training set. Hence, the test data 
will belong to the most frequent category among the top k  data38. The similarity between test data and training 
data is generally determined by the Euclidean or cosine distance. Herein, we used Euclidean distance.

Support vector machine. Support vector machine (SVM) is a supervised machine learning algorithm 
that develops an optimal hyperplane that allows classification of input  data39. This algorithm was originally 
designed for solving binary classification problems. The basic principle of SVM is that if the data are points that 
are distributed on a two-dimensional plane, then they are gathered in different areas as per their classification. 
The goal of this algorithm is to determine the hyperplane between these categories through  training40. For multi-
class classification problems, a multi-class classifier needs to be developed. Currently, there are two methods 
for constructing multi-class classifiers, including the direct and the indirect method. In this study, we used the 
indirect method, which allows division of the multi-class classification problem into multiple two-classification 
problems. The main idea is to design an SVM for classification into two types of samples. In this study, we carried 
out SVM classification using LibSVM.

Random forest. Random forest is an integrated learning algorithm that uses multiple decision trees for 
prediction. For classification problems, it is the voting of all decision tree prediction  results41. During training, 
the training set of each decision tree is constructed using randomly sampling. When training every node of each 
decision tree, the features that are utilized are also a part of the features that are extracted from the entire feature 
 vector42. Through integration of multiple decision trees and training each decision tree with feature components 
each time, the variance of the model can be efficiently decreased. Theoretically, as the number of decision trees 
increase, the classification capability of the model also increases. However, at the same time, if the correlation 
between any two trees increases, then the error rates also increase. Therefore, the optimal number of decision 
trees also needs to be selected. Herein, the classification of the tree with the best classification effect is 85.

(8)T = τ ∗max(w)
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Performance measures. In order to further assess the performance of each of the three feature sets in 
the RF classifier, we implemented recall, precision,  F1-score and kappa coefficient as the evaluation indicators 
for the classification performance. A confusion matrix contains all the data about the actual label, as well as the 
predicted label. The Kappa coefficient is utilized for consistency testing, but can also be utilized for measurement 
of classification accuracy. Its calculation is based on a confusion matrix. The evaluation indicators are defined:

Here, TP refers to true positive (when positive class is classified as positive class), FP means false positive 
(when negative class is classified as positive class), and FN refers to false negative (when negative class is clas-
sified as positive class).

In this calculation,  po refers to the sum of the number of samples that are correctly classified within each 
category, divided by the total number of samples, which provides overall classification accuracy. For  pe, if we 
assume that the number of real samples within each category are  a1,  a2, ...,  aC, the predicted number of samples 
in each category are  b1,  b2, ...,  bC, and the total number of samples is N, then:

Usually, the calculation of kappa coefficient is between 0 and 1, and the larger the coefficient, the higher the 
consistency and accuracy.

Results
Herein, we utilized EEG data from 30 different individuals to detect and classify sleep apnea, as well as analyze 
the performance of the classifier. The data set contained 3459 epochs, which includes 1229 epochs of OSA events, 
812 epochs of CSA events, and 1418 epochs of normal breathing events.

After feature extraction, we obtained 20 feature points for each epoch (Table 1). These 20 feature points con-
stitute the original feature set, and the features of all these epochs form 3459*20-dimensional data.

During the feature selection stage, we first determined the minimum average loss when selecting different 
training set and test set ratios. Hence, we randomly selected 45%, 40%, 35%, 30%, 25%, and 20% of the original 
feature set as the test set (Table 2). When 25% of the test set and 75% of the training set were selected, the average 
loss was found the most minimal.

The correlation between the average loss and the λ value is shown in Fig. 2. The minimum average loss that 
corresponded to the 16 lambda values is 0.1445, while the corresponding optimal λ value was 0.0011.

Figure 3 showcases the feature weight of each feature index, and the meaning of the feature that corresponds 
to each serial number is shown in Table 1. The obtained feature weight that is relative to the threshold T is 0.0567, 
and 15 important features are screened out according to this value (Table 3).

Within the classification stage, we selected the training set as well as the test set by 10-fold cross-validation, 
allowing us to select the training set and the test set, and input the features into KNN, SVM, and RF for classifi-
cation. Then, we took the average accuracy of 10-fold cross-validation as the final result. The average confusion 
matrix of the 10-fold cross-validation of each classifier is given in Figs. 4, 5 and 6.

Table 4 indicates the specific classification results of the three classifiers for obstructive apnea, central apnea 
and normal breathing. It can be observed from the table that out of three classifiers, RF has the highest classifica-
tion accuracy, followed by KNN, and SVM has the lowest.

Table 5 demonstrates the classification performance of the three classifiers. RF was shown to have the highest 
classification accuracy and the best classification effect. It can be seen that the random forest classifier has bet-
ter recall, accuracy, F1-score and kappa coefficient than the other two classifiers, and has the best classification 
performance.

Discussion
In this study, we propose a method that will allow classification of sleep apnea by applying classifiers to EEG 
signals. In order to obtain a high performing classifier, it is necessary to eliminate the non-contributing elements 
within the original feature data set. Therefore, we utilized NCA to carry out feature selection in the original data 
set to acquire a data set that contained 13 features. Finally, three classifiers are utilized to detect and classify 
sleep apnea. The results of this feature selection indicate the presence of six features in the important feature 
subset from the left hemisphere EEG signal (C3-A2), and seven features from the right hemisphere (C4-A1). 
This indicates that patients with sleep apnea have different changes in the EEG of the central scalp area of the 
left (C3-A2) and right (C4-A1) during sleep, specifically, the right cerebral hemisphere is more active than the 

(9)recall =
TP

TP + FN

(10)precision =
TN

TP + FP

(11)F1 − score =
2× precision× recall

precision + recall

(12)k =
po − pe

1− pe

(13)pe =
a1 × b1 + a2 × b2 + ...+ aC × bC

N × N
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left hemisphere during sleep. Additionally, it can be concluded from Fig. 3 that the feature weight that is taken 
from the sub-band theta is the larger of all the five sub-bands, and the feature weight of the low-frequency sub-
band is bigger than that of the high-frequency sub-band. This illustrates the importance of low-frequency EEG 
components that allow detection of sleep apnea, which is consistent with  literature43.

Table 1.  The specific meaning of the 20 characteristics.

No

Feature vector

feature Channel sub-band

1

Variance

C3

Delta

2 Theta

3 Alpha

4 Beta

5 Gamma

6

C4

Delta

7 Theta

8 Alpha

9 Beta

10 Gamma

11

Sample Entropy

C3

Delta

12 Theta

13 Alpha

14 Beta

15 Gamma

16

C4

Delta

17 Theta

18 Alpha

19 Beta

20 Gamma

Table 2.  The corresponding best loss and best lambda when selecting different test sets.

Test percentage 45% 40% 35% 30% 25% 20%

Best loss 0.1487 0.1594 0.1530 0.1557 0.1455 0.1510

Best lambda 0.0021 0.0009 0.0013 0.0012 0.0011 0.0022

Figure 2.  Relationship between average loss and λ value.
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There are also the studies that devoted to automatic classification of OSA events, CSA events and normal 
breathing events based on EEG signals. Monika et al. used discrete wavelet transform and Hilbert transform 
in order to extract statistical characteristics, including instantaneous amplitude, instantaneous frequency, and 
weighted instantaneous frequency from EEG epochs. In order to select features, they utilized variance analysis 
and multiple regression analysis. Then, using a feed-forward neural network, they reported that the average 
accuracy was 77.27%, while the accuracy for normal breathing, OSA, and CSA were 71.21%, 86.36% and 74.24%, 
 respectively14. They also used the same feature extraction and selection method to analyze the EEG signals of 
C3-A2 and C4-A1 channels, and concluded that combining the two EEG channels together is more effective at 
automatic detection and discrimination of sleep  apnea43. In comparison to these studies, the proposed automatic 
classification method for sleep apnea has high accuracy.

Conclusion
In this study, a classification algorithm that was based on EEG sub-band signal feature extraction is proposed 
to help classify sleep apnea events. The EEG signals used in this study came from a database of night polysom-
nography among patients treated at the Tianjin Chest Hospital. The results of this study show that the average 
accuracy of random forest classifier classification can reach 88% after feature selection using the NCA feature 
selection algorithm, while the accuracy, the recall rate, and the F1-score was 0.86, 0.89, and 0.87, respectively. 
Hence, this method can automatically detect the occurrence of sleep apnea events, determine the type of apnea 

Figure 3.  Feature weights after NCA feature selection.

Table 3.  The specific meaning of the 15 important features.

No

Feature vector

feature Channel sub-band

2

Variance

C3
Theta

4 Beta

6

C4

Delta

7 Theta

8 Alpha

10 Gamma

11

Sample Entropy

C3

Delta

12 Theta

13 Alpha

14 Beta

15 Gamma

16

C4

Delta

17 Theta

18 Beta

20 Gamma
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event, and, to some extent, replace sleep experts to complete the diagnosis of respiratory events, thereby sav-
ing medical resources and time. The classification of apnea events based on EEG signals is only a preliminary 
study for now. In the future research, we will further improve accuracy on this basis, and work on classifying 
sleep apnea types and severity to develop a set of methods determining sleep apnea and severity based on EEG.

Figure 4.  Confusion matrix of KNN classifier classification accuracy.

Figure 5.  Confusion matrix of SVM classifier classification accuracy.
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Data availability
The data used and analyzed during the current study are available from the corresponding author on reasonable 
request.
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Figure 6.  Confusion matrix of RF classifier classification accuracy.

Table 4.  Classification results of three classifiers.

Classifiers Average OSA CSA NB

KNN 85.51% 77.21% 76.92% 92.24%

SVM 68.70% 59.21% 55.22% 88.71%

RF 88.99% 80.43% 84.85% 95.24%

Table 5.  Classification performance of three classifiers, including accuracy, recall, F1-score and Kappa 
coefficient.

Classifiers Recall Precision F1-score kappa

KNN 0.81 0.82 0.82 0.83

SVM 0.67 0.68 0.67 0.54

RF 0.86 0.89 0.87 0.85



10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5824  | https://doi.org/10.1038/s41598-021-85138-0

www.nature.com/scientificreports/

 6. Flemons, W. W. et al. Sleep related breathing disorders in adults: Recommendations for syndrome definition and measurement 
techniques in clinical research. Sleep 22, 667–689 (1999).

 7. Penzel, T. et al. Systematic comparison of different algorithms for apnea detection based on electrocardiogram recordings. Med. 
Biol. Eng. Comput. 40, 402–407 (2002).

 8. Tagluk, M. E. & Sezgin, N. Classification of sleep apnea through sub-band energy of abdominal effort signal using Wavelets + 
Neural Networks. J. Med. Syst. 34, 1111–1119 (2010).

 9. Schlueter, T. & Conrad, S. An approach for automatic sleep stage scoring and apnea-hypopnea detection. Front. Comput. Sci. China 
6, 230–241 (2012).

 10. Schultz, S. K. Principles of neural science. Am. J. Psychiat. 158, 662 (2001).
 11. See, A. R. & Liang, C. K. A study on sleep EEG Using sample entropy and power spectrum analysis. In Defense Science Research 

Conference & Expo (DSR), Vol. 3, 1–4 (2011).
 12. Uçar, M. K., Bozkurt, M. R., Bilgin, C. & Polat, K. Automatic detection of respiratory arrests in OSA patients using PPG and 

machine learning techniques. Neural. Comput. Appl. 28, 2931–2945 (2016).
 13. Uddin, M. B., Chow, C. M. & Su, S. W. Classification methods to detect sleep apnea in adults based on respiratory and oximetry 

signals: A systematic review. Physiol. Meas. 39, 03TR01 (2018).
 14. Prucnal, M. A. & Polak, A. G. Analysis of features extracted from EEG epochs by discrete wavelet decomposition and Hilbert 

transform for sleep apnea detection. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society 
287–290 (2018).

 15. Acir, N. & Guzelis, C. Automatic recognition of sleep spindles in EEG by using artificial neural networks. Expert Syst. Appl. 27, 
451–458 (2004).

 16. Duman, F., Erdamar, A., Eroğul, O., Telatar, Z. & Yetkin, S. Efficient sleep spindle detection algorithm with decision tree. Expert 
Syst. Appl. 36(6), 9980–9985 (2009).

 17. Aydin, S. Computer based synchronization analysis on sleep EEG in Insomnia. J. Med. Syst. 35, 517–520 (2011).
 18. Saha, S., Bhattacharjee, A., Ansary, M. A. A. & Fattah, S. A. An Approach for Automatic Sleep Apnea Detection Based on Entropy 

of Multi-Band EEG Signal. In 2016 IEEE Region 10 Conference (TENCON), 420–423 (2016).
 19. Black, J. E., Guilleminault, C., Colrain, I. M. & Carrillo, O. Upper airway resistance syndrome-central electroencephalograp-hic 

power and changes in breathing effort. Am. J. Respir. Crit. Care Med. 162(2), 406–411 (2000).
 20. Sugi, T., Kawana, F. & Nakamura, M. Automatic EEG arousal detection for sleep apnea syndrome. Biomed. Signal Process. Control. 

4(4), 329–337 (2009).
 21. Tagluk, M. E. & Sezgin, N. A new approach for estimation of obstructive sleep apnea syndrome. Expert Syst. Appl. 38(5), 5346–5351 

(2011).
 22. Almuhammadi W.S., Aboalayon K.A., Faezipour M.: Efficient obstructive sleep apnea classification based on EEG signals. In IEEE 

Long Island Systems, Applications and Technology Conf (LISAT), May, 1–6 (2015).
 23. Zhou, J., Wu, X. M. & Zeng, W. J. Automatic detection of sleep apnea based on EEG detrended fluctuation analysis and support 

vector machine. J. Clin. Monitor. Comput. 29, 767–772 (2015).
 24. Bhattacharjee, A. et al. Sleep Apnea detection based on rician modeling of feature variation in multiband EEG signal. IEEE. J. 

Biomed. Health. Inform. 23, 1066–1074 (2019).
 25. Saha, S., Bhattacharjee, A. & Fattah, S. A. Automatic detection of sleep apnea events based on inter-band energy ratio obtained 

from multi-band EEG signal. Healthc. Technol. Lett. 6, 82–86 (2019).
 26. Ahmed, F., Paromita, P., Bhattacharjee, A., Saha, S. & Fattah, S. A. Detection of sleep apnea using sub-frame based temporal 

variation of energy in beta band in EEG. In 2016 IEEE International WIE Conference on Electrical and Computer Engineering 
(WIECON-ECE). 2016, 258–261 (2016).

 27. Shahnaz, C., Minhaz, A. T. & Ahamed, S. T. Sub-frame based Apnea detection exploiting delta band power ratio extracted from 
EEG signals. In TENCON 2016–2016 IEEE Region 10 Conference. 2016, 190–193 (2016).

 28. Taran, S., Bajaj, V. & Sharma, D. Robust Hermite decomposition algorithm for classification of sleep apnea EEG signals. Electron. 
Lett. 53, 1182–1184 (2017).

 29. Taran, S. & Bajaj, V. Sleep apnea detection using artificial bee colony optimize hermite bfunctions for EEG signals. IEEE Trans. 
Instrum. Meas. 69, 608–616 (2020).

 30. Richman, J. S. & Moorman, J. R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. 
Heart Circul. Physiol. 278, H2039–H2049 (2000).

 31. Goldberger, J., Roweis, S. T., Hinton, G. E. & Salakhutdinov, R. Neighborhood components analysis. In Advances in Neural Infor-
mation Processing Systems (ANIPS), Vol. 17 (2004).

 32. Liu, H. & Motoda, H. Feature Selection for Knowledge Discovery and Data Mining 73–95 (Kluwer Academic Publishers, Boston, 
1998).

 33. Raghu, S., & Sriraam, N. Classification of focal and non-focal EEG signals using neighborhood component analysis and machine 
learning algorithms. Expert Syst. Appl. 113, 18–32 (2018).

 34. Yang, W., Wang, K. & Zuo, W. J. J. O. C. Neighborhood component feature selection for high-dimensional data. J. Comput. 7(1), 
161–168 (2012).

 35. Avci, C. & Akbas, A. Sleep apnea classification based on respiration signals by using ensemble methods. Biomed. Mater. Eng. 
26(Suppl 1), S1703-1710 (2015).

 36. Vimala, V., Ramar, K. & Ettappan, M. An intelligent sleep apnea classification system based on EEG signals. J. Med. Syst. 43, 36 
(2019).

 37. Franco-Lopez, H., Ek, A. R. & Bauer, M. E. Estimation and mapping of forest stand density, volume, and cover type using the 
k-nearest neighbor method. Remote Sens. Environ. 77, 251–274 (2001).

 38. Guo, G.D., Wang, H., Bell,  D., Bi, Y.X.  & Greer, K.  KNN model-based approach in classification. In On the Move to Meaningful 
Internet Systems, Vol. 2888 (eds. Meersman, R., Tari, Z. & Schmidt, D.C.) 986–996 (Springer, Berlin, 2003)

 39. Abedi, Z., Naghavi, N. & Rezaeitalab, F. Detection and classification of sleep apnea using genetic algorithms and SVM-based clas-
sification of thoracic respiratory effort and oximetric signal features. Comput. Intell. 33, 1005–1018 (2017).

 40. Fu, K., Qu, J. F., Chai, Y. & Dong, Y. Classification of seizure based on the time-frequency image of EEG signals using HHT and 
SVM. Biomed. Signal Process. Control 13, 15–22 (2014).

 41. Ren, Q., Cheng, H. & Han, H., Research on Machine Learning Framework Based on Random Forest Algorithm in Advances in 
Materials, Machinery, Electronics I (ed. L. Liu, C. Yang, J. Ke) Vol. 1820 (Amer Inst Physics, 2017).

 42. Biau, G. J. J. O. M. L. R. Analysis of a sodel. J. Mach. Learn. Res. 13, 1063–1095 (2010).
 43. Prucnal, M. A. & Polak, A. G. Comparison of information on sleep apnoea contained in two symmetric EEG recordings. Metrol. 

Meas. Syst. 26, 229–239 (2019).

Acknowledgements
This work was supported in part by the National Key Research and Development Program of China (No. 
2019YF0119400), the Tianjin Science and technology plan project (No. 18ZXRHSY00200, 20ZXGBSY00070), 
National Natural Science Foundation of China (No. 61701342, 81901789), the Science & Technology Development 



11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5824  | https://doi.org/10.1038/s41598-021-85138-0

www.nature.com/scientificreports/

Fund of Tianjin Education Commission for Higher Education (No. 2018KJ212), the Tianjin Natural Science 
Foundation (No. 19JCQNJC13100), Science and Technology Funding of Tianjin Chest Hospital(No.2018XKZ27), 
Key Research Projects of Tianjin Health Committee (No.15KG129).

Author contributions
All authors contributed to the study conception and design. X.Y.Z. conceived, developed and validated the 
method; recorded data. X.H.W. analyzed data and wrote the manuscript. T.S.Y. and S.Y.J. researched literature. 
H.Q.W. and J.H.W reviewed the manuscript. Y.W. and Q.W. supervised the research, provided comments. All 
authors reviewed and approved the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Y.W. or Q.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2021

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Classification of sleep apnea based on EEG sub-band signal characteristics
	Materials and methods
	EEG data. 
	Ethics approval and consent to participate. 
	Informed consent. 
	The proposed method. 
	Data pre-processing. 
	Sub-band feature extraction. 
	Sample entropy. 

	Variance. 
	Feature selection. 
	Classifiers. 
	K-nearest neighbor. 
	Support vector machine. 
	Random forest. 
	Performance measures. 

	Results
	Discussion
	Conclusion
	References
	Acknowledgements


