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Multilayer representation 
of collaboration networks 
with higher‑order interactions
E. Vasilyeva1,2, A. Kozlov1, K. Alfaro‑Bittner3,4*, D. Musatov1,5,6, A. M. Raigorodskii1,6,7,8, 
M. Perc9,10,11 & S. Boccaletti1,3,12,13

Collaboration patterns offer important insights into how scientific breakthroughs and innovations 
emerge in small and large research groups. However, links in traditional networks account only for 
pairwise interactions, thus making the framework best suited for the description of two-person 
collaborations, but not for collaborations in larger groups. We therefore study higher-order scientific 
collaboration networks where a single link can connect more than two individuals, which is a natural 
description of collaborations entailing three or more people. We also consider different layers of these 
networks depending on the total number of collaborators, from one upwards. By doing so, we obtain 
novel microscopic insights into the representativeness of researchers within different teams and their 
links with others. In particular, we can follow the maturation process of the main topological features 
of collaboration networks, as we consider the sequence of graphs obtained by progressively merging 
collaborations from smaller to bigger sizes starting from the single-author ones. We also perform the 
same analysis by using publications instead of researchers as network nodes, obtaining qualitatively 
the same insights and thus confirming their robustness. We use data from the arXiv to obtain results 
specific to the fields of physics, mathematics, and computer science, as well as to the entire coverage 
of research fields in the database.

Scientific collaboration networks are an important subset of complex social networks1–4. They document patterns 
of collaboration that we have formed to do research, and to arrive at new scientific discoveries and breakthroughs 
that drive technological progress and innovation in our societies. The outstanding importance of science and 
progress for the wellbeing of modern human societies, together with the consistent definition of scientific col-
laboration that is accurately documented in published research5, has given rise to a rich plethora of research 
dedicated to the determination of structure and function of scientific collaboration networks6–12. Along the same 
lines, citation networks13–15, bipartite author-publication networks16–19, hypergraphs of scientific output20, as well 
as simplicial descriptions of publications and corresponding topological methods21,22, have also been considered 
and studied in much detail.

However, despite the fact that traditional complex networks have come a long way in improving our under-
standing of economic, infrastructural, technological, as well as social and computer networks23–26, the past decade 
has witnessed the rise of the narrative that the majority of these networks do not exist in isolation. Rather, many 
are coupled together and therefore should be best described as interdependent or multilayer networks27,28. Indeed, 
it has been shown that even tiny changes or a failure in one network layer can lead to a catastrophic cascade of 
much more significant failures across many other network layers29. It was a seminal discovery, and while some 
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argued that processes in different network layers could simply be added up and described as a conglomerate 
process on a single-layer network, it soon became clear that, as is in general true for complex systems, the whole 
is not simply the sum of its parts30–32. Multilayer networks have since found applications for better understanding 
epidemic spreading33,34, vaccination35, evolution of cooperation36, and biological organization at different scales37.

We here map published scientific papers in a multilayer network: scientists are nodes in all layers, and a link 
between two nodes in the jth ( j > 1 ) layer stands for the participation of the corresponding two scientists in a 
publication jointly written by j co-Authors. This way, single-author publications form the first layer, two-author 
publications form the second layer, three-author publications form the third layer, and so on. In doing so, the 
layers themselves already hold important information about the collaboration. It is namely easy to argue that 
two researchers that are the only two authors on a publication have a much stronger link than two researchers 
that have co-written a paper that has several hundred authors, as is often the case in high-energy physics publica-
tions. Multilayer collaboration networks defined in this way thus naturally take into account the problems that 
are commonly associated with unweighted single-layer collaboration networks12,38–41. Moreover, if we aggregate 
all the layers, we simply obtain the complete scientific collaboration network, but with the added value that, as 
we coalesce the layers obtained with ever larger collaboration sizes, we obtain novel microscopic insights into 
the representativeness of researchers within different teams and their links with others, and we can follow the 
maturation of topological features and the relevance each particular layer has in this process.

Another important distinction of our research to traditional scientific collaboration networks is that we 
consider higher-order interactions to describe the networks. This is irrelevant for the first and second layer, but 
becomes theoretically much more convenient for the subsequent layers, where three or more coauthors are natu-
rally connected by a single higher-order link—a hyperlink – rather than a series of 2nd-order links connecting 
pairs of researchers consecutively with one another. Although the value of higher-order interactions has been 
recognized already in the early 70s by Atkin42,43 and Berge44, the interest peaked only recently with mounting 
inability to converge on what constitutes a group or how to define it consistently in the realm of social network 
analysis45–49, and the interested reader can find a comprehensive account on the role of higher-order interactions 
in networked systems in Ref.49.

Here we use the formalisms of multilayer and higher-order networks, often also called hypergraphs, to study 
the maturation of different topological characteristics of collaboration networks in physics, mathematics, and 
computer science by using the arXiv database50. And we also consider the entire coverage of research fields in 
the same database. The question that we seek to answer is, how many layers does one need to obtain a proper 
and robust description of the collaboration network? Or equivalently, is it possible to describe the collaboration 
network by taking into account publications with only a couple of authors, for example up to layer four or five?

Results
We refer to the information publicly available in the arXiv (https​://arxiv​.org/, https​://githu​b.com/mattb​ierba​um/
arxiv​-publi​c-datas​ets/) database50. Data parsing was also made according to50. From the database, metadata on 
1,679,779 articles were downloaded. Then, information about 1,068,043 unique authors was parsed.

Let N be the number of authors in the database. The main idea is to represent the data-set as a primal 
H = (V ,EH ) co-authorship hypergraph, in which V = {v1, . . . , vN } is the set of nodes (authors) and EH is a set of 
hyperedges accounting for articles. In this representation, an article co-authored by d authors corresponds then 
to an hyperedge grouping the d authors of the paper, as it is schematically depicted in Fig. 1a. In Fig. 1a nodes 
are therefore labeled with the name of the authors, whereas coloured hyperlinks are labeled by the correspond-
ing paper identifier in the arXiv (with different colours, moreover, standing for different numbers of coauthors). 
Notice that this representation allows to distinguish the case of two (or a limited group of) researchers that are 
the only authors of a publication and therefore they supposedly have a strong ties, from that of two (or a limited 
group of) researchers that just participate in huge collaboration projects giving rise to papers that have several 
hundred authors.

Moreover, the primal hypergraph H = (V ,EH ) can be associated to a dual hypergraph H∗ = (V∗,E∗H ) in 
which V∗ is the set of articles and E∗H groups papers written by the same author (in collaboration with others, or 
individually), as schematically depicted in Fig. 1b. One can also introduce a kind of “pairwise approximation” of 
H, given by a undirected graph G = (V ,EG) where an edge between authors reflects the existence of a joint paper 
(independently on the number of coauthors). Therefore, each hyperedge of H corresponds to a clique in G. With 
the same spirit, the dual graph G∗ = (V∗,E∗G) is the pairwise approximation of H∗ where nodes correspond to 
articles and existence of an edge indicates that two articles have at least one joint author.

The hypergraph H (and its dual H∗ ) as well as the graphs G and G∗ can be viewed as multilayer networks 
with layering index defined by the number of article’s coauthors, and represented in Fig. 1 by different colours 
assigned to different papers (yellow denoting Manuscripts authored by a single scholar, green papers co-authored 
by two scholars, etc...). Then, one can operate a progressive fusion of such layers, and obtain the hypergraph 
(graph, dual hypergraph and dual graph respectively) H(n) (G(n), H∗(n) , G∗(n) ), where only papers with no 
more than n coauthors are considered. Let n̄ be the number of maximal layer in the statistics, and let us simplify 
the notations further by writing H(n̄) ( G(n̄) , H∗(n̄),G∗(n̄) ) as H (G,H∗,G∗ ). H, G, H∗ and G∗ are the “asymptotic” 
graphs and they are actually the “classical” representations given to collaborations’ data, where all level of co-
authorship (as much those implying just a few scholars as those implying instead thousands of scholars) are 
mixed together, and whose main properties have been largely characterized by the definition and calculation of 
a wealth of topological measures.

Our idea is, instead, that such topological measures are actually maturating as one progressively fuse the 
distinct layers. In other words, we suggest that there exists a given ñ at which each specific network’s topologi-
cal property maturates, i.e. it assumes the asymptotic value which is calculated on H, G, H∗ and G∗ . Obviously, 

https://arxiv.org/
https://github.com/mattbierbaum/arxiv-public-datasets/
https://github.com/mattbierbaum/arxiv-public-datasets/
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such maturation level may be different for different fields of cooperation (as processes of scientific collaboration 
formation vary from field to field) and for different topological measures as well, and it is of great interest to 
study how distinct topological properties emerge at distinct levels of fusions (i.e. taking into account only proper 
subsets of the original data, where the number of coauthors of a given Manuscript is limited).

Finally, it has to be noticed that all articles in the database are related to eight main areas (physics, mathemat-
ics, quantitative biology, computer science, quantitative finance, statistics, electrical engineering and systems 
science, economics) and in the present study we give our new representation of co-authorship networks for the 
following fields (in parentheses we report the notation for each one of the obtained asymptotic graphs):

•	 physics ( Hphys , Gphys and the dual ones),
•	 math ( Hmath , Gmath and the dual ones),
•	 computer science ( Hcs , Gcs and the dual ones),
•	 all eight areas together (H, G and the dual ones).

A first characterization of the hypergraphs.  A first rough characterization of the primal and dual 
graphs is shown in Fig. 2, where we report the complementary cumulative distribution function (CCDF) for 
H(Hphys, Hmath, Hcs ) in panel (a) and for G(Gphys, Gmath, Gcs ) in panel (b).

The CCDF is defined with the following expression:

where F(x) is the cumulative distribution function. If the tail of the distribution is fitting a the power-law, then

where xm is a proper parameter, and γ can be estimated as the slope of the linear fit in a log–log scale. In Fig. 2a,b 
we report the CCDF for nodes’ and hyperedges’ degree distributions of H, Hphys, Hmath, Hcs and of their dual 
graphs. From the figures it is apparent that the different graphs deviate from a power law in their tails. The 
distributions in physics (red curves) can be seen as consisting of two different parts which actually seems to 
correspond to different power law exponents. Most likely, such a property is due to experimental works in huge 
collaborations. Hyperedges’ degree distributions in math and CS deviate from the power law only in tails. The 

(1)CCDF(x) = 1− F(x),

CCDF(x) ∼ x−(γ+1), x > xm, γ > 0

Figure 1.   Schematic illustration of the co-authorship hypergraph (a) and of the dual hypergraph (b). In panel 
(a) nodes are authors, and hyperlinks are co-authored Manuscript. The hyperlinks are labeled with letters and 
colours. The legend at the bottom of the Figure reports for each letter the corresponding Manuscript’s identifier 
in the ArXiv. In the legend, moreover, Manuscripts are grouped in coloured boxes, and different colours stand 
for a different number of coauthors: yellow papers are authored by a single Scholar, whereas green, red and blue 
Manuscripts are co-authored by two, three and four Scholars, respectively. Panel (b) contains a sketch of the dual 
representation, where nodes are now papers [labeled with the same colours and letters than in panel (a)], and 
links are labeled with the name of the authors who participated in the co-authorship of the Manuscripts.
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distributions corresponding to the entire database display the same features as those in physics, as papers related 
to this science prevail in the arXiv collection.

The results shown in Fig. 2 point to the fact that there are papers with an extremely high number of coauthors. 
However, as already discussed in the Introduction, real patterns of authors’ interactions are unlikely to be deter-
mined by such huge collaborations. Therefore, it seems reasonable to analyse how papers with large numbers 
of authors affect the network properties, or equivalently to analyse the maturation properties of the multilayer 
networks defined in the previous sub-section.

The maturation process of topological features in the multilayer graph.  The main objective of 
our study is to compare stabilization and maturation patterns of co-authorship networks describing scientific 
cooperation in different fields. To this purpose, we analyze how different topological properties change when the 
layer index n changes.

Let x(n) be some property (i.e., some topological measure) of a graph G(n). To simplify the notations, we 
omit the argument for the case of the maximal layer n̄ , and we write x = x(n̄) . We say that the specific property 
x(n) is maturated at the layer ñ(x) if:

where ε is a small constant accounting for an acceptable accuracy (i.e., a tolerable difference). In all our calcula-
tions, we use ε = 0.05.

In order to illustrate the concept of maturation, Fig. 3 anticipates some of the major points and conclusions 
of our Manuscript, and reports three panels, each one displaying the maturation behavior (or the absence of 
maturation) of important topological features, as the fusion index n of layers increases.

Precisely, Fig. 3a compares the behavior of the average degree 〈k〉 versus n/n̄ for the areas of mathematics (light 
red curve) and computer science (light blue curve). Normalization in the horizontal axis is needed because the 
two areas have actually distinct maximum numbers n̄ of layers. It is clearly seen that 〈k〉 maturates rather early 
in the area of mathematics: �k�(n/n̄) is a monotonically increasing curve which attains its asymptotic value (the 
value at n = n̄ ) already at layer ñ = 8 . The horizontal light red bar in panel (a), indeed, stands for the (plus or 
minus) ε = 0.05 error around the asymptotic value �k�(n̄) , and it is evident that the curve �k�(n/n̄) stays inside 
the error area for all values of ñ ≤ n ≤ n̄ . At variance, the average degree never maturates in the area of computer 
science, as witnessed by the light blue line in Fig. 3a: once again the horizontal light blue bar indicates the (plus 
or minus) ε = 0.05 error around the asymptotic value �k�(n̄) , but now the curve �k�(n/n̄) never enters the error 
area before attaining its asymptotic value at n = n̄.

Different topological features may maturate at different values of ñ , as illustrated in panel (b) of Fig. 3. Namely, 
the upper (lower) part of panel (b) reports the evolution of the diameter d (of the shortest path L) in the areas 
of mathematics (red curve) and computer science (light blue curve). d maturates at layer 3 in the area of math-
ematics and at layer 10 in the area of computer science; L instead maturates at layer 4 in mathematics and again 
at layer 8 in computer science. It is seen, moreover, that different fusion stages at which maturation in different 

(2)ñ(x) = argmin
n

{

n : ∀k ≥ n −→
|x(k)− x|

x
≤ ε

}

,

Figure 2.   (a) Complementary cumulative distribution functions (CCDF, see text for definition) for the 
primal graphs obtained from the data-set. The distributions are functions of the nodes’ degree distributions for 
H(Hphys, Hmath, Hcs ) and of hyperedges’ degree distributions for the respective dual hypergraphs. (b) CCDF 
for the dual graphs, which are functions of the hyperedges’ degree distribution in H(Hphys, Hmath, Hcs ) and of 
the nodes degree distribution in the respective dual hypergraphs. Curves are coloured according to the different 
speciality from which papers are extracted from the data-set (see the colour code at the top right of each panel).
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areas takes place is not the simple consequence of the normalization of the fusion index n to the relative maxi-
mum number of layers in the area.

Finally, panel (c) of Fig. 3 anticipates another important conclusion of our study: in some cases dual graphs, 
where hyperlinks connect publications instead of coauthors, may represent a better rendering of collaboration 
networks, in that some topological features maturate in dual graphs, whilst they never maturate in the direct 
graphs. This is illustrated with reference to the average degree 〈k〉 in the area of physics: it is clearly seen that the 
curve 〈k〉(n) for the direct graph Gphys (light blue line) does not display any maturation feature, whereas 〈k〉(n) 
(light red line) maturates at layer 574 in G∗

phys.
It is essential to remark that the calculation of some graph’s topological measure for all layers n may have an 

associated very high computational demand. Therefore, the networks G(n) and G∗(n) are here analysed using a 
rather sparse grid, and after that the dependencies are interpolated using splines. The procedure, however, do 
not affect (nor distorts) the conclusions which we are offering below.

General properties.  The natural starting point is the analysis of the networks’ global substructures.
Let CC be a set of network’s connected components, and LCC be the set of vertices in the largest connected 

component. The following notation can be introduced:

•	 m = |EG|,
•	 NCC = |CC|,
•	 sLCC =

|LCC|
N .

Table 1 reports the maximal number of layers ( ̄n ), the number of nodes (N), the number of edges (m), the number 
of connected components ( NCC ), the relative size of the largest connected component ( sLCC ), and the maturation 
layer’s numbers for all these features ( ̃n(·)).

The first significant feature which should be noticed is the differentiation in n̄ for the different disciplines. 
Namely, physics corresponds to the highest value of n̄ (2831 layers). Moreover, the number of nodes N in physics 
maturates quite late if compared with math and CS, therefore a consistent number of Scholars in this field write 
papers only in rather big collaborations. In contrast, in math one has see the smallest number of layers (67), and 
not only N. Furthermore, not only N maturates early (already at level 5) in this field, but even the edges’ number 
maturates at level eight, which implies that focusing only on papers with no more than eight authors one has 
an almost complete description of the graph representing the math discipline. For the other graphs, one sees 
instead that the number of edges significantly changes at all levels of the fusion process, up to the final layers.

Another notable feature which appear from Table 1 is related to the number of connected components. This 
property maturates relatively early for all fields, as well as for the whole graph. Therefore, besides the largest 
connected component, the general backbone of the other part of the graph is formed by many clusters (con-
nected components) each one containing a relatively small number of papers. On the other hand, the largest 
connected component consists of about 80% of nodes for the fields of math and CS and 93% of nodes in physics. 
The relative size of the LCC in the whole graph is 90%, which means that the LCC of the whole graph contains 
all authors from the LCC’s of the different fields’ graphs. This notion follows from the fact that if we suppose 
that the smallest LCC from Table 1 (the one of math) is not included into LCC of the whole graph than size of 

Figure 3.   Illustration of the maturation process of different topological features. Panel (a): the average degree 
〈k〉 vs. the normalized fusion index n/n̄ (see text for definitions), for the areas of mathematics (light red curve) 
and computer science (light blue curve). The horizontal light red and light blue bars stand for the (plus or 
minus) ε = 0.05 errors around the respective asymptotic values �k�(n̄) . Panel (b): the upper (lower) sub-panel 
reports the evolution of the diameter d (of the shortest path L) in the areas of mathematics (light red curve) and 
computer science (light blue curve). d maturates at layer 3 in the area of mathematics and at layer 10 in the area 
of computer science; L instead maturates at layer 4 in mathematics and again at layer 8 in computer science. 
Notice that different topological features maturate at different fusion stages. Panel (c): the average degree 〈k〉 in 
the area of physics vs. the fusion index n, for the direct graph Gphys (light blue line) and for the dual graph G∗

phys 
(light red line).
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LCC of the whole graph should be not more than (1.07− 0.76 · 0.21)/1.07 = 0.85 . As a conclusion, there is an 
important role of interdisciplinary links connecting Authors from different fields. In Table 1 we also report the 
same properties for the dual graphs. The remarkable result is that even the edge number maturates for all fields 
in the dual graphs. Most likely this occurs because an extremely large number of authors is much more frequent 
than an extremely large number of papers written by a particular author, and moreover such papers have to have 
different sets of coauthors in order to contribute to the number of edges. Therefore, papers with large number 
of authors contribute large cliques in G but not in its dual graph, and therefore, in this context, the dual graph 
constitutes a better representation of the social collaborations than its primal counterpart.

Degree distribution.  The second step of our analysis is the description of the local networks’ properties, 
and we start with the study of the degree distributions. Let ki(n), i = 1, . . . ,N(n) be the degree of node i in G(n). 
Our results show that, for all graphs analysed in the current study, the probability distribution functions (PDFs) 
of the degree k are fat-tailed, with tails well described by a power law scaling with exponent γ:

Table 2 reports the values of the mean degree in the four graphs studied ( 〈k〉 ) and the estimated tail exponents 
γ for the corresponding degree distributions. The only field in which we see a maturation of the mean degree is 

(3)p(k) ∼
1

kγ
,

Table 1.   Maturation indices and maturation values of the main general properties of primal and dual graphs. 
All notations and definitions are reported in the text. The symbol “–” reflects the fact that the property does 
not maturate, implying that significant changes in the property’s value occur at all fusion indices, up to the final 
layer (the reported values are therefore the “asymptotic” ones obtained by fusing all layers).

All Math CS Phys

n̄ 2831 67 427 2831

G

N , ×106 1.07 0.21 0.28 0.71

ñ(N) 26 5 9 44

m, ×107 4.11 0.05 0.13 3.96

ñ(m) – 8 – –

NCC , ×104 5.18 2.74 2.08 2.48

ñ(NCC) 11 4 6 23

sLCC 0.90 0.76 0.79 0.93

ñ(sLCC) 7 4 6 7

G∗

N , ×106 1.68 0.44 0.26 1.08

ñ(N) 8 4 6 10

m, ×107 10.11 0.82 0.59 8.27

ñ(m) 522 5 9 574

NCC , ×104 5.18 2.7 2.08 2.48

ñ(NCC) 11 4 6 23

sLCC 0.94 0.86 0.86 0.95

ñ(sLCC) 4 3 5 4

Table 2.   Maturation indices and maturation values of the degree distribution’s properties for the primal and 
dual graphs. All notations and definitions are reported in the text. The symbol “–” reflects the fact that the 
property does not maturate, implying that significant changes in the property’s value occur at all fusion indices, 
up to the final layer (the reported values are therefore the “asymptotic” ones obtained by fusing all layers).

All Math CS Phys

n̄ 2831 67 427 2831

G

〈k〉 77.01 4.62 8.97 111.51

ñ(�k�) – 8 – –

γ 1.7 3.6 2.6 1.6

ñ(γ ) 498 – – 1411

G∗

〈k〉 120.54 36.65 44.33 153.54

ñ(�k�) 522 5 8 574

γ 2.8 3.3 3.9 2.6

ñ(γ ) 756 2 7 495
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math, which is also characterized by the highest tail exponent. The fat-tailed nature of the degree distribution is 
the most likely reason for the absence of maturation in the mean degree, as well as in the tail exponent estima-
tion. In the cases of the whole graph and of the graph of physics, one sees that maturation, however, occurs at a 
very high value of the fusion index. Even if such distribution maturates, sample estimations of such values are 
often very sensitive to additional observations or data. Table 2 reports also the results for the dual graphs. One 
immediately sees that the mean degrees of all graphs under consideration maturate and, moreover, the exponents 
of the respective power law distributions are significantly higher. Therefore, once again the dual graphs estimates 
seem to provide a more accurate characterization.

Network clustering.  One of the most important graph’s properties is clustering. Such a measure, indeed, 
accounts for networks’ transitivity, and in the context of co-authorship graph it describes how often two coau-
thors of one particular author are coauthors themselves in other papers. Quantification of clustering’s effects can 
be obtained by measuring two different coefficients: the global and the local clustering ones. The global cluster-
ing coefficient is defined by the following expression:

where #K3 is the number of triangles in the graph and #P2 is the number of connected chains of length two.
The local clustering coefficient of vertex i is instead calculated as

where EG is the set of edges of graph G, Ni is the set of i’s neighbors. I.e. local clustering coefficient measures the 
fraction of connected triples around node i. The overall graph clustering property 〈c〉 can be obtained by averag-
ing the local clustering coefficient of Eq. (5) over all nodes:

One can easily see that the expression  (Eq. (4)) can be rewritten as

From Eq. (7) it follows that in calculating the global clustering coefficient the higher is the degree of the nodes 
the higher its weight in the average, whereas 〈c〉 takes all nodes equivalently. Therefore, the higher the difference 
between C and 〈c〉 is, the higher is the non-uniformity of clustering distribution between nodes.

Table 3 shows the clustering coefficients estimation and maturation for all primal and dual graphs. The first 
notable feature is that the global clustering coefficient never maturates, while the averages of the local clustering 
coefficient always do. This naturally follows from the fact that papers from the last layers are associated with 
larger numbers of additional triangles, and they also contribute a huge number of edges, thus enlarging nodes’ 
degrees significantly, which are then used to calculate weights in the average of the global clustering coefficient 
[see Eq. (7)]. The smallest values of the clustering coefficients are in the field of math, which also can be distin-
guished for significant difference between C and 〈c〉 . Namely, in math global clustering is two times less than the 
averaged local one. Therefore in maths nodes with high degree are less clustered then the ones with small degree.

In dual graphs, both global and local clustering coefficients maturate. Moreover, the averaged local clustering 
coefficients maturate earlier than the ones calculated in the primal graphs. Furthermore, the levels of maturation 

(4)C =
3#K3

#P2
,

(5)ci =
|{j, k ∈ EG : j, k ∈ Ni}|

C2
|Ni |

,

(6)�c� =
1

N

∑

i∈V

ci .

(7)C =

∑

i∈V C2
|Ni |

ci
∑

i∈V C2
|Ni |

.

Table 3.   Maturation indices and maturation values of the graphs’ clustering properties. All notations and 
definitions are reported in the text. The symbol “–” reflects the fact that the property does not maturate, 
implying that significant changes in the property’s value occur at all fusion indices, up to the final layer (the 
reported values are therefore the “asymptotic” ones obtained by fusing all layers).

All Math CS Phys

n̄ 2831 67 427 2831

G

C 0.57 0.24 0.70 0.57

ñ(C) – – – –

〈c〉 0.65 0.48 0.69 0.68

ñ(�c�) 10 5 6 15

G∗

C 0.27 0.78 0.62 0.26

ñ(C) 546 4 7 522

〈c〉 0.72 0.76 0.68 0.70

ñ(�c�) 5 2 3 7
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in the whole graph, in physics and in maths are the same as those corresponding to the maturation of the number 
of edges ( ̃n(m) in Table 1). In CS, maturation of the global clustering occurs at the 8-th level, while number of 
edges maturates at the 9-th level. In the physics dual graph, there is a significant difference between values of local 
and averaged global clustering: the former is more than two times less than the latter. Most likely, this property 
is the consequence of the existence of collaborative papers with large degree connected with other papers writ-
ten by extremely large number of authors. However, such “connecting” authors may have not a close relation of 
collaboration between each other, and therefore papers authored by them are not necessarily neighbors in the 
dual graph.

Diameter and characteristic path length.  The essential measure describing closeness between two par-
ticular authors (papers) is the shortest path. Based on this measure two important characteristics of a graph can 
be calculated. The first is the diameter (d)—the maximum shortest path for all pairs of nodes in the LCC. The 
second is the characteristic path length (L)—the mean shortest path for all pairs of nodes in the LCC.

The maturation analysis for d and L are presented in Table 4. The characteristic path length properties in 
physics (and, as a consequence, in the whole graph) differ significantly from all other fields: the value of L is 
less than half those in math and CS. However, this value changes significantly on the last layers, therefore, this 
property is highly dependent on collaborative papers. Interestingly, graphs’ diameters maturate in all fields. 
The maturation indices in math and CS are close to the values obtained for the number of nodes. Therefore, in 
these fields papers with relatively large number of authors are basically joint with those who are already in the 
same community. The difference in physics, instead, indicates that large collaborative papers may influence the 
network’s community structure.

Similar conclusions can be drawn from the results of the dual graphs, for which even in the case of physics 
(and the whole network) the characteristics path length maturates. Its maturation appears quite late, but it should 
be noted that it happens much earlier than edges number maturates. In CS, maturation of both the diameter and 
the characteristic path length appears earlier than in the primal one. The same is true for the diameter in the 
field of math. However, characteristic path length in math dual graph maturates later than in the primal graph 
of this field.

Centrality and efficiency.  As nodes in the networks have very different importance or relevance, various 
measures of nodes’ centrality have been proposed in the literature. As the distribution of nodes’ centralities in 
the network (the so-called centrality vector) contains very relevant information on the graphs structure and 
function, maturation of the centrality vectors is an important signal of the network maturation as a whole. We 
here report the maturation properties of the mean betweenness and closeness centrality measures, which will 
be defined momentarily. On the other hand, we also focus here on network’s efficiency, which in real social 
networks describes the so called “small-world” property—the fact that information transfer is very efficient in 
such networks51.

Node i’s betweenness centrality bi is defined as

where |P(j, k)| is the total number of shortest paths between nodes j and k, and |P(j, k, i)| is the number of shortest 
paths between j and k which pass through node i. Mean betweenness 〈b〉 of the graph is obtained by averaging 
over all nodes, and in the paper we calculate it only for nodes belonging to the LCC.

Node i’s closeness centrality qi is defined as

(8)bi =
2

(N − 1)(N − 2)

∑

j �=i,k �=i

|P(j, k, i)|

|P(j, k)|
,

Table 4.   Maturation indices and maturation values of the graphs’ diameter and characteristic path length. All 
notations and definitions are reported in the text. The symbol “–” reflects the fact that the property does not 
maturate, implying that significant changes in the property’s value occur at all fusion indices, up to the final 
layer (the reported values are therefore the “asymptotic” ones obtained by fusing all layers).

All Math CS Phys

n̄ 2831 67 427 2831

G

d 21 25 26 21

ñ(d) 436 3 10 425

L 3.1 7.3 6.1 2.8

ñ(L) – 4 8 –

G∗

d 21 24 26 20

ñ(d) 402 4 6 434

L 5.4 8.8 5.2 4.7

ñ(L) 329 9 8 430
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where d(i, j) is the length of the shortest path between i and j. Once again, the mean closeness 〈q〉 is obtained by 
averaging over all nodes, and limiting ourselves to the set of nodes in the LCC.

Network’s efficiency is defined by

Table 5 shows the results for E, 〈q〉 and 〈b〉 . In co-authorship graphs of math and CS papers with extremely large 
number of authors do not affect the values of the listed properties and, moreover, maturation appears relatively 
early in both disciplines. This is in agreement with the results of the previous sub-section, where characteristics 
path length’s maturation was analysed. Moreover, the maturation levels of efficiency and betweenness for these 
two fields are close to ñ(L) . In the dual graphs, the same conclusion can be made only for math and physics. 
In the case of CS, the dual graph does not instead maturate, and this is the only case in which the dual graph 
representation seems to provide a less accurate representation of the data. It has to be noticed that, for the CS 
dual graph and the one for all fields, maturation of centrality and efficiency (not reported here) occurs when ε 
is slightly increased (i.e., when ε = 0.1).

Discussion
In summary, we have studied patterns of collaboration in the arXiv database by using the formalism of multilayer 
higher-order networks, where each layer corresponds to the number of collaborators on publications that are 
considered for that layer. For layer three, corresponding to three-author publications, and onwards, we have 
also used higher-order links to connect groups of authors as a much more convenient and theoretically elegant 
description of group interactions. By doing so, we were able to monitor separately how each relevant topologi-
cal feature of the network matures toward the value that was measured for the complete classical collaboration 
network. We have also demonstrated that our representation reveals the true nature of collaborations among 
researchers, which is fundamentally different when they coauthor a paper in a small group, implying an intense 
and meaningful research relationship, as opposed to a collaboration in a huge group of coauthors were only very 
few actually share any noteworthy contact.

In terms of implications for specific research fields, our research shows that different topological features 
mature at different fusion indices for different research fields. Earlier for fields where the number of authors on 
a particular publication is traditionally low, as in mathematics, and later for fields where large collaborations are 
more common, as in physics. Either way, our representation allows us to progressively follow how the final values 
that determine the topological features of collaboration networks emerge as the fusion index, i.e., the number 
of layers that have been fused together, increases. This thus offers a completely new and fresh microscopic view 
into the collaboration patterns of researchers across different disciplines and depth of contact.

It is also worth noting that our research confirms, in line with previous research20,52, that the alternative 
representation of collaboration networks, where hyperlinks connect publications instead of coauthors, yield a 
better representation in that for these type of collaboration networks all topological features eventually mature 
as layers are coalesced, whilst in the classical representation some topological feature never mature.

(9)qi =
1

∑

j∈V ,j �=i d(i, j)
,

(10)E =
1

N(N − 1)

∑

i,j∈V ,i �=j

1

d(i, j)
.

Table 5.   Maturation indices and maturation values of the graphs’ centrality and efficiency indicators. All 
notations and definitions are reported in the text. The symbol “–” reflects the fact that the property does not 
maturate, implying that significant changes in the property’s value occur at all fusion indices, up to the final 
layer (the reported values are therefore the “asymptotic” ones obtained by fusing all layers).

All fields Math CS Physics

n̄ 2831 67 427 2831

G

E 0.40 0.14 0.17 0.43

ñ(E) – 4 7 –

〈q〉 3.4 · 10−3 8.8 · 10−7 7.4 · 10−7 2.5 · 10−3

ñ(�q�) – 6 15 –

〈b〉 2.4 · 10−5 4.0 · 10−5 2.3 · 10−5 1.9 · 10−5

ñ(�b�) – 4 18 –

G∗

E 0.24 0.13 0.21 0.27

ñ(E) – 9 – 540

〈q〉 3.2 · 10−3 4.5 · 10−4 4.5 · 10−4 2.4 · 10−3

ñ(�q�) – 9 – 444

〈b〉 4.7 · 10−4 9 · 10−4 4.7 · 10−4 3.8 · 10−4

ñ(�b�) – 9 – 447
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These insights create many possible directions for future research. For example, one viable avenue worth 
exploring is to customize growth models of hypergraphs that would take into account the fact that a given 
topological feature must mature at a given stage of fusion. We would thereby obtain a more apt theoretical 
description of scientific collaboration, which would in turn promise a better understanding of this vital process 
that upkeeps modern human societies. It would also be interesting to look at the maturation of other network 
properties, such as the community structure and various centrality measures. Lastly, it would also be worth while 
exploring how the proposed multilayer higher-order network formalism works in other forms of documented 
collaboration, such as on patents and legal proceedings. We hope our research will prove inspirational towards 
this goals in the near future.
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