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Canine mammary cancer tumour 
behaviour and patient survival time 
are associated with collagen fibre 
characteristics
Ana P. V. Garcia1,4, Luana A. Reis2,4, Fernanda C. Nunes1, Francis G. J. Longford3, 
Jeremy G. Frey3, Ana M. de Paula2* & Geovanni D. Cassali1*

Precise diagnosis and prognosis are key in prevention and reduction of morbidity and mortality in all 
types of cancers. Here we show that changes in the collagen fibres in the main histological subtypes of 
canine mammary gland carcinomas are directly associated with the tumour behaviour and the animal 
survival time and could become a useful tool in helping with diagnosis. Imaging by second harmonic 
generation and multiphoton excited fluorescence microscopy were performed to evaluate the collagen 
and cellular segment parameters in cancer biopsies. We present a retrospective study of 45 cases of 
canine mammary cancer analysing 836 biopsies regions including normal mammary gland tissue, 
benign mixed tumours, carcinoma in mixed tumour, carcinosarcoma, micropapillary carcinoma and 
solid carcinoma. The image analyses and the comparison between the tumour types allowed to assess 
the collagen fibre changes during tumour progression. We demonstrate that the collagen parameters 
correlate with the clinical and pathological data, the results show that in neoplastic tissues, the 
collagen fibres are more aligned and shorter as compared to the normal tissues. There is a clear 
association of the mean fibre length with the dogs survival times, the carcinomas presenting shorter 
collagen fibres indicate a worse survival rate.

Breast cancer is the most common cancer among women—with the exception of non-melanoma skin cancer—
corresponding to about 25% of new cases each year worldwide. In Brazil, this rate is even higher, reaching 29.7%, 
according to the National Cancer  Institute1. Thus it is of great importance for public health that motivates stud-
ies on prevention and early diagnosis, in the search for the reduction of morbidity and mortality related to this 
 neoplasm2. The subject is also of great interest in Veterinary Medicine as about 50% of the tumours in female 
dogs are malignant mammary  neoplasms3, largely a reflection of late diagnosis, which compromises treatment 
and reduces the survival rate of the  animals4–6. In addition, mammaryneoplasms in female dogs and women 
show epidemiological, clinical, biological and genetic similarities, which makes it possible to use the female dog 
as a comparative  model6–13.

It is known that breast neoplasms stimulate the degradation of components of the extracellular matrix. Col-
lagen, specifically, undergoes significant structural changes in the presence of malignancy that plays an impor-
tant role in modulating the behaviour of breast  cancers14–30. The changes in the collagen structural architecture 
have been used also to successfully detect malignancies in the canine mammary  gland31. In addition, collagen 
plays a significant role in the emergence of metastases, with a large amount of studies of cancer prognosis and 
 therapies32–35. Recent studies indicate that there must be a balance between the magnitude of the traction forces 
and the adhesion force of the cell to the extracellular matrix to achieve an ideal process of cell  migration36–40. In 
a multicellular system, the tensile forces generated by individual cells can give rise to an evolving force network 
(supported by the fibres of the extracellular matrix), that actively pull the individual cells in order to move them 
in the extracellular matrix and this force can be detected by distant  cells40. The mechanical coupling between 
the cells can influence the migration of individual cells, which could alter the structure and properties of the 
extracellular matrix and, therefore, the tensile strength network. This feedback loop between the strength of 
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the extracellular matrix network and cell migration may be responsible for a wide range of collective migratory 
 behaviour36–40.

Therefore, understanding the structure and functional properties of the collagen fibres is essential for under-
standing the tumour behaviour in different types of neoplasms. The collagen is a non-centrosymmetric fibre 
that efficiently generates second harmonic signals, thus images obtained by nonlinear microscopy from second 
harmonic generation (SHG) have been shown to be a useful method to study these tissue  changes32,41. The SHG 
microscopy allows to obtain data regarding the morphology of the extracellular matrix, including the organiza-
tion, shape and quantification of the collagen fibres that make up this matrix, characterizing the changes that 
occur in the fibres during tumour progression that facilitates the extravasation and migration of tumour cells 
in many types of  cancers14,16,18,22,23,31,37,42,43. Recent polarization resolved SHG results have shown details of the 
collagen microscopic structure modifications that can discriminate the histological grades of breast  cancer30. 
And the details of the macroscopic collagen organization obtained by SHG microscopy image analysis have 
been shown to correlate with the survival of  luminal28 and triple negative breast cancer  patients44. In addition, 
it has been shown that third harmonic generation microscopy allows to obtain details of the tumour cells with 
potential for differentiating malignant from benign breast  tissue45.

Most of the previous studies measured the collagen properties at the tumour borders, however recent stud-
ies have shown that the intra tumoral collagen properties are important for the differentiation of invasive 
 tumours29,35. Here we present results for multiphoton microscopy, by simultaneous two-photon excited fluores-
cence (TPEF) and SHG imaging, together with an image analysis procedure that provided a range of collagen 
and cellular segment parameters of intra-tumour tissue. The images were performed on archive standard hema-
toxylin and eosin (H&E) stained histological slides from 45 patients and allowed a correlation with the animal 
survival time. A large number of intra-tumoral representative areas of each patient were imaged (836 biopsies 
regions) to cover the heterogeneity of the tumours. We implemented a comprehensive and robust image analysis 
methodology to extract the collagen fibre network and to quantify the properties of the collagen fibres and the 
cellular segments in the images. A software package was developed to perform an automated image segmenta-
tion into collagen and cellular  regions46 and to extract their parameters (available on  GitHub47). The measured 
parameters include the organization of the fibres, the number of fibres, the mean fibre length, the shape of the 
cellular segments and the proportion of the image area covered by fibres or cellular segments. We demonstrate 
that the obtained parameters allows a good discrimination of the main histological types of canine mammary 
neoplasms. In addition, the results show that the changes in the collagen fibre length directly correlate with the 
tumoral behaviour and the animal survival time.

Results and discussion
Details of the samples studied. The details of the histological subtypes analysed: the age of the patients, 
clinical stage, histological grade, molecular subtype, cell proliferation rate and survival times are shown in 
Table 1. The mean age of all the patients was of 10 years. The mean age for each histological subtype is pre-
sented in Table 1with the standard deviation in brackets. Among the 45 cases of mammary neoplasm evaluated, 
36% were carcinoma in mixed tumour (CMT; n = 16 ), 26% solid carcinoma (SC; n = 12 ), 16% micropapillary 
carcinoma (MC; n = 7 ), 13% benign mixed tumour (BMT; n = 6 ) and 9% carcinosarcoma (CS; n = 4 ). In rela-
tion to the clinical staging, 44% of the carcinomas were classified with staging IV ( n = 20 ), 22% with staging 
I ( n = 10 ), 18% with staging III ( n = 8 ), 9% with staging V ( n = 4 ) and 7% with staging II ( n = 3 ). For the 
histological grade 36% of the cases were classified with histological grade II ( n = 16 ), 33% with histological 
grade III ( n = 15 ) and 18% with histological grade I ( n = 8 ). Regarding the molecular subtype, 25% of the cases 
were classified as luminal A ( n = 10 ), 67% as luminal B ( n = 26 ) and 8% as triple negative ( n = 3 ). Among the 
analysed cases, 60% had low cell proliferation rate (Ki67 ≤ 20 %; n = 27 ) and 40% of the cases had a high cell 
proliferation rate (Ki67 > 20 %; n = 18 ). The mean survival time of the patients are presented in Table 1 with the 
standard deviation in brackets. The patients diagnosed with BMT were all alive until the last contact with the 
person responsible for the dog, that was greater than 658 days. Thus this value was not included in the statistical 
analyses.

Images and extracted parameters. Figure 1 presents representative images of the histological mam-
mary sections studied. The histological types in the columns are indicated as NMT, BMT, CMT, MC, CS and SC 

Table 1.  Clinicopathological features of canine mammary neoplasms. For the age and the survival, the data 
are the mean values with the standard deviation in brackets. BMT benign mixed tumour, CMT carcinoma in 
mixed tumour, MC micropapillar carcinoma, CS carcinosarcoma, SC solid carcinoma.

Histolo-gical type n(%) Age (year)

Staging Histological grades Molecular subtype

Survival (days)I II III IV V I II III NA HR+/Ki67 ≤ 20% HR+/Ki67 > 20% HR- /HER2- NA

BMT 6 (13%) 9.0 (2.2) 4 2 0 0 0 0 0 0 6 0 0 0 6 658

CMT 16 (36%) 10.6 (2.8) 4 1 4 7 0 8 8 0 0 8 7 1 0 687 (375)

MC 7 (16%) 11.0 (3.4) 0 0 0 5 2 0 4 3 0 1 6 0 0 152 (110)

CS 4 (9%) 9.3 (4.2) 0 0 3 0 1 0 0 4 0 0 3 1 0 165 (149)

SC 12 (26%) 10.2 (4.0) 2 0 1 8 1 0 4 8 0 1 10 1 0 267 (220)

Total 45 (100%) 10 3 8 20 4 8 16 15 6 10 26 3 6
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Figure 1.  Acquired images: the optical microscopy H&E (first row), SHG (second row), TPEF (third row) 
and the images extracted by the software: a colour map image with the angle distribution of the collagen fibre 
orientation in the tissue (fourth row, angle colour map at the bottom left hand side), the extracted collagen fibres 
with each fiber in a random colour (fifth row), the fibre segment (sixth row) and the cellular segments (seventh 
row) for the histological types in the columns NMT, BMT, CMT, MC, CS, SC. Each connected fibre and cellular 
segment is presented in a random colour. The scale bar is 100 µm.
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for the normal mammary gland, benign mixed tumour, carcinoma in mixed tumour, micropapillary carcinoma, 
carcinosarcoma and solid carcinoma, respectively. The rows one to three show the measured images and the 
extracted fibre and cellular segmented images obtained from the image analysis methodology are in rows four 
to seven. The H&E bright field microscopy optical images are in the first row, the SHG images in the second row 
and the TPEF images in the third row. The TPEF signal is the fluorescence emission of the eosin dye. The SHG 
and TPEF are false colour images of the measured intensity maps normalized to highlight all the features. The 
fourth row shows a colour map image with the angle distribution of the collagen fibre orientation in the tissue 
(the angle colour map is at the image bottom left hand side). Note that the NMT image show a more isotropic 
distribution of angles, whereas the solid carcinoma image shows almost all fibres oriented in one direction indi-
cated by the purple colour. In the fifth row are the images of the extracted network of collagen fibres with the 
individual fibres in random colours. The sixth row shows the connected collagen fibre segments, each segment 
in a different colour. And in the seventh row is the cellular segments, where each connected cell-cluster is in a 
different colour. The fibre segment images are shown superimposed on the SHG images in grayscale and the cel-
lular segment images are presented superimposed on the TPEF images in grayscale with each connected cellular 
segment in a different colour. The details of the image measurements and analysis are described in the “Materials 
and methods” section.

The normal mammary gland, first column, presents acini and ducts consisting of luminal epithelial cells lined 
by myoepithelial cells that are separated from the surrounding connective tissue by the basement  membrane48,49. 
The collagen fibres, abundant in the surrounding connective tissue, are arranged in different directions through-
out the mammary tissue. The benign mixed tumour (BMT), second column, are characterized by benign pro-
liferation of cells morphologically similar to the epithelial (luminal or myoepithelial cells) and mesenchymal 
components that produce cartilage and/or bone and/or adipose tissue, possibly in combination with fibrous 
 tissue50. In these neoplasms, it is still possible to observe an abundance of collagen fibres in the surrounding 
connective tissue, however the fibres are more organized in relation to the NMT. The carcinomas in mixed 
tumour (CMT), third column, exhibit a complex histological pattern, as they have components of epithelial and 
mesenchymal origin. Malignant epithelial cells exhibit an infiltrative growth, which can be identified by the loss 
of continuity of the basal/myoepithelial layer associated with clusters of tumour cells that penetrate the stroma. 
The occurrence of non-invasive proliferation (in situ) can also be observed. The differentiation between in situ 
and invasive components in carcinoma in mixed tumours is possible due to the presence of stromal invasion 
and microinvasion. The areas of invasion are characterized by the presence of clusters of infiltrative tumour 
epithelial cells in the regions of periductal stroma close to the components of the carcinoma. Carcinoma in situ 
with microinvasion areas is defined when the continuity of the basement membrane is lost, within 1 mm, and 
epithelial cells are  present51. In these carcinomas, it is possible to observe a greater organization of collagen 
fibres that make up the surrounding connective tissue in relation to the NMT and BMT. It is possible to observe 
the alignment of the collagen fibres in the connective tissue that surrounds the neoplastic growth. The micro-
papillary carcinomas (MC), fourth column, exhibit well-defined cystic spaces similar to the lymphatic vessels 
diffusely distributed throughout the mammary gland. Within these cystic spaces there are clusters of epithelial 
cells with a micropapillary pattern called “moruliform”, with abundant eosinophilic cytoplasm, evident nuclear 
pleomorphism and prominent  nucleoli51. In these carcinomas, it is also possible to notice the orientation of the 
collagen fibres in a preferred direction, indicating greater organization of the surrounding connective tissue. The 
histological characteristics of the carcinosarcomas (CS), fifth column, are extremely variable and were previously 
described as mixed malignant tumours of the mammary gland. They are composed of malignant epithelial and 
mesenchymal  cells51 and show an abundance of connective tissue. In the solid carcinoma (SC), sixth column, 
there is a proliferation of epithelial cells organized in a solid arrangement, with the formation of cords, sheets or 
agglomerates. The tumour cells are undifferentiated, exhibit small hyperchromatic nuclei and the mitotic index 
is high. The amount of stroma can vary from small to moderate and areas of necrosis are frequently  observed51. 
As in the other carcinomas, in the solid carcinoma it is also possible to observe greater organization of the col-
lagen fibres of the surrounding connective tissue in relation to NMT and BMT.

Our image analysis procedure and the extracted fibre and cellular segments (see details on the “Materials 
and methods” section) allowed the quantification of many of the image visual characteristics described above. 
The colour map images of the angle distribution of the collagen fibre orientation in the tissue (fourth row) show 
that the carcinomas with a worse prognosis present more aligned fibres. Also the images of the collagen fibre 
networks (fifth row) show the decrease of the number of fibres for the carcinomas with worse prognosis. And 
the comparison of the fibre and cellular segments in the sixth and seventh rows shows the changes of the areas 
covered by fibres and cells.

We will discuss some of the measured parameters that allow a good differentiation between the histological 
type. The collagen fibre organization parameter (fibre organization), the number of collagen fibres, the mean 
fibre length, the linearity of the cellular segments and the image area covered by fibre (fibre segment coverage) 
and by cellular regions (cellular segment coverage) for all the histological types are shown in Fig. 2. The statistical 
correlations between the histological types are shown in the Table 2.

The collagen fibre organization parameter is a measurement of the degree of alignment of the collagen fibres, 
that ranges from zero to one for random organized fibres and for well oriented fibres all aligned along a specific 
direction in the tissue, respectively. The results in Fig. 2A show that in all histological types the collagen fibres 
are more aligned as compared to the NMT and it provides a clear separation between normal and neoplastic 
tissue. These findings corroborate with others described in the  literature14,15,17,19–21,24–29,31,52,53.

The number of fibres and fibre length are two important parameters to assess the changes of the collagen in 
neoplastic tissues. The number of fibres, Fig. 2B shows that the amount of collagen decreases in the neoplastic 
tissues within the tumour regions as compared to the NMT except for the BMT, due to the large amount of 
extracellular matrix characteristic of this histological  type9,54,55. However, the fibres are longer in the neoplastic 
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tissue, Fig. 2C. Nonetheless, between the tumour types the collagen fibres show shorter length in the MC, CS 
and SC as compared to the BMT and CMT. These results lead to the hypothesis that within the tumour types, 
the less aggressive mammary carcinomas present longer collagen fibres than the more aggressive ones. These 
two parameters show statistically significance between most of the histological types, Table 2.

The cellular segment linearity is presented in Fig. 2D. This is a parameter that evaluates the shape of the 
extracted segments of cellular regions and it measures the elongation of the segments as compared to a circle. It 
may be expected that normal tissue types will contain cellular regions that display more regular, circular appear-
ance, whereas the value of the linearity metric for this type suggests that they are more elongated. An explanation 
for this may be seen in Fig. 1; although visually the cellular regions of the normal type image (first column) are 
relatively circular, the colored cellular segments identified by the analysis software are highly folded, due to the 
presence of the collagen structures within the intra tumoral regions that are detected by the SHG. This folding 
leads to a much greater value for the segment perimeter than would be expected by eye. Note that the MC and 
SC show the more circular shapes, in these tissue types, the cellular regions display less collagen within the cell 
mass and so the cellular segments are not folded. Thus, this parameter allows a good discrimination of the cancer 
types. The p-values show statistically significance between most of the histological types, Table 2.

For the parameters, fibre segment coverage and cellular segment coverage, shown in Fig. 2E, F and Table 2, 
it is observed that the BMT and CS show a higher amount of collagen and less cellular segments, corroborating 
with studies that used other  methodologies9,54,55. In addition, the results show a larger area covered by cellular 
segments in the SC as compared to other histological types in agreement with the characteristic of solid carcino-
mas that show an expansive growth in highly cellularized  nests13. For the comparisons between the histological 
types, the BMT presented a larger area covered by fibres in comparison to the samples of the other histological 
 subtypes9,54. These parameters also show statistically significance between most of the histological types.

Changes in the collagen parameters and tumour progression. Here we show the measured param-
eters for the CMT to discuss the collagen changes as the tumour progress. The results obtained for the fibre 
organization, number of fibres, collagen fibre length, cellular segment linearity, fibre segment coverage and cellu-
lar segment coverage are presented in Fig. 3. It is shown the comparisons between the NMT and the benign areas 
(CMTb), the malignant in situ (CMTis) and the malignant invasive regions (CMTi) of the CMT. The statistical 
data are shown in Table 3. The benign areas are not so common, thus only 24 regions were imaged.

For the fibre organization parameter, Fig. 3A, the results show that the collagen fibres are more aligned 
in the CMTis and CMTi regions of the CMT in comparison to the NMT and the CMTb, but there is no clear 
separation between the NMT and the CMTb. However, it is possible to say that during tumour progression the 
collagen fibres become more aligned as the neoplasia develops. It is well known that cellular migration involves 
integration into a complex microenvironment, which can be a physiological or pathological process, including 
regeneration tissues, immune response and tumor  progression12,36–40,56–58. In addition to well-established chemo-
taxis, the microstructure and physical properties of the extracellular matrix have a significant influence on cell 
migration via  durotaxis12,56–58. This process can be explained as a unidirectional cell migration mechanism in 
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which a cell responds to an extracellular gradient of rigidity, which is important in the process of cell migration 
and invasion in tumour progression. During durotactic migration, there is usually cellular movement towards 
regions of increasing stiffness on increasingly rigid  substrates36–40. Thus, the changes in the alignment and the 
amount of collagen in the tumor microenvironment may be capable of facilitating the migration and invasion 
of neoplastic cells in other locations.

For the number of fibres, the data presented in Fig. 3B and Table 3 show that the CMTb presents a significant 
smaller amount of fibres than the NMT. The number fibres keeps decreasing for the CMTis areas but increases 
again for the CMTi areas. However, the mean fibre length shows the opposite trend, Fig. 3C, the collagen fibres 
are longer in CMTb, CMTis and CMTi than in the NMT. Therefore, it is possible to say that during tumour 
progression the collagen fibre length increases as the neoplasia develops. However, in the malignant invasive 
regions the fibres decrease again in comparison to the malignant in situ regions. These two parameters show 
statistically significance between most of the histological types and are good indicators of the tumour progression, 
Table 3. Several studies describe that neoplastic cells influence and are influenced by the extracellular matrix and 
the tumour microenvironment during tumour progression, in order to invade the underlying  tissues12,36–40,56–58. 
Thus, as discussed earlier, we believe that for the in situ growth profile the collagen fibres are larger and more 
stretched, limiting the neoplastic growth. Nonetheless, when the cells break the basal membrane and express an 
invasive profile, the fibres become more fragmented and shorter as compared to the previous state.

The linearity of the cellular regions, Fig. 3D show more circular shapes for the CMTb areas as compared to 
both the NMT and the CMTis and CMTi areas. Thus this parameter can separate the CMTb from the NMT. 
For the parameters fibre coverage and cellular segment coverage, the results presented in Fig. 3E, F and Table 3 
show that the benign areas of the CMT have a smaller fibre coverage area as compared to NMT and the malig-
nant in situ and invasive areas. Thus, the benign areas show larger cellular segment coverage in comparison to 
the NMT and the malignant in situ and invasive areas of CTM. These results confirm that at the later stages of 
tumour progression, the cell proliferation is more pronounced in relation to the collagen  deposition12,36–40,56–58.

Carcinomas with worse prognosis present shorter collagen fibres. Figure 4 shows the analyses 
of the collagen fibre length of all the malignant histological types studied (CMT, CS, MC and SC) with the cell 
proliferation, histological grading and histological subtype. The linear regression for the fibre length and the cell 
proliferation is presented in Fig. 4A. The Spearman’s correlations for the fibre length and the histological grades 
I, II and III are in Fig. 4B, and the Spearman’s correlation for the fibre length and the histological subtypes are 
in Fig. 4B. The histological subtypes are presented as 0 for carcinomas with good prognosis (CMT) and 1 for 
carcinomas with worse prognosis (CS, MC and SC). All the correlations show that the carcinomas with worse 
prognosis present shorter collagen fibres. Correlations of the mean collagen fibre length with other clinical and 
pathological data were performed, such as patient age, clinical staging, tumor size, lymph node status, ER, PR, 
HER2, but they did not show statistical correlations.

In Fig. 5 we present the survival curves for the dogs diagnosed with each histological subtypes, Fig. 5A, and 
with the dogs grouped by the mean fibre length disregarding the histological type, Fig. 5B. Figure 5A shows that 
the dogs diagnosed with CS reached the median survival time in 54 days, the ones diagnosed with MC in 140 
days, the SC in 252 days and the CMT in 824 days. The COX regression analysis was performed using the CMT 
as a reference for a carcinoma with a better prognosis. However, due to the low number of cases of the other 
histological types (CS, MC and SC) they were grouped into a single group considering that they all have a poor 
prognosis in relation to CMT, as demonstrated by previous  studies13,55,59. Thus only one p value is shown. Cor-
relating this information with the data presented in Fig. 2C, it is possible to note that the carcinomas with worse 
prognosis present shorter collagen fibres in comparison to the CMT. From this analysis, a cut-off point was estab-
lished to determine whether the collagen fibre length could be used as a clinical complementary parameter for 
the diagnosis of mammary cancer. To obtain a cut-off point we considered all the histological subtypes together. 
The median fibre length of 25.68 µ m was obtained and considered as the cut-off. Then the dogs were stratified 
into two groups defined by this median cut-off point, disregarding histological subtype, histological grading 
and cell proliferation rate. The numbers 0 and 1 were assigned to the distribution of cancer-specific survivals: 0 
was assigned to dogs diagnosed with carcinomas presenting collagen fibre length smaller than the cut-off and 
number 1 was assigned to dogs diagnosed with carcinomas presenting collagen fibre with length larger than the 
cut-off. In this way the prognostic and predictive factors did not interfere in the correlations established between 
the mean fibre length and the survival of the animals in the study. The results are presented in Fig. 5B, the dogs 
diagnosed with carcinomas that present short collagen fibres (number 0) reach the median survival time on the 
150th day and dogs diagnosed with carcinomas with long fibres (number 1) reach the median survival time on 
the 511th day (HR = 2.302, p = 0.0041, [CI] = 1.140–4.648). Therefore, the results clearly indicate that the more 
aggressive carcinomas, with unfavorable prognosis, present shorter collagen fibres as compared to less aggressive 
ones. It should be pointed out that the acquired images were for regions within the tumour mass. Previous results 
have shown an opposite trend for the fibres at the tumour  border31. These results corroborate the previously 
presented hypothesis that carcinomas with an invasive growth profile and with a tendency to metastasize tend 
to have shorter fibres in comparison to carcinomas with an in situ and local growth  profile37.

Nonetheless, in a multivariate analysis, the mean fibre length is not included in the final model as in the 
univariate risk analysis it presented p = 0.06 . On a multivariate model with the variables: histological subtype, 
histological grade, clinical stage, estrogen receptor, progesterone receptor, HER-2, molecular subtype, cell pro-
liferation index, clinical stage and mean fibre length only the histological subtype and clinical stage variables 
were included in the final model. An increased risk of death was observed in dogs diagnosed with carcinomas 
with stage IV and V (HR = 3.74, p < 0.010 , confidence interval [CI] = 1.36–10.27) in comparison to the dogs 
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diagnosed with tumour stages I–III and in dogs diagnosed with more aggressive histological subtypes (HR = 
11.35, p < 0.0001 , confidence interval [CI] = 3.14–41.00).

Conclusion
In conclusion, the biopsy evaluation by the nonlinear microscopy technique and the new image analysis proce-
dure allowed to demonstrate differences in the organization, number and length of the collagen fibres between 
neoplasms and normal mammary gland during tumour progression. In addition we demonstrated that, among 
the subtypes of mammary carcinomas, the more aggressive carcinomas present shorter collagen fibres in com-
parison with the less aggressive ones that directly correlates with the dogs survival times. These imaging and 
analyses could be useful tools to help towards more precise cancer diagnostics.

Materials and methods
Biopsies: case selection. We present a retrospective study of 45 cases of canine mammary cancer and 12 
samples of healthy mammary gland regions as control. We included the samples that contained the informa-
tion on clinical staging, histological graduation, molecular subtype and cell proliferation. The samples were 
obtained from the Laboratory of Comparative Pathology at Federal University of Minas Gerais (UFMG), Brazil. 
The materials used for the imaging were the standard histological slides stained with H&E, from fragments of 
neoplasms fixed in formalin and embedded in paraffin. The tissues were obtained from biopsies of simple mas-
tectomy, regional mastectomy, unilateral or bilateral radical mastectomy depending on the tumour size, clinical 

Figure 3.  Boxplot graphics showing the calculated parameters for the fibre and cell segments: the fibre 
organization, number of fibres, the mean fibre length, the cellular segment linearity, the fibre segment coverage 
and the cellular segment coverage for the NMT, CMTis and CMTi regions of the CMT. The centre lines show the 
medians, the box limits indicate the 25th and 75th percentiles, the whiskers extend 1.5 times the interquartile 
range from the 25th and 75th percentiles and the outliers are represented by dots.

Table 3.  Statistical results for the tumour progression. p value significance: p < 0.05 are denoted as *, p < 0.01 
are denoted as ** and p < 0.001 are denoted as ***. Empty table cells denote not significant p NMT normal 
mammary gland, CMTb benign areas of carcinoma in mixed tumour, CMTis in situ areas of carcinoma in 
mixed tumour, CMTi invasive areas of carcinoma in mixed tumour. The p values were obtained by one-way 
ANOVA and Tukey’s HSD test.

NMT 
×

CMTb

NMT 
×

CMTis

NMT 
×

CMTi

CMTb 
×

CMTis

CMTb 
×

CMTi

CMTis 
×

CMTi

Fibre organization *** ***

No. fibres ** *** ***

Mean fibre length *** *** *** *

Cellular segment linearity *** ** *** **

Fibre segment coverage *** ***

Cellular segment coverage ** *** **
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staging, lymphatic drainage and tumour location. The selected samples were collected from the years 2009 to 
2019 and they were classified according to the criteria described in the Consensus for the Diagnosis, Prognosis 
and Treatment of Canine Mammary  Tumours51, including the types: 12 NMT, 06 BMT, 16 CMT, 07 MC, 04 
CS and 12 SC. All cases were reviewed in sections stained with H&E by an experienced pathologist special-
ized in canine mammary gland cancer. Clinical staging was performed based on tumour size (T), neoplastic 
involvement of regional lymph nodes (N) and presence of distant metastases (M) according to the TNM system 
established by the World Health Organization (WHO), modified by Owen, for canine mammary  tumours59. The 
histological grade was established according to the Nottingham system. For the correlations with the survival 
data, the patients included were the ones treated with surgery only. The score 1 was used for those who died due 
to mammary carcinoma and 0 for the ones alive or those who died due to other causes.

The biopsy microscopy slides used were of the routine histopathological diagnosis of spontaneous occurring 
tumours of female dogs obtained at the Veterinary Hospital of UFMG.

Ethical approval. The study was performed in view of the fundamental ethical principles of law No. 11.794, 
of October 8, 2008 and of decree No. 6.899 of July, 2009, and with the rules issued by the National Council for 
the Control of Animal Experimentation (CONCEA). It was approved by the “Ethics Committee on the Use of 
Animals” at UFMG, under No. 251/2018.

Second harmonic generation and two‑photon excited fluorescence imaging. The SHG and 
TPEF imaging system is a home built setup using an Olympus FV300 confocal scanning laser unit attached to 
an upright BX61-WI  microscope43. We used a 140 fs Ti-Sapphire oscillator (Coherent Chameleon) with 80 MHz 
repetition rate tuned to the wavelength of 800 nm. The laser energy per pulse at the sample position is about 
0.1 nJ, average power of 7 mW, fluence of 7× 10

−4  J/cm2 . The laser beam passes through the scanning mir-
rors and through a dichroic mirror and is focused on the sample at normal incidence by a 20× objective lens 
(N.A.  0.90). The laser is circularly polarized at the sample position, that is achieved using a half-wave plate 
and a quarter waveplate in the laser path before it enters the confocal  microscope60. The SHG backscattered 
signal is collected by the same objective and directed by a polarization-insensitive dichroic mirror (Semrock 
FF665-Di02) to the detector (a photomultiplier tube, PMT). A thin band pass filter (20 nm bandwidth, Chroma 
HQ400/20m-2p) centred at the SH wavelength (400 nm) a blocking edge filter (Semrock FF01-680/SP-25) are 
used to completely remove the laser scattered light.

For the TPEF imaging the dichroic mirror is moved out of the beam and the backscattered signal follows 
the descanned path and is measured by the internal PMT of the confocal. The signal is filtered by a band pass 
filter in the range 560–600 nm and the blocking edge filter (Semrock FF01-680/SP-25). The TPEF signal is the 
fluorescence emission of the eosin dye in the H&E stained tissues. We collected SHG and TPEF images at the 
same sample position with areas of 0.471 mm × 0.471 mm (512 × 512 pixels). The laser transmission though the 
sample is also acquired as an image in a PMT positioned after the microscope condenser. The focus was selected 
by optimizing the SHG intensity and then three images were collected, one at the focal position and one at each 
focal planes at 1 µ m above and below the optimal position. The acquisition of the three images allowed to assure 
the best focal position and they were also used by the software to eliminate noise. The scanning time for each 
image is 2.71 s. For the samples with a weak SHG intensity up to 5 images were accumulated, and the overall 
acquisition time was about 60 s.

We have acquired images for 836 representative areas of the NMT and the other histological types in the 
sections stained with H&E. On the histological slides in which normal mammary regions were selected the 
images were acquired for the 10 most representative areas of normal tissue. For the BMT slides, 5 peri-tumour 
areas and 5 intra-tumour areas were selected for measurements. The peri-tumour regions are defined from the 
fibrous tissue at the edges of the tumour, in the transition to the unchanged tissue; the intra-tumour regions 
correspond to areas with collagen within groups of cells with neoplastic growth. In the remaining cases, 10–15 
most representative intra-tumour regions were selected for the measurements. The images from these selected 

Figure 4.  (A) Linear regression for the fibre length and the cell proliferation; (B) Spearman’s correlation for 
the fibre length and the histological grades I, II and III; (C) Spearman’s correlation for the fibre length and the 
histological subtype, where the subtype is presented as 0 for carcinomas with good prognosis (CMT) and 1 for 
carcinomas with worse prognosis CS, MC and SC).
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areas were collected for analysis. The bright field microscopy images of the H&E stained tissue were obtained at 
the same areas for comparison.

Image analysis. Quantitative analysis of the parameters for the collagen fibres and cellular segments were 
obtained using an open source software package named PyFibre (Python Fibrous Image Analysis Toolkit) that 
was developed to perform an automated image segmentation into collagen and cellular regions and to extract 
their parameters (available free on  GitHub47). In the analysis procedure, the SHG and the TPEF signals, as well 
as a copy of the laser transmission data are used to better identify the collagen fibres and cellular features in the 
images. The SHG signal allows to identify the collagen fibres. For mapping out the locations of collagen fibres as 
a network we use a modified version of the FIbeR Extraction (FIRE)  algorithm61,62. Additional information from 
the TPEF and transmission signals is then used to further refine the boundary between fibrous and cellular areas. 
The PyFibre analysis generates a database with all the metrics extracted from the images for the analysis, details 
of which can be found in the online software  documentation47. The image segmentation allows the calculations 
to be performed specifically for the cellular and collagen fibre regions in the image. The values of the metrics 
evaluated are used as comparison parameters for normal tissues and the neoplastic tissue. The measurements 
of the SHG anisotropy characterize the organization of collagen fibres as purely isotropic regions (value 0) and 
regions in which the collagen fibres are perfectly aligned, or anisotropic (value 1). The extracted collagen fibre 
network allows to measure also the number of fibres and the fibre length. The cellular segment linearity is a 
measurement of the shape of the extracted cellular segments. It is proportional to the ratio of a circumference 
of a circle with the same area as the segment to the perimeter of cell segment. The value is considered as 0 if the 
cellular segment is circular and 1 if the segment is completely elongated. The fibre coverage area and cellular seg-
ment coverage area parameters are the image percentage covered by the fibre and cellular features, respectively. 
A strong negative correlation between the fibre segment and cellular segment coverage parameters is perhaps to 
be expected, but it is not guaranteed by the analysis method.

Immunohistochemistry. Histological sections of 4 µ m thickness were prepared for immunohistochem-
istry reactions. A commercial anti-mouse/anti-rabbit detection kit (Novolink Polymer Detection System, Leica 
Biosystems, Newcastle Upon Tyne, United Kingdom) was used according to the manufacturer’s instructions. 
Antigenic recovery of estrogen receptor (ER), progesterone (PR), Ki67 and HER2 were performed in steam 
heat (Pascal) with pH 6.0 citrate (Dako Cytomation Target Retrieval Solution, Dako, Glostrup, Denmark). The 
slides with the histological sections were incubated with the appropriate primary antibody for 16 hours in a 
humid chamber at 4 ◦ C, ER (1:50, clone 1D5, Dako), PR (1:50, hPRa2 clone, Neomarkers, Fremont, CA, USA), 
HER2 (1: 200, polyclonal, Dako) and Ki67 (1:50, MIB-1 clone, Dako). Immunoreactivity was visualized with the 
3 ′-diaminobenzidine chromogen (DAB Substrate System, Dako, Carpinteria, CA, USA) and contrasted with 
Mayer’s hematoxylin. Samples of breast tissue fragments from women positive for ER, PR, HER-2 and Ki67 were 
used as positive controls of the reactions. For negative controls, the primary antibody was replaced with phos-
phate buffered saline (PBS). The analysis of the slides, quantification of immunoreactions and the classification 
of immunophenotypes were performed according to Nunes et al.63. The antibodies are the standard ones used 
in our laboratory routine procedures and the antigenic specificity has already been tested according to works 
published by our  group55,64,65 and works published by other  groups66,67.

Statistical analysis. One-way analysis of variance (ANOVA) and multiple comparisons using the Tuk-
ey’s HSD (honestly significant difference) test were used to compare means between the diagnostic groups and 
p < 0.05 was considered statistically significant. The p values less than 0.001 are denoted by (***), p less than 0.01 
are denoted by (**) and p less than (0.05) are denoted by (*).

For the correlation analysis between the evaluated variables, the Spearman Rank Correlation Coefficient 
statistical test and linear regression were used. For all analyses, a value of p < 0.05 was considered statistically 

Figure 5.  (A) Survival curves for dogs presenting the histological subtypes, CMT carcinoma in mixed tumour, 
CS carcinosarcoma, MC micropapillary carcinoma, SC solid carcinoma. (B) Survival curves separating the cases 
by the collagen mean fibre length, the red line for fibre length ≤ 25.68µ m and the blue line for fibre length 
> 25.68µm.
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significant. These analyses were performed using the Microsoft Windows software, Prism (version 7.0, GraphPad, 
San Diego, CA, United States). The prognostic value of the different clinical-pathological variables was deter-
mined in patients treated with surgery only, based on an initial univariate analysis to assess the cancer-specific 
survival rate according to the immunophenotype. The cancer-specific survival rate was estimated using the 
Kaplan–Meier curve and the comparisons between groups were performed using the Mantel–Cox log rank test. 
Then, a multivariate analysis was performed using the Cox regression model to estimate the risk ratio consid-
ering the variables with p < 0.05 in the univariate analysis. In Cox’s final model, only variables with p < 0.05 
were maintained in the model. The multivariate analysis was performed using the Stata software version 14.0 
(SatataCorp, College Station, TX, USA).
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