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Regulating heat conduction 
of complex networks by distributed 
nodes masses
Kezhao Xiong1,2*, Zhengxin Yan1, You Xie1 & Zonghua Liu3*

Developing efficient strategy to regulate heat conduction is a challenging problem, with potential 
implication in the field of thermal materials. We here focus on a potential thermal material, i.e. 
complex networks of nanowires and nanotubes, and propose a model where the mass of each node 
is assigned proportional to its degree with m

i
∼ k

α

i

 , to investigate how distributed nodes masses 
can impact the heat flow in a network. We find that the heat conduction of complex network can 
be either increased or decreased, depending on the controlling parameter α . Especially, there is an 
optimal heat conduction at α = 1 and it is independent of network topologies. Moreover, we find that 
the temperature distribution within a complex network is also strongly influenced by the controlling 
parameter α . A brief theoretical analysis is provided to explain these results. These findings may open 
up appealing applications in the cases of demanding either increasing or decreasing heat conduction, 
and our approach of regulating heat conduction by distributed nodes masses may be also valuable 
to the challenge of controlling waste heat dissipation in highly integrated and miniaturized modern 
devices.

Fourier’s law J = −κ∇T is the fundamental principle of heat conduction, where κ is the heat conduction coef-
ficient that in the past was considered as an inherent property of a system, independent from the shape and size. 
However, Lepri et al. investigated the thermal transport in microsystems utilizing the FPU model, and found that 
in a one-dimensional system κ can diverge with the increase of the system size with conservation of  momentum1,2. 
This drew great attention in the field of heat conduction in nano-scale systems, and has then been confirmed by 
extensive research, for instance numerical simulations, theoretical analyses, and experimental investigations on 
quasi-one-dimensional systems, such as the graphene, nanowires and  nanotubes3–12 etc. Moreover, the horizon 
of researches along this line were recently extended to thermal  rectification13–15, negative differential thermal 
 resistance16,17, and the effect of thermal-siphon18 etc.

Nanotubes and nanowires have excellent thermal, electrical, mechanical, optical and chemical  properties19,20. 
However, it is still extremely difficult to reliably control the growth and arrangement of single nanotubes and 
nanowries in industrial production, as a result, devices comprises single nanotubes and nanowires are still not 
widely used in reality. A strategy to sidestep this difficulty is use networks of nanotubes or nanowires, instead 
of just single nanotubes and nanowires. Recently, it is reported that these network structure of nanotube and 
nanowire can serve as new nanomaterials for thermal management, and can be potentially applied in large-scale 
transparent conductors, solar cells, field effect transistors, sensors, flat panel displays and interface devices for 
living  cells21–23 etc. Therefore, it becomes crucial to develop models for quasi-nano network materials, to explore 
its thermal transport properties, and to investigate the mechanisms underlying these properties.

Along the line of heat conduction in networks, some important progresses have been achieved. Liu et al. 
firstly studied the heat conduction on coupled chains and found that coupling will cause an interface thermal 
 resistance24. Then, they constructed the first model of heat conduction on complex networks and found that both 
the degree distribution and clustering coefficient will seriously influence the network thermal  transport25. Volkov 
et al. studied the scaling laws of thermal conductivity in random networks of straight conducting nanofibers and 
found that the heat transport can be strongly enhanced by the self-organization of carbon  nanotubes26. Xiong 
et al. further revealed two abnormal effects of heat conduction, i.e. thermal rectification and thermal siphon in 
physical network  model18,27,28. However, despite its broad implication, little is known on how to regulate heat 
conduction in complex networks. In fact, this problem is important in many cases where either increasing or 
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decreasing of heat conduction may be demanded. Increase of heat conduction is essential for eliminating waste 
during heat  transport29. In some other scenarios, such as thermal insulation, decrease or preventing of heat 
conduction becomes the key element, which has been a hot topic in the filed of thermal energy  storage30,31. 
These all lead to the demand of exploring the mechanism that regulates heat conduction in complex networks.

Motivated by this problem, we investigate a network system with nonidentical node mass, with the aim to 
understand how the mass distribution can impact the pattern of heat conduction. This idea of distributed nodes 
masses is applicable in practical situations. Actually, some works have shown that in low-dimensional systems, 
changes of nodes masses can significantly influence the properties of thermal  transport32–34. However, these works 
are based on regular lattice topology but not networks, and the mass distributed to each node is also independ-
ent from the network property, such as node degree. As far as I know, nanonetworks are formed by welding the 
intersections of nanowires or nanotubes, and the intersections after welding are usually called  nanojunctions35,36. 
During the welding process, a large number of atoms are deposited at the nanojunctions, thereby increasing the 
mass of the nanojunctions, and generally the size of the nanojunction increases with increase of the number of 
intersecting nanowires or nanotubes at  nanojunction37–39. In complex networks, nanojunctions are analogous 
to network nodes, and the number of nanowires crossing at nanojunctions can be regarded as nodes degree. To 
counter this, we construct a model, in which each node is assigned a mass that is dependent on its degree, i.e. 
mi ∼ kαi  , and focus on how this correlation and network parameters affect network thermal transport. We find 
that the heat flux on network can be either increased or decreased, depending on the controlling parameter α . 
Further, we find that there is an an optimal value of α = 1 independent of network topologies, and at which the 
heat conduction is most benefited. Moreover, we find that the temperature distribution on complex network 
is also seriously influenced by the controlling parameter α . A brief theoretical analysis is provided to explain 
these results.

Results
The network model with distributed nodes masses. We construct the network model with distributed nodes 
masses by followings. Firstly, we use the method proposed in Ref.40 to construct a complex network, see the sche-
matic figure of Fig. 1. In details, we start from q fully connected nodes, and then at each time step a node with g 
edges is added to the network and connects to a existing node i with the probability of �i ∼ (1− p)ki + p , where 
ki is the degree of the existing node i, and 0 ≤ p ≤ 1 is a control parameter. Iterating this procedure, we general a 
network with N nodes and average degree �k� = 2g . For the case of p = 0 , the nodes added in the system at each 
step tend to connect to the nodes with large degrees in the original network, thus forming a scale-free network 
with degree distribution yielded to power-law distribution. For the case of p = 1 , the new edges at each step will 
randomly connect to the existing nodes, thus forming a random network with degree distribution satisfying 
exponential distribution. While for the case of 0 < p < 1 , it generates a complex network between the scale-free 
and random networks. If there is no special statement, we set q = 3 and g = 2 , i.e. �k� = 4 in this work.

Then, in the second step, we set the mass of node i as

where ki is the degree of node i and M =
∑N

i=1 mi . Here, we have normalized the total mass of network to elimi-
nate its influence on the results. For the case of α = 0 , the mass of each node will be the same in the network, 
i.e. mi = 1/N . While for the case of α > 0 , the mass of node will increase nonlinearly with the increase of node 
degree. Especially, when α is large enough, the mass of entire network will be concentrated to the nodes with 
larger degrees, and the mass of other nodes will be close to 0. This is unrealistic, thus we limit the maximum value 
of α to 3. Figure 1 shows an example for the case of α = 1.5 , where the node mass is reflected by the node size.

(1)mi =
kαi
M

,

Th

Tl

Figure 1.  Schematic representation of the network model with distributed nodes masses, where the masses of 
nodes are correlated to the degrees of nodes by Eq. (1) with α = 1.5 , and the nodes with red and black circles are 
selected as the heat source nodes contacting two thermostats with high temperature Th and low temperature Tl , 
respectively. The arrows denote the directions of heat fluxes.
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After these two steps, we randomly choose two nodes from the network as the source nodes and let them 
contact a high- and low-temperature Langevan  thermostat3,41, respectively. The two source nodes obey fixed 
boundary condition, as shown in Fig. 1.

Without loss of generality and simplicity, the Hamiltonian of the network can be defined as

and the potential

where i runs through all the nodes of the network, xi represents the displacement from the equilibrium position 
of the i-th node. The dynamics of the two source nodes satisfy

where Ŵh,l are the Gaussian white noises with

where mh(ml) is the mass of source node, Th(Tl) is the temperature of source node, kB is the Boltzmann constant, 
and we adopt the dimensionless unit by setting kB = 1 . We set the friction coefficient γ = 5 in this work, which 
is within the recommended range of γ ∈ (1, 100)41 so that a meaningful physics can be obtained. Besides the two 
source nodes, the motion of other nodes in the network obeys the canonical equation

After transient process, the thermal transport on network will reach a steady state. The local temperature of 
node i can be defined  as3

and the heat flux on the edge between two adjacent nodes i and j can be calculated by the  formula3,32

where �· · · � is the long time average.

Numerical simulations. In numerical simulations, we set the network size N = 300 , average degree 
�k� = 4 , and temperature of the high and low thermostats as Th = 0.9 and Tl = 0.1 respectively, if without spe-
cific illustration. We randomly choose two nodes as the source nodes to contact the high and low thermostats, 
respectively. Let J be the total heat flux on the network, defined as the sum of the heat flows from the high-tem-
perature source node to all its neighbors, or the sum of the heat flows from the network to the low-temperature 
source node, see the arrows in Fig. 1. After transient process, J will arrive a constant which can measure the 
efficiency of thermal transport in the  network3.

In order to explore the influence of distributed nodes masses on thermal transport, we make extensive 
numerical simulations on thermal transport for the networks with different parameter α , degree distribution, 
network size and average degree etc. Figure 2a shows the dependence of the total heat flux J on the parameter α 
for different p, where the “squares”, “circles” and “triangles” represent the results for the networks with p = 1, 0.5 
and 0, respectively. All the results are averaged over 50 realizations with randomly chosen source nodes. We 
find that all the values of J increase before α < 1 and reach the maximum Jmax at α = 1 , then decrease with the 
further increase after α > 1 . When α is far away from unity, J quickly decreases across roughly two orders of 
magnitude till α = 3.

Figure 2b shows the dependence of the maximum flux Jmax on the parameter p for α = 1 . We see that Jmax 
increases monotonically with p, confirming that the random network benefits heat conduction better than the 
scale-free network. Figure 2c shows the influence of average degree 〈k〉 on J for N = 300 and p = 1 where the 
“squares”, “circles” and “triangles” represent the results for �k� = 4, 6 and 8, respectively. We see that the curve of 
�k� = 8 is higher than that of �k� = 6 and then both are higher than that of �k� = 4 , indicating that larger 〈k〉 is 

(2)H =

N
∑

i=1

[

p2i
2mi

+ Vi(xi)

]

,

(3)Vi(xi) =
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ki
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]
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(4)
dph
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∂H
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(6)�Ŵh,l(t)� = 0,

(7)�Ŵh(t)Ŵh(0)� = 2γ kBmhThδ(t),
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.

(10)T(i) = �p2i /mi�,

(11)Jij = �ẋi∂V/∂xj�,



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5501  | https://doi.org/10.1038/s41598-021-85011-0

www.nature.com/scientificreports/

beneficial for heat conduction. Figure 2d shows the influence of network size N on J for �k� = 4 and p = 1 where 
the “squares”, “circles” and “triangles” represent the results for N = 100, 300 and 600, respectively. We see that 
the curve of N = 600 is higher than that of N = 300 and then both are higher than that of N = 100 , implying 
that larger N favorites heat conduction.

Notably, from the Fig. 2a,c,d that all the J reach their maximum value Jmax at α = 1 , indicating that a mass 
distribution with α = 1 in Eq. (1) can optimize the heat conduction. In order to further explor the influence of 
thermostats’ temperature on this characteristic, we further research the dependence of the total heat flux J on the 
parameter α for the cases of Th(Tl) = 0.09(0.01) and Th(Tl) = 9.0(1.0) , respectively. From the results in Fig. 3a,b, 

Figure 2.  Influence of the controlling parameter α and network structure on the total flux J, with averaging over 
50 realizations and randomly chosen source nodes. (a) J versus α for N = 300 , �k� = 4 and different p, where 
the “squares”, “circles” and “triangles” represent the results for the networks with p = 1, 0.5 and 0, respectively. 
(b) Dependence of the maximum flux Jmax on the parameter p for α = 1 . (c) J versus α for N = 300 , p = 1 for 
different 〈k〉 , where the “squares”, “circles” and “triangles’ represent the results for �k� = 4, 6 and 8, respectively. 
(d) J versus α for p = 1 , �k� = 4 for different N, where the “squares”, “circles” and “triangles” represent the results 
for N = 100, 300 and 600, respectively.

Figure 3.  Influence of the controlling parameter α and the temperature of thermostats on the total flux J, with 
averaging over 50 realizations and randomly chosen source nodes. (a) For the case of Th = 0.09 and Tl = 0.01 , 
J versus α for N = 300 , �k� = 4 and different p, where the “squares”, “circles” and “triangles” represent the 
results for the networks with p = 1, 0.5 and 0, respectively. (b) For the case of Th = 9.0 and Tl = 1.0 , J versus α 
for N = 300 , �k� = 4 and different p, where the “squares”, “circles” and “triangles” represent the results for the 
networks with p = 1, 0.5 and 0, respectively.
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we can confirm that the temperature of thermostats can not affect the conclusion that α = 1 is beneficial for heat 
conduction. We will discuss its physical mechanism later.

On the other hand, we find that the controlling parameter α can also seriously influence the distribution of 
nodes temperatures. Take the random network of p = 1 as an example. The three kinds of columns of Fig. 4a 
show the distributions of nodes temperatures for α = 0, 1 and 3, respectively. It follows an approximate Pois-
son distribution for the case of α = 0 , a narrow range with a high peak for the case of α = 1 , and a uniform 
distribution for the case of α = 3 . Therefore, the temperature distribution for different α can be distinct from 
each other. We further confirm that these significant differences are consistent for other network with different 
parameters of p, N and 〈k〉 . To understand the mechanism of these significant differences, we show in Fig. 4b–d 
the dependence of node temperature Ti on its degree ki for α = 0, 1 and 3, respectively. Node temperature Ti 
depends strongly on ki for α = 0 (Fig. 4b) and α = 3 (Fig. 4d). However, it is independent of ki for α = 1 (Fig. 4c), 
indicating a temperature platform is formed in the case of α = 1 . This is an interesting phenomenon and can 
help us to understand the mechanism of the observed maximum Jmax at α = 1 . In general, there are two factors 
influencing the heat conduction of node i. One is the input and output connections, i.e. more input and output 
connections, more heat conduction. As the numbers of input and output connections are proportional to ki , the 
heat conduction will be also proportional to ki . Another is the mass of node i. As a larger mass reduces the heat 
conduction (see Eq. (2)), the case of α = 1 indicates a inverse proportion to mi , i.e. ki . These two factors compete 
and reach a balance at all the nodes and thus make a uniform heat transport on the network. While for the cases 
of either α > 1 or α < 1 , the balance is broken. The consequence is that heat transport is significantly reduced 
at those nodes with either larger ki (for the case of α > 1 ) or smaller ki (for the case of α < 1 ), thus reduce the 
total flux J of network. This competition and balance leads to the optimization of α = 1 for heat conduction, 
i.e., Jmax at α = 1.

Further, we study how the other parameters of network influence heat conduction, such as the clustering 
coefficient c and assortativity coefficient r, see Methods for details. For convenience of discussion, we choose the 
random network of p = 1 . Figure 5a shows the influence of c on J where the three curves represent the cases of 
c = 0.1, 0.4 and 0.7, respectively. We see that all the three curves are bell-shaped and the maximum Jmax is still 
located at α = 1 , i.e. consistent as in Fig. 2a,c,d. Similarly, Fig. 5b shows the influence of r on J where the three 
curves represent the cases of r = −0.6, 0 and 0.6, respectively. We see that the maximum Jmax is also obtained at 
α = 1 . Figure 5c shows the dependence of Jmax on c for α = 1 . We see that Jmax decreases with the increase of c, 
which is consistent with Ref.25. Figure 5d shows the dependence of Jmax on r for α = 1 . We see that Jmax increases 
with r, indicating that a strong assortativity coefficient r favorites heat conduction. Combining results in Fig. 5, 

Figure 4.  Influence of distributed nodes masses on the distribution of nodes temperatures for N = 300 , 
p = 1 and �k� = 4 , where the circles with Th and Tl are the two source nodes with high and low temperatures, 
respectively. (a) Represents the distributions of nodes temperatures where the three kinds of columns represent 
the cases for α = 0, 1 and 3, respectively. (b–d) represent the dependence of node temperature Ti on its degree ki 
for α = 0, 1 and 3, respectively.
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network characters such clustering coefficient and assortativity dose not impact the optimal α , indicating that 
Jmax at α = 1 is a robust feature for heat conduction in networks.

Mechanism of the maximum total flux J of networks. To go deeper to the mechanism of the maxi-
mum Jmax from α = 1 , we analyze the time series of different nodes. We find that the oscillation frequencies are 
different from node to node and seriously depend on the parameter α . To show it in details, we take the random 
network with p = 1 and arbitrarily choose three nodes s, u and v as examples. Figure 6a shows their time series 
for the case of α = 0 where the degrees of the three nodes are ks = 12, ku = 6 and kv = 2 , respectively. We see 
that the node s has the largest oscillation frequency while the node v has the smallest one, indicating that the 
frequencies are proportional to their degrees. Figure 6b shows their time series for the case of α = 1 . We find that 
their frequencies are approximately the same, confirming that heat fluxes go freely from one node to another in 
the network. Figure 6c shows the results for the case of α = 3 . We see that the node s has the smallest oscillation 
frequency while the node v has the largest one, in contrast to the case of Fig. 6a. In the next section, we will show 
that the match of oscillation frequency among nodes is the key factor to influence the heat conduction and thus 
results in the observations in Figs. 2, 3, 4 and 5.

Theoretical analysis. As we all know, phonon is the carrier of heat conduction in vibration systems, thus 
we need to focus on the phonon spectrum of network nodes to explain the above numerical simulation results. 
It can be known from the Refs.18,27 that the frequency width fi of a node i in a complex network is related to its 
degree ki

What needs to be emphasized here is that Eq. (12) is only suitable for the case of uniform distribution, i.e. 
α = 0 . Based on the derivation of Eq. (12), we can easily obtain the following Eq. (13) for other cases of non-
uniform distribution in our new model

(12)0 < fi <
1

π

√

ki

2
.

(13)0 < fi <
1

π

√

k1−α
i M

2
.

Figure 5.  Influence of the clustering coefficient c and assortativity coefficient r on the total heat flux J for 
N = 300 and �k� = 4 , with averaging over 50 realizations and randomly chosen source nodes. (a) represents 
the influence of c on J where the “squares”, “circles” and “triangles” represent the cases of c = 0.1, 0.4 and 0.6, 
respectively. (b) represents the influence of r on J where the “squares”, “circles” and “triangles” represent the cases 
of r = −0.6, 0 and 0.6, respectively. (c) Dependence of Jmax on c for α = 1 . (d) Dependence of Jmax on r for 
α = 1.
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From Eq. (13) the frequency width fi of node i is determined by its degree ki and the control parameter α . Spe-
cifically, it will be independent of the node degree when α = 1 . Figure 7 shows the results for the three nodes 
s, u and v. We see that the three curves intersect at α = 1 . Moreover, with the increase of α , the frequency width 
decreases monotonically for the node s, keeps approximate constant for the node u, but increases monotonically 
for the node v. These results are consistent with all the frequencies in Fig. 6. To further verify these theoretical 
results, we carry out the Fourier transform for the time series of Fig. 6. Figure 8a–c show the power spectra of 
time series, corresponding to Fig. 6a–c, respectively. They are completely consistent with the theoretical results 
from Eq. (13).

Figure 6.  Time series of arbitrarily chosen nodes s, u and v from the random network of p = 1 , where 
the degrees of the nodes s, u and v are 12, 6 and 2, respectively. (a–c) represent the cases of α = 0, 1 and 3, 
respectively.

Critical pointCritical point

 if

Figure 7.  Dependence of the spectrum width fi on the control parameter α where the three curves represent 
the cases of nodes s, u and v, respectively.



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5501  | https://doi.org/10.1038/s41598-021-85011-0

www.nature.com/scientificreports/

Discussion
From the aspect of energy transport, we can also understand the optimal α = 1 for heat conduction. It is now well 
known that the carrier of heat flow is phonons. Whether the widths of phonon spectra of nodes are consistent 
with each other significantly affect the thermal transport  efficiency17. According to the theoretical analysis and 
the power spectra of time series, we discover that the spectra widths are the same from node to node for α = 1 
and thus result in the highest efficiency of energy transport, i.e. the maximum Jmax.

The findings in this work may have potential applications. Eliminating waste heat is becoming more and more 
important in highly integrated and miniaturized devices and many new materials with excellent thermal conduc-
tivities are gradually discovered such as carbon  nanotubes42,  graphene43, and cubic boron  arsenide44 etc. On the 
other hand, reducing or preventing heat conduction is also needed in other cases such as thermal  insulation30,31. 
Thus, regulating heat conduction is the key for its applications. Regarding our model, the key point is how to 
implement the relationship of Eq. (1) in reality. For this purpose, we may borrow the idea of brain networks, 
where each node represents an area of brain and thus contains a number of regions of interest (ROIs)45–49. By this 
idea, we can also let each node of Eq. (1) be a community or subnetwork with dense connections. In this way, 
the mass of a node can be either large or small by easily changing its size of community. Thus, the approach of 
distributed nodes masses is qualified for the regulating of heat conduction in reality, i.e. implement the purpose 
of either good or poor heat conduction.

In conclusions, we propose a model of distributed nodes masses to study the regulating of heat conduction 
in complex networks. By this model, we can implement the purpose of controlling the total heat flux of network. 
The numerical results are confirmed by theoretical analysis. These findings may shed light on developing strate-
gies of regulating heat conduction in systems with complex structure and suggest an appealing way to produce 
new thermal insulation materials.

Methods
The scheme of adjusting clustering coefficient c or assortativity coefficient r. For a complex 
network with fixed degree distribution, its topology can be still changed by adjusting its clustering coefficient c 
or assortativity coefficient r. Clustering coefficient describes the closeness between the adjacent nodes of a node 
in the network, which can be calculated as  follows50:

(14)c =
1

N
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Figure 8.  Power spectra of the time series in Fig. 6a–c where the black solid line, red dash line and blue dot line 
correspond to the nodes s, u and v, respectively. The width of grey arrows is the theoretical result by Eq. (13). 
The other parameters are the same as in Fig. 6.
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where ki is the degree of node i, Ei is the number of edges between all neighbors of node i, and 0 < c < 1 . With 
the increase of c, the network become highly clustered.

The assortativity coefficient is another important quantity describing the preference of the connections 
between nodes in the complex network. Specifically, the network is defined as an assortativity network if a node 
tends to connect another node with similar degree; otherwise, the network is a disassortativity network if a 
node tends to connect another node with large degree difference. The assortativity coefficient r of network can 
be calculated as  follows51:

where ki and kj denote the degree of two endpoints on any connected edge in the network, and �·� represents 
the average of all connected edges in the network. In this work, we use Kim’s reconnection  method52 to adjust 
the clustering coefficient c and assortativity coefficient r. In details, we first randomly select two edges in the 
network. Suppose one is A− B and another is C − D . Then, we disconnect A− B and C − D and reconnect 
them into A− D and B− C . It should be emphasized that repeated edges must be prohibited in this process. 
The advantage of this method is that the degree of nodes is not changed in the process of reconnection, i.e. the 
degree distribution of network is maintained.

Received: 5 November 2020; Accepted: 15 February 2021

References
 1. Kaburaki, H. & Machida, M. Thermal conductivity in one-dimensional lattices of Fermi-Pasta-Ulam type. Phys. Lett. A 181, 85–90 

(1993).
 2. Prosen, T. & Campbell, D. K. Momentum conservation implies anomalous energy transport in 1D classical lattices. Phys. Rev. Lett. 

84(13), 2857 (2000).
 3. Lepri, S., Livi, R. & Politi, A. Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1–80 (2003).
 4. Maruyama, S. A molecular dynamics simulation of heat conduction in finite length SWNTs. Physica B 323, 193–195 (2002).
 5. Chang, C. W., Okawa, D., Garcia, H., Majumdar, A. & Zettl, A. Breakdown of Fouriers law in nanotube thermal conductors. Phys. 

Rev. Lett. 101, 075903 (2008).
 6. Yang, N., Zhang, G. & Li, B. Violation of Fourier’s law and anomalous heat diffusion in silicon nanowires. Nano Today 5, 85–90 

(2010).
 7. Liu, S., Xu, X., Xie, R., Zhang, G. & Li, B. Anomalous heat conduction and anomalous diffusion in low dimensional nanoscale 

systems. Eur. Phys. J. B 85, 337 (2012).
 8. Sato, D. S. Pressure-induced recovery of Fourier’s law in one-dimensional momentum-conserving systems. Phys. Rev. E 94, 012115 

(2016).
 9. Fugallo, G. et al. Thermal conductivity of graphene and graphite: Collective excitations and mean free paths. Nano Lett. 14, 

6109–6114 (2014).
 10. Xu, X. et al. Length-dependent thermal conductivity in suspended single-layer graphene. Nat. Commun. 5, 1–6 (2014).
 11. Dong, L. et al. Dimensional crossover of heat conduction in amorphous polyimide nanofibers. Natl. Sci. Rev. 4, 500–506 (2018).
 12. Shi, C. et al. Observation of acoustic spin. Natl. Sci. Rev. 6, 707–712 (2019).
 13. Terraneo, M., Peyrard, M. & Casati, G. Controlling the energy flow in nonlinear lattices: A model for a thermal rectifier. Phys. Rev. 

Lett. 88, 094302 (2002).
 14. Li, B., Wang, L. & Casati, G. Thermal diode: Rectification of heat flux. Phys. Rev. Lett. 93, 184301 (2004).
 15. Chang, C. W., Okawa, D., Majumdar, A. & Zettl, A. Solid-state thermal rectifier. Science 314, 1121–1124 (2006).
 16. Li, B., Wang, L. & Casati, G. Negative differential thermal resistance and thermal transistor. Appl. Phys. Lett. 88, 143501 (2006).
 17. Li, N. et al. Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 84, 1045 (2012).
 18. Xiong, K., Liu, Z., Zeng, C. & Li, B. Thermal-siphon phenomenon and thermal/electric conduction in complex networks. Natl. 

Sci. Rev. 7, 270–277 (2020).
 19. Baughman, R. H., Zakhidov, A. A. & De Heer, W. A. Carbon nanotubes-the route toward applications. Science 297, 787–792 (2002).
 20. Fujii, M. et al. Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 95, 065502 (2005).
 21. Lee, B. Y. et al. Integrated devices based on networks of nanotubes and nanowires. NPG Asia Mater. 2, 103–111 (2010).
 22. Piao, M. et al. Effect of intertube junctions on the thermoelectric power of monodispersed single walled carbon nanotube networks. 

J. Phys. Chem. C 118, 26454–26461 (2014).
 23. Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).
 24. Liu, Z. & Li, B. Heat conduction in simple networks: The effect of inter-chain coupling. Phys. Rev. E 76, 051118 (2007).
 25. Liu, Z., Wu, X., Yang, H., Gupte, N. & Li, B. Heat flux distribution and rectification of complex networks. New J. Phys. 12, 023016 

(2010).
 26. Volkov, A. N. & Zhigilei, L. V. Scaling laws and mesoscopic modeling of thermal conductivity in carbon nanotube materials. Phys. 

Rev. Lett. 104, 215902 (2010).
 27. Xiong, K., Zeng, C., Liu, Z. & Li, B. Influence of the degree of a complex network on heat conduction. Phys. Rev. E 98, 022115 

(2018).
 28. Xiong, K., Zhou, J., Tang, M., Zeng, C. & Liu, Z. Control of thermal conduction and rectification in a model of complex networks 

with two asymmetric parts. Phys. Rev. E 98, 062144 (2018).
 29. Cai, Q. et al. Outstanding thermal conductivity of single atomic layer isotope-modified boron nitride. Phys. Rev. Lett. 125, 085902 

(2020).
 30. Villasmil, W., Fischer, L. J. & Worlitschek, J. A review and evaluation of thermal insulation materials and methods for thermal 

energy storage systems. Renew. Sustain. Energy Rev. 103, 71–84 (2019).
 31. Hu, F., Wu, S. & Sun, Y. Hollow-structured materials for thermal insulation. Adv. Mater. 31, 1801001 (2019).
 32. Yang, N., Li, N., Wang, L. & Li, B. Thermal rectification and negative differential thermal resistance in lattices with mass gradient. 

Phys. Rev. B 76, 020301 (2007).
 33. Reich, K. V. Temperature gradient and Fourier’s law in gradient-mass harmonic systems. Phys. Rev. E 87, 052109 (2013).
 34. Romero-Bastida, M. & Gonzalez-Alarcon, A. Size effects on thermal rectification in mass-graded anharmonic lattices. Phys. Rev. 

E 90, 052152 (2014).
 35. Guo, S. The creation of nanojunctions. Nanoscale 2, 2521–2529 (2010).

(15)r =
�kikj� − �

(

ki + kj
)

/2�2

�

(

k2i + k2j

)

/2� − �
(

ki + kj
)

/2�2
,



10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5501  | https://doi.org/10.1038/s41598-021-85011-0

www.nature.com/scientificreports/

 36. Garnett, E. C. et al. Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 11, 241–249 (2012).
 37. Shen, L., Zhang, H. & Guo, S. Control on the morphologies of tetrapod ZnO nanocrystals. Mater. Chem. Phys. 114, 580–583 (2009).
 38. Ye, S., Rathmell, A. R., Chen, Z., Stewart, I. E. & Wiley, B. J. Metal nanowire networks: The next generation of transparent conduc-

tors. Adv. Mater. 26, 6670–6687 (2014).
 39. Ding, Y., Cui, Y., Liu, X., Liu, G. & Shan, F. Welded silver nanowire networks as high-performance transparent conductive elec-

trodes: Welding techniques and device applications. Appl. Mater. Today 20, 100634 (2020).
 40. Liu, Z., Lai, Y., Ye, N. & Dasgupta, P. Connectivity distribution and attack tolerance of general networks with both preferential and 

random attachments. Phys. Lett. A 303, 337–344 (2002).
 41. Chen, J., Zhang, G. & Li, B. Molecular dynamics simulations of heat conduction in nanostructures: Effect of heat bath. J. Phys. Soc. 

Jpn. 79, 074604 (2010).
 42. Berber, S., Kwon, Y. K. & Tomanek, D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84, 4613 (2000).
 43. Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).
 44. Li, S. et al. High thermal conductivity in cubic boron arsenide crystals. Science 361, 579–581 (2018).
 45. Bansal, K. et al. Cognitive chimera states in human brain networks. Sci. Adv. 5, eaau8535 (2019).
 46. Wang, Z. & Liu, Z. A brief review of chimera state in empirical brain networks. Front. Physiol. 11, 724 (2020).
 47. Kang, L., Tian, C., Huo, S. & Liu, Z. A two-layered brain network model and its chimera state. Sci. Rep. 9, 1–12 (2019).
 48. Kang, L., Wang, Z., Huo, S., Tian, C. & Liu, Z. Remote synchronization in human cerebral cortex network with identical oscillators. 

Nonlinear Dyn. 99, 1577–1586 (2020).
 49. Huo, S., Tian, C., Zheng, M., Guan, S. & Zhou, C. Spatial multi-scaled chimera states of cerebral cortex network and its inherent 

structure-dynamics relationship in human brain. Natl. Sci. Rev. https ://doi.org/10.1093/nsr/nwaa1 25 (2020).
 50. Albert, R. & Barabsi, A. L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002).
 51. Newman, M. E. Assortative mixing in networks. Phys. Rev. Lett. 89, 208701 (2002).
 52. Kim, B. J. Performance of networks of artificial neurons: The role of clustering. Phys. Rev. E 69, 045101 (2004).

Acknowledgements
This work was partially supported by the National Natural Science Foundation of China under Grant Nos. 
12005166, 11675056 and 11835003, and the Natural Science Foundation of Shaanxi Provincial Department of 
Education under Grant No. 20JK0764.

Author contributions
K.X. and Z.L. conceived the research project. K.X., Z.Y., Y.X. and Z.L. performed research and analyzed the 
results. K.X. and Z.L. wrote the paper. All authors reviewed and approved the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to K.X. or Z.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2021

https://doi.org/10.1093/nsr/nwaa125
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Regulating heat conduction of complex networks by distributed nodes masses
	Results
	Numerical simulations. 
	Mechanism of the maximum total flux J of networks. 
	Theoretical analysis. 

	Discussion
	Methods
	The scheme of adjusting clustering coefficient c or assortativity coefficient r. 

	References
	Acknowledgements


