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Accurate prediction of birth 
implementing a statistical model 
through the determination 
of steroid hormones in saliva
Silvia Alonso1, Sara Cáceres1*, Daniel Vélez 2, Luis Sanz2, Gema Silvan1, Maria Jose Illera1 & 
Juan Carlos Illera1

Steroidal hormone interaction in pregnancy is crucial for adequate fetal evolution and preparation for 
childbirth and extrauterine life. Estrone sulphate, estriol, progesterone and cortisol play important 
roles in the initiation of labour mechanism at the start of contractions and cervical effacement. 
However, their interaction remains uncertain. Although several studies regarding the hormonal 
mechanism of labour have been reported, the prediction of date of birth remains a challenge. In 
this study, we present for the first time machine learning algorithms for the prediction of whether 
spontaneous labour will occur from week 37 onwards. Estrone sulphate, estriol, progesterone and 
cortisol were analysed in saliva samples collected from 106 pregnant women since week 34 by 
enzyme-immunoassay (EIA) techniques. We compared a random forest model with a traditional 
logistic regression over a dataset constructed with the values observed of these measures. We 
observed that the results, evaluated in terms of accuracy and area under the curve (AUC) metrics, 
are sensibly better in the random forest model. For this reason, we consider that machine learning 
methods contribute in an important way to the obstetric practice.

In the obstetric field, one of the main objectives is the understanding of the specific physiology at the begin-
ning of parturition and the hormonal interaction, as these concepts are crucial for the adaptation of the fetus to 
extrauterine life and labour.

The gestation period is considered at term between week 37–421. The perinatal mortality rate increases from 
2 to 3% in week 40 to 4–7% in week  422, with post-term pregnancy a reason for the induction of  labour3. Cur-
rently, there is no set time for induction, although it is recommended between week 41–424. Only 4% of infants 
are born on the estimated date of delivery, which is calculated based on the date of the last menstruation plus 
280 days, with an error of two  weeks5. Childbirth involves the complex relationship between mother, fetus and 
placenta that implies a complex interaction of biomolecular, immunological and endocrine mechanisms, modu-
lated by aetiology, ethnicity and gestational  age6. It is a perfect coordination of events that include progressive 
effacement and dilation of the cervix, rupture of the amniotic membranes, and initiation and maintenance of 
effective uterine contractions, culminating in  labour7.

The development of pregnancy is under hormonal control of the fetoplacental unit. Progestogens, estrogens, 
androgens and glucocorticoids are secreted during pregnancy and their interaction modulates different cellular 
and physiological  mechanisms8.

Estrogen concentrations progressively increase during  pregnancy9 and are involved in the increase of the 
size of the uterus, the stimulation of the expression of oxytocin (OT) and progesterone (P4) receptors and the 
induction of synthesis of hepatic proteins. In late pregnancy, estrogens are involved in the activation of the 
labour  mechanism8.

Estriol (E3) is the dominant estrogen during pregnancy. It is produced by the placenta from dehydroepian-
drosterone sulphate (DHEAS) synthesised exclusively by the fetal adrenal gland, and is used as an indicator of the 
function of the fetoplacental  unit10–12. Another important estrogen during pregnancy is estrone sulfate (E1SO4), 
which acts as a reserve for the peripheral formation of bioactive estrogenic  forms13.
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In comparison, P4 is essential for the maintenance of pregnancy as it inhibits the contractility of the myo-
metrium by decreasing the production of prostaglandins and the genetic expression of contraction associated 
proteins (CAPs)14.

Regarding glucocorticoids, cortisol (C) is of vital importance in pregnancy, since it is responsible for fetal 
lung  maturation15. The increase in C levels at the end of pregnancy can serve as a signal for the fetus to induce 
estrogen synthesis prior to the onset of  delivery16, 17.

The endocrine system is a complex regulatory system with multiple levels of organisation (central nervous 
system, tissues, adrenal glands, cells) and time cycles (circadian oscillations, rapid responses, ultradian rhythms). 
This system displays nonlinear feedback responses involved in the interaction between its components and 
other parts of the  body18. Statistical models have assisted in understanding how feedback mechanisms are key 
to homeostatic  modulation18, and also the behaviour of the complex pituitary-adrenal–pituitary axis  complex19.

Traditional logistic regression models are generally used to face a problem of predicting premature  births20. 
However, the use of machine learning models has aroused growing interest and have been widely employed in 
 bioinformatics21, as well as in different fields of health  sciences22, 23. The possibility of its use is also mentioned 
in the diagnosis of premature births and emerging obstetric  diseases20. In this way, machine learning models, 
such as tree-based algorithms and neural networks, can be used to address problems related to the prediction of 
labour. In this study, random forest models were used to contrast the contribution of such a machine learning 
technique, compared to traditional logistic regression models.

Therefore, the aim of our study was to determine P4, C, E3 and E1SO4 levels by a non-invasive method, in 
saliva samples from healthy pregnant women during the third trimester of pregnancy (from week 27 to the time 
of delivery), in order to develop a mathematical model to predict the probability of a spontaneous birth.

Results
Validation parameters. The sensitivity of the EIA technique was tested by means of low detection limit 
and calculated in 10 consecutive assays. Results were P4 = 0.25  nmol/L, C = 0.14  nmol/L, E3 = 0.13  nmol/L 
and E1SO4 = 0.31  nmol/L. The accuracy of the EIA was tested by determining the recovery rates of known 
amounts of P4, C, E3 and E1SO4 spiked into saliva samples. The average range of recovery rates was as follows 
(mean ± standard deviation): P4 = 94.29 ± 3.85 to 98.71 ± 5.37; C = 94.29 ± 3.85 to 97.15 ± 2.68; E3 = 90.75 ± 3.92 
to 99.65 ± 2.01; and E1SO4 = 90.08 ± 3.29 to 93.27 ± 0.90. Precision of P4, C, E3 and E1SO4 was determined 
by calculating the intra- and inter-assay coefficients of variation (CV%). P4 = intra-assay: 3.2 ± 0.98%, inter-
assay: 5.3 ± 0.89%; C = intra-assay: 4.8 ± 1.02%, inter-assay: 7.4 ± 1.23%; E3 = intra-assay: 6.7 ± 1.32%, inter-assay: 
9.1 ± 2.14%; and E1SO4 = intra-assay: 2.9 ± 0.84%, inter-assay: 6.5 ± 1.36%. In order to determine the effects of 
saliva on standard curve, the standard curves with saliva samples were run in parallel with the standard dose–
response curve. There was a good degree of parallelism between both standard curves for the hormones studied: 
P4, R = 0.87; C, R = 0.84; E3, R = 0.89; and E1SO4, R = 0.83.

Hormonal concentrations. Total means of each hormone together with a confidence interval based on 
one standard deviation were calculated from week 26–41 (Fig. 1 and supplementary Table 1). In addition, the 
evolution of mean values distinguished by the week of delivery is also shown. Among all the hormones ana-
lysed, P4 is the only one that increased gradually throughout the weeks of pregnancy during the third trimester 
(Fig.  1A). C and E3 results showed that concentrations increased significantly (p < 0.05) from week 37 until 
giving birth (Fig. 1B,C). E1SO4 concentrations started increased exponentially from the  35th week until giving 
birth (Fig. 1D).

Regarding repeated measures correlation coefficient (rmcorr) between hormones, results demonstrated that 
all hormones are positively correlated (Table 1), with C as the one presenting the strongest correlation with the 
rest of the hormones while P4 as the one with the weakest correlation.

Statistical model. We have adjusted the statistical models in order to predict the probability of spontane-
ous birth in the following week, from gestation week 37 (37th week included), based on the hormonal levels 
collected since the 34th week (Fig. 1). It was decided to adjust two types of statistical models. On the one hand, 
we fit a multivariate logistic regression model, since it is a reference model in the biosanitary field, mainly due to 
its simple interpretation. Such a model allows the measurement of the influence on the response variable of the 
independent variables by means of the odds ratio associated with each of the estimated parameters. On the other 
hand, a random forest model has been adjusted, which is a model that loses the interpretability of the results, but 
in return, is very competitive from the predictive point of  view25.

Both models have been implemented using SAS Institute Enterprise Miner software, which internally invokes 
the DMREG procedure to perform the logistic regression and HPFOREST procedure to perform the random 
forest, proposing accuracy as the metric to be maximised.

In the logistic regression model, the logit function has been considered as the linkage function. Also, a step-
wise variable selection process has been used, proposing a significance value of 0.05 for the sl-entry and sl-stay 
parameter. To avoid possible overfitting effects in the adjustment of the models, we have applied a cross-validation 
strategy. The value obtained for the accuracy metric in this process have been 77.4%. The assessment over the 
test dataset has provided an accuracy of 69.07% (Table 2). 

Table 3 shows the order in which the variables have been included in the model. No variables were removed 
in the adjustment process.

Table 4 shows the estimates of the model coefficients, the corresponding p-values and the odds ratios associ-
ated with variables selected.
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We can observe that the positive and negative signs of the coefficients associated with the hormonal variables 
are consistent with the biological functions. We think that negative values for E1SO4 and progesterone are related 
to longer pregnancies, while positive signs for estriol and cortisol are related to earlier deliveries.

In the random forest model, a maximum of 100 decision trees were considered. Regarding the value of the 
parameters associated to the trees, following are those considered by default in Enterprise Miner:

• Maximum depth = 50
• Number of training observations a node must have to consider splitting it = 30
• Minimum number of observations per leaf = 1
• Percent of the training dataset randomly selected to adjust each one of the trees = 60%. Seed used for generat-

ing random numbers = 12,345
• Number of variables by tree = int

(√

total number of variables
)

= int
(√

22
)

= 4.

Figure 1.  Progesterone (A), cortisol (B), estriol (C) and estrone sulphate (D) mean concentrations during 
third trimester of pregnancy (from 34th week until delivery). Values corresponded to each group of women, 
distinguished by the week of delivery.

Table 1.  Repeated measures correlation (rmcorr) of P4, C, E3, and E1SO4 concentrations in third trimester of 
gestation.

From 26–37 weeks

v1 v2 ρv1v2

CORTISOL ESTRIOL 0.374

CORTISOL PROGEST 0.542

CORTISOL E1SO4 0.408

ESTRIOL PROGEST 0.251

ESTRIOL E1SO4 0.365

PROGESTE E1SO4 0.314
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In this case, to avoid possible overfitting, we used a modelling strategy used by Enterprise Miner called Out-
Of-Bag (OOB) because it is the alternative this software proposed to the well-known cross-validation strategy. 
In the OOB strategy, the observations associated with each one of the adjusted trees are called the bagged 
observations, while those excluded are called OOB observations. These last observations were used in order to 
decide the number of trees to be ensembled to improve the capacity of generalisation of the model, similar to a 
cross-validation strategy.

The evaluation of the accuracy metric leads us to consider as an optimal model the ones that ensemble a total 
of 60 or 71 trees (Fig. 2), showing an OOB accuracy of 81.03%. According to the principle of parsimony (Occam’s 
razor) recommended in the context of  modelling26, we decided to use the simplest model, therefore, the one 
covering 60 trees was taken. The assessment over the test dataset provided an accuracy of 79.38% (see Table 2).

A list representing the relative importance of the variables in this model is also shown in Fig. 2. This relevance 
is established based on the degree of participation of these variables in each of the 60 trees that comprise the 
model. The fact that the same variable can participate in the same tree several times justifies that the participa-
tion of each variable can be greater than 60. Therefore, it can be seen that the E1SO4 value average over the four 
weeks of the last month (E1SO4_MONTH variable) is the most important effect to be considered. The same 
average values of Progesterone-PROGESTERONE_MONTH and the percentage variation of Estriol- ESTRIOL_
VAR_WEEK over the last two weeks were, respectively, the second and third most relevant variables, being the 

Table 2.  Confusion matrices of logistic regression and random forest models over test dataset. TN = number 
of true negative cases, FN = number of false negative cases, FP = number of false positive cases, TP = number 
of true positive cases, PPV = positive predictive value (precision), NPV = negative predictive value, AUC = area 
under the ROC. Being:Accuracy =

TN+TP
TN+FN+FP+TP , PPV = PositivePredictiveValue(Precision) = TP

TP+FP , 
NPV = NegativePredictiveValue = TN

TN+FN

Logistic regression Random forest

Actual 0 1 Total Actual 0 1 Total

Predicted

0 TN = 52 FN = 15 67 0 60 13 73

1 FP = 15 TP = 15 30 1 7 17 24

TOTAL 67 30 97 TOTAL 67 30 97

Accuracy 69.07% Accuracy 79.38%

PPV 50.00% PPV 70.83%

NPV 77.61% NPV 82.19%

AUC 0.707 AUC 0.819

Table 3.  Evolution of training success rate and cross validation of stepwise logistic regression.

Step Sense Variable Cross-validation accuracy (%)

1 Entry ESTRIOL_VAR_WEEK 76.41

2 Entry CORTISOL_FORTNIGHT 74.87

3 Entry E1SO4_VAR_FORTNIGHT 76.92

4 Entra PRIMIPARA 73.33

5 Entry AGE 76.92

6 Entry PROGESTERONA_MONTH 77.44

Table 4.  Estimation, p-values and odds ratios associated with variables of logistic regression model.

Variable Estimation SE p-value Odds ratio

INTERCEPT 7.1399 2.8555 0.0124

ESTRIOL_VAR_WEEK 8.9654 1.9565  < 0.0001 999

CORTISOL_FORTNIGHT 0.1987 0.0549 0.0003 1.22

E1SO4_VAR_FORTNIGHT − 0.9205 0.4175 0.0275 0.398

PRIMIPARA (NO) 0.6204 0.2039 0.0023 NO VS YES (3.458)

AGE − 0.2045 0.0748 0.0062 0.815

PROGESTERONA_MONTH − 0.916 0.4646 0.0486 0.4
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only ones that participate in more than 100 trees. The first variable associated with cortisol hormone appeared 
in the seventh position.

In Table 2, the confusion matrices associated with both models are presented. The accuracy, the positive and 
the negative predictive value (PPV and NPV, respectively) showed that the random forest model provides bet-
ter results than the logistic model. The area under the Receiver Operating Characteristics (ROC) curve, one of 
the most important evaluation metrics to verify the performance of any classification  model27, showed that the 
random forest model works better also.

Moreover, two criteria were used as a baseline to compare the accuracy of the models. Firstly, the maximum 
randomness criterion, consisted of assigning the dominant class (birth = 0) to all cases. Although we considered 
this criterion to be very conservative, it was observed that the reference value it provides is 67/97 (69.07%), 
which is equal to the accuracy of the logistic regression, but significantly less than that of the random forest 
model (79.38%). Secondly, the proportional randomness criterion consisted of randomly assigning 0 and 1 values 
according to the actual proportion of the binary event analysed. Assuming that the predictions are made at ran-
dom regardless of the real values, the expected probability of coincidences using this criterion is 0.5727 (57.27%).

being p = P(actualBirth = 1) and 1− p = P(actualBirth = 0).
The second criterion is considered reasonable to test the true goodness of fit of the model. Then, in the 

case of the multivariate logistic regression model, the reference precision improves by 11.80 percentage points 
(69.07–57.27%), while with the random forest model the improvement is 22.11 percentage points (79.38–57.27%) 
(Table 5).

These results led us to propose the random forest model as appropriate to predict the week in which birth is 
most likely to occur, although it has less explanatory power than the logistic regression model.

Finally, the confusion matrices, detailed per week, are presented in Table 5. It was observed that the accuracy 
of the model is higher in the 37th week (85.71%), but this result must be interpreted carefully because in this 
week, the model tends to predict birth = 0, taking into account that it is the week in which fewer births occur. It 
should be considered that this prediction was provided by the model in 33 of the 35 cases, and hence in almost 
94.30% of the cases. This allowed the highest NPV value (87.88%) but, this should not be considered as an 
important result because the maximum randomness criterion would provide a value of 85.71% (30/35). On the 
other hand, the number of positive cases predicted in each week was similar to the actual cases in the weeks 
numbered 38, 39, 40 (eight vs. 10, six vs, eight, eight vs. seven, respectively) and therefore, the corresponding 
results could be considered more interesting.

Discussion
In this study, the physiological variations of P4, C, E3 and E1SO4 during the third trimester are shown. These 
variations played an important role in pregnancy and in the preparation of labour mechanisms. It is convenient to 
explain that the activation of labour was not directly related to changes in the levels of estrogen and progesterone; 
however, this event could be affected by an alteration in the response of the myometrium to the expression of 

P
(

actual = 1 ∩ predicted = 1
)

+P
(

actual = 0 ∩ predicted = 0
)

= p2+
(

1− p
)2 =

(

67

97

)2

+
(

30

97

)2

= 0, 5727

Figure 2.  Evolution of success rate in training and Out-Of-Bag samples with random forest model.
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estrogen receptors (ER) and progesterone receptors (PR). The interaction between PR and ER of the myome-
trium prevents the action of estrogens during most of the pregnancy, while in preparation for delivery, there is 
a withdrawal of progesterone and estrogen  activation28.

We implemented the analysis of these hormones in saliva samples, a useful non-invasive method to predict 
the week of spontaneous delivery. Our results revealed a positive hormonal correlation between all studied 
hormones, with C being the strongest correlation to the rest of hormones. Proper functioning and interaction 
of steroidogenic tissues, in addition to the enzymes involved in their synthesis and transport, are crucial since 
intrauterine exposure of the fetus to abnormal glucocorticoid  levels29 or sex  hormones30, 31 can negatively affect 
fetal development. Some authors state that there is a relationship between fetal sex with estrone and estradiol 
levels during pregnancy, however, they did not find statistically significant  results12.

The role of the different sex hormones has been extensively studied, although there are hardly any articles 
that interrelate these levels of estrogens, progestogens and glucocorticoids and their variations throughout the 
third trimester of pregnancy. According to the results obtained in this study, the hormonal analysis of P4, E3, C 
and E1SO4 at specific times of the third trimester were good indicators of normal values in low-risk pregnancies, 
and their determination could provide additional information relevant to the control of pregnancy.

In addition, the exponential increase in P4, C, E3 and E1SO4 in third trimester, the period in which the fetus 
reaches  maturity32, prepares the fetus and mother for the start of labour, as reported by other  authors8, 33–35. 
Although its biological importance is ambiguous, E1SO4 seems to serve as an estrogenic reservoir linked to 
the endometrium transformation of the endometrium necessary for pregnancy  maintenance36. The increase in 
E1SO4 at week 35 determines the increases in the other hormones studied. Therefore, it is critical to take this 
measurement last during the third trimester of pregnancy, in order to obtain a better understanding of the onset 
of labour processes.

The relevance of P4, C, E3 and E1SO4 in pregnancy and the onset of labour led us to develop a statistical 
model that could predict the week of birth. In recent years, the need to develop new prognostic methods in the 
field of obstetrics in order to improve clinical practice regarding the prediction of premature births, delivery 
methods, and development of pre-eclampsia, among others, has been  emphasised37.

The knowledge of the week of spontaneous birth one week in advance has multiple benefits for both the 
pregnant woman and the health personnel, and has been very useful for reducing the number of inductions to 
labour for post term pregnancies. The development of a mathematical model with a positive predictive value of 
70.83%, as well as a negative predictive value of 82.19%, was capable to relate from a woman the variations of 
the different hormones of only four saliva samples collected from week 34 and to predict childbirth. Therefore, 
this model is a novel and great advance in the field of obstetrics.

The application of the statistical model developed in low-risk pregnant women, routinely from week 34, 
contributed to improving the allocation of health resources based on the number of expected deliveries, as an 
increase in the number of midwives and obstetricians is associated with a decrease in the cesarean section  ratio38. 
Also, its routine application contributed to reducing the number of inductions of labour (IOL) for post-term 
pregnancy, confirming that labour will begin the week following the application of the statistical model. This 
action could specify the maximum period to maintain a pregnancy, giving the opportunity of a spontaneous 
delivery and reducing the complications associated with IOL as postpartum haemorrhage, uterine  rupture39, 
instrumental deliveries, cesarean sections and used of epidural  anaesthesia40, 41, among others.

For future research, among other aspects, the inclusion of criteria such as pre-pregnancy body mass index, 
previous preterm birth or history of progesterone medication, would enhance the results of future randomised 
forest  models45.

Therefore, due to the development of a statistical model that predicts the due date in low-risk women based 
on the levels of P4, SO4E1, E3 and C from week 34, fetal survival, the allocation of health resources based on the 
number of expected delivery, as well as the reduction of the number of inductions to post-term delivery, could 
be markedly improved.

Table 5.  Confusion matrices evaluated per week on test table by random forest model. TN = number of true 
negative cases, FN = number of false negative cases, FP = number of false positive cases, TP = number of true 
positive cases, PPV = positive predictive value (precision), NPV = negative predictive value, AUC = area under 
the ROC.

WEEK 37 38 39 40

Actual 0 1 OVERALL 0 1 OVERALL 0 1 OVERALL 0 1 OVERALL

Predicted

0 29 4 33 17 5 22 11 3 14 3 1 4

1 1 1 2 3 5 8 1 5 6 2 6 8

OVERALL 30 5 35 20 10 30 12 8 20 5 7 12

Accuracy 85.71% 73.33% 80.00% 75.00%

PPV 50.00% 62.50% 83.33% 75.00%

NPV 87.88% 77.27% 78.57% 75.00%
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Methods
Sample collection. This study was carried out at the Nuevo Belén Clinical University Hospital (Madrid, 
Spain), in collaboration with the Department of Animal Physiology of the Complutense University of Madrid 
(Spain). The process of patient recruitment and sample collection was carried out for over a year. An informed 
consent was obtained from all participants recruited on this study.

A total of 161 healthy pregnant women aged between 27 and 44 years (34.88 ± 3.29) were recruited (data from 
all recruited woman are summarised in Table 6), of which two of the initial participants dropped out before the 
beginning of the study. We therefore commenced with a total of 159 women, 53 of whom dropped out throughout 
the study, reaching a total of 106 who completed the study. The exclusion criteria were kidney disease, thyroid 
disease, autoimmune disease, cancer, pregestational diabetes, pre-gestational hypertension, in vitro fertilisation 
with heparin treatment, and current steroid treatment.

Eligible women underwent weekly collection of a saliva sample during the third trimester of pregnancy (from 
week 27 until week of delivery), with a Salivette (Sarstedt, Germany) collection tube. All samples were collected 
at an established time (10:00 am ± 1 h).

This study was approved by the Clinical Research Ethics Committee of Hospitales de Madrid, with the code 
CEIm HM hospitals: 16.06.0960-GHM, in accordance with the World Medical Association and the Declaration 
of Helsinki.

Table 6.  Data for all recruited women. All indicators were applied according to the SEGO recommendations. 
*Spontaneous rupture of membranes was considered spontaneous birth as between 60–80% of births occur 
within 24 h after SROM and approximately 90% occur by 48 h, however, due to risk of neonatal infection, all 
study participants were induced 12 h post SROM, as per hospital protocol. **Cesarean delivery without trial 
of labour was considered as those performed during latent phase of labour without reaching active labour. 
Elective cesarean section cases were discarded from the total samples.

All participants recruited

n = 161

Participants completed study

n = 106 (Dropout rate = 34.2% )

Mean age 34.88 ± 3.29

Prepregnancy BMI (n, %)

Normal weight 97 (91.5%)

Underweight 9 (8.4%)

Parity (n, %)

Primiparous 66 (62.2%)

Multiparous 40 (37.7%)

Current pregnancy

Mean gestational age 38 weeks + 6 days

Birth at 37 weeks 17 (16%)

Birth at 38 weeks 30 (28.3%)

Birth at 39 weeks 24 (22.6%)

Birth at 40 weeks 21 (19.8%)

Birth at 41 weeks 16 (15%)

Mode of delivery

Spontaneous birth 63 (59.4%)

Induction of labour (post dates + Spontaneous ruptured of membranes* + other reasons) 43 (40.5%)

Induction of labour for post dates (> 41 + 4) 6 (6.3%)

Vaginal birth 83 (78.3%)

Cesarean delivery- without trial of labour** 9 (8.4%)

Cesarean delivery- after trial of labour 14 (13.2%)

Rupture of membranes

 > 24hours 31 (29.2%)

 < 24hours 75 (70.8%)

Newborn

Mean birth weight (g) 3479 ± 356gr

Apgar score < 7

One minute 8 (7.5%)

Five minutes 4 (3.7%)

10 min 2 (1.8%)
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Hormone determinations. The Salivette tubes were centrifuged for 15 min at 2000×g and 4° C. The saliva 
obtained was stored at a temperature of − 20  °C until further hormonal analysis. Polyclonal antisera raised 
in male rabbits against: 11α-hydroxyprogesterone 11α hemisuccinate BSA (P4), estrone-3-glucuronide: BSA 
(SO4E1), cortisol 3-CMO: BSA (cortisol) and estriol -6-CMO: BSA (Estriol) were used for assay development 
(Steraloids. Inc., Newport, RI). P4 (ab: C914), E1SO4 (ab: R522-2), E3 (ab: R4835) and C (ab: R4866) concentra-
tions were assayed by enzyme-immunoassay (EIA).

Briefly, microtiter plates (96-well flat-bottom polystyrene) were coated overnight at 4° C with the appropriate 
antibody dilutions. Then, plates were washed 3 times and conjugate working solutions (CWS) were prepared 
by diluting conjugate stocks in assay buffer. Standards and saliva samples were diluted in CWS and analyzed 
in duplicate. To achieve a competitive reaction, plates were incubated at room temperature for 2 h. Plates were 
washed 3 times with wash buffer and Enhance K-Blue TMB substrate (Neogen, Lexington, KY) was added to 
each well. To stop colorimetric reaction, stop solution was added to each well. Absorbance was read at 450 nm 
in an automatic microplate reader. Hormone concentrations were calculated by means of software developed 
for this technique (ELISA AID, Eurogenetics, Belgium). A standard dose–response curve was constructed by 
plotting the binding percent-age (B/B0 × 100) against steroid hormone standard concentrations. P4, E3, SO4E1 
and C concentrations were expressed in ng/ml42.

The validation technique parameters’ recovery rates, sensitivity, intra- and inter-assay coefficients of vari-
ation and parallelism were assayed as previously reported by Illera et al.42. The EIA techniques and antibodies 
used were developed and validated in the Endocrinology Laboratory of the Department of Animal Physiology 
(Faculty of Veterinary Medicine, University Complutense of Madrid, Spain).

Statistical analysis. In order to achieve the desired precision for the estimates of the population mean hor-
monal values in each week of observation, the sample size was estimated with a confidence level of 95%, and an 
error of the estimate of ± 0.2 times the standard deviation, according to this consideration we obtained n ≥ 96.04.

To achieve the required precision and based on previous experience with other studies, an approximate loss 
between 30 and 40% of women has been estimated throughout the sample collection process (in the worst case, 
the dropout rate was 40%, leading us to specify n ≥ 161). Finally, after concluding the study, n = 106, which is 
above the initial consideration resulting in a dropout rate 34.2%.

Descriptive statistical analysis for mean and standard deviation of each hormone based on the week of delivery 
was performed. Repeated measures correlation coefficient (rmcorr) between hormonal values during the third 
trimester were estimated using PROC MIXED procedures by  SAS24.

Validation technique parameters (recovery rates, sensitivity, intra- and inter-assay coefficients of variation) 
were calculated according to Andreasson et al.43. Parallelism was calculated using ANCOVA  analysis44. Data 
were expressed as mean ± standard error. In all statistical comparisons, type I error set to maximum of 0.05.

Methodology for the construction of a childbirth prediction model. The methodology employed 
for predicting the probability of spontaneous delivery in the week following from the latest hormonal levels 
observed is presented in this section. This methodology is based on two phases: processing data and adjustment 
of mathematical model.

Data processing. A binary variable has been defined for each pair (Woman, Week), identifying whether a sub-
ject gives birth (1) or not (0) each week. This is the variable whose value is to be predicted, and its distribution by 
weeks is shown in Table 7. This table presents a total of 292 cases, distributed into 202 cases with a target equal to 
0 and 90 cases with a target equal to 1. This table is divided into two tables (Table 8), one named “training dataset 
used to adjust the model” and another one named “test dataset used to check it”. The proportions associated with 
one and another dataset are 2/3 and 1/3, respectively. The cases assigned to each dataset were selected at random, 
taking into account that the patients registered in one and the other table must be exclusive.

Error of the estimate = zα/2
σ
√
n

zα/2
σ
√
n
≤ 0.2σ

α = 0.05

n ≥
(

1.96

0.2

)2

= 96.04

Table 7.  Binary variable for women and week that identifies whether the woman gives birth (1) or not (0).

WEEK 37 38 39 40 OVERALL

Birth

0 90 60 36 16 202

1 16 30 24 20 90

Overall 106 90 60 36 292
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Once the target (variable to be predicted) was defined, it was necessary to define the explanatory inputs 
used to make the prediction. Basically, these variables measured mean values and percentage variations of 
the hormonal indicator during different time periods. The detail of the definition of these variables is shown 
in Table 9. Considering that the data was collected on Mondays of each week, the explanatory variables were 
measured in the four weeks prior to which the probability of delivery was estimated, including the forecast week 
itself. Therefore, the hormonal data collected at weeks 34, 35, 36, and 37 were used to predict whether the birth 
would occur at week 37, as well as weeks 38 and 39, and finally the data collected at weeks 37, 38, 39 and 40 
were used to predict whether the birth would occur at week 40 or week 41. The resulting table, made up of the 
pair (Woman, Week), the binary target variable (birth or non-birth) and the 22 explanatory variables, served as 
input for different statistical models.
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