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Variations in stability revealed 
by temporal asymmetries 
in contraction of phase space flow
Zachary C Williams1* & Dylan E McNamara2

Empirical diagnosis of stability has received considerable attention, often focused on variance metrics 
for early warning signals of abrupt system change or delicate techniques measuring Lyapunov spectra. 
The theoretical foundation for the popular early warning signal approach has been limited to relatively 
simple system changes such as bifurcating fixed points where variability is extrinsic to the steady 
state. We offer a novel measurement of stability that applies in wide ranging systems that contain 
variability in both internal steady state dynamics and in response to external perturbations. Utilizing 
connections between stability, dissipation, and phase space flow, we show that stability correlates 
with temporal asymmetry in a measure of phase space flow contraction. Our method is general as 
it reveals stability variation independent of assumptions about the nature of system variability or 
attractor shape. After showing efficacy in a variety of model systems, we apply our technique for 
measuring stability to monthly returns of the S&P 500 index in the time periods surrounding the 
global stock market crash of October 1987. Market stability is shown to be higher in the several years 
preceding and subsequent to the 1987 market crash. We anticipate our technique will have wide 
applicability in climate, ecological, financial, and social systems where stability is a pressing concern.

Comparing stability across systems or forecasting a change in stability when underlying dynamical equations are 
not known is a central challenge throughout  science1 with far reaching societal relevance. Despite this, there is a 
lack of an agreed upon interpretation of stability and how it is measured empirically. This is likely due to stability 
being considered across many disciplines and in a broad array of systems, from simple bifurcating population 
models to climate models with many nonlinear, interacting parts. We present a coherent and unified tool set 
for gaining insight into stability based on nonlinear dynamical systems theory, which contains the theoretical 
apparatus to understand stability in a wide range of contexts.

A continuous-time autonomous dynamical system can be written as a set of n first-order ordinary differen-
tial equations d�xdt = �F(�x) , where �x = (x1, x2, . . . , xn) are the n state-variables and �F is a vector field governing 
their evolution. By projecting each variable onto its own axis, the evolution of the system forms a trajectory in 
the n-dimensional phase space. The basin of attraction is composed of all states which, through the action of 
dissipation, eventually lead to the attractor subset of the phase space. This can be described mathematically by 
tracking the evolution of many states initially contained within a n-dimensional volume V(t):

where � is the phase space volume contraction rate. For dissipative systems it is always the case that V(t) < V(0) 
and so � < 0 . Analytically � can be obtained by taking the divergence of the vector field � = ∇ · �F . Stability in 
this setting is conditioned on two properties of a system’s phase space; the basin of attraction and  dissipation2. 
Stability decreases when either the attractor basin range is diminished relative to the size of external system 
perturbations or the amount of dissipation in the dynamics is reduced. With respect to Eq. (1), a reduction in 
dissipation corresponds to a decrease in the magnitude of �.

Most previous work exploring stability use metrics that capture time series variations and claim to provide 
a warning of looming change in a system’s  attractor3–5. These methods fall under the umbrella of “early warning 
signals” for so called critical thresholds. The most prominent of these techniques is referred to as critical slowing 
down (CSD)4. CSD indicators such as increasing autocorrelation and variance in state variables tend to rise for 
some systems which presages a critical transition (or tipping point)6. While these methods purport to provide a 
prediction of looming system change, the essence of the technique is to measure system stability and then infer 

(1)V(t) = V(0)e�t
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that a change is coming (but not say when it is coming or what amount of stability loss causes such a change). A 
strong limitation to these metrics, even when just being used as a stability indicator, is the built in assumption 
that the dynamics are dominated by the return of a system to a fixed point after a perturbation and that internal 
system variability remains constant as stability changes. This assumption breaks down for even modest increases 
in system complexity where variance and autocorrelation can be tied to intrinsic system dynamics and indeed 
many previous studies have detailed examples where CSD metrics do not provide insight into system  stability7–11.

A more recent effort to quantify stability uses time series of multiple ecological species interacting in a 
 network12. This novel approach uses Convergent Cross Mapping (CCM) to identify coupled species and then 
builds a linear prediction model from the reconstructed phase space. While this improves upon previous efforts 
that focus on simple systems, the appeal to linearized stability metrics keeps the focus of the analysis on a sys-
tem’s return from small perturbations in a linear setting. Said another way, the full scope of potential sources of 
nonlinear variability and their relation to a system’s stability is neglected.

A critical component of this study is how dissipation, revealed in a system’s phase space behavior, is manifested 
on and near the attractor and how it can be revealed using only time series data of the state variables. In this 
way, we are not assuming a priori that stability is only revealed in how a system responds to perturbations nor 
are we assuming any particular type of attractor change such as a simple fixed point bifurcation. Our approach 
is much more general.

Dissipation arises when differences in state variables are diffusively damped, mixed, or reduced in the phase 
space and as such it is directly related to the global phase space volume contraction rate and is inversely related 
to time of decay to an  attractor2 (hereafter referred to as volume contraction rate). Consequently, systems with 
more dissipation are more stable; as a system is drawn more rapidly toward the attractor, state trajectories are 
more likely than not to stay near to the attractor in the future. Measuring the decay time to the attractor is dif-
ficult as it is rare that an observer can conclude precisely when a system is outside its attractor. Additionally, 
dissipation is not trivial to measure when the system is inside the attractor. Consider the simple cases of a fixed 
point and limit cycle. For these systems, the evolution appears conservative on the attractor because there is zero 
net convergence and divergence. The dissipation in these cases is removing energy injected from outside the 
system (in the form of forcing), and so measuring dissipation is difficult because states are no longer converg-
ing on the attractor. In the more complicated setting of strange attractors, convergence and divergence occur 
simultaneously and heterogeneously throughout the  attractor13,14, in contrast to fixed points or limit cycles. The 
divergence is related to sensitivity to initial conditions, and convergence (dissipation) acts to keep the systems 
constrained into a fixed attractor volume. Despite these apparent difficulties in measuring dissipation, we put 
forth an empirical technique and associated metric that provides a direct correlation to the amount of dissipa-
tion in a system. Dissipation as referred to throughout this manuscript is synonymous with phase space volume 
contraction, e.g. higher rate of dissipation in system dynamics implies higher volume contraction rate in the 
phase space, and hence more stability.

The classic way to measure the tendency of trajectories to both expand and contract in phase space is by 
determining the Lyapunov  exponents15,16. Consider two points in phase space that are initially near neighbors 
at time t: ��x1(t)− �x2(t)� ≪ 1 . After L time has passed, the distance between these points may grow or shrink 
approximately as ��x1(t + L)− �x2(t + L)� = ��x1(t)− �x2(t)�e

σ1L . Inverting to solve for the growth rate yields 
the Maximal or Largest Lyapunov Exponent ( σ1):

If L is taken to infinity then σ1 is referred to as global, and if it is evaluated over shorter times it is considered 
a finite or local LE and is usefully explored as a function of L and position in phase space (t). The maximal LE, 
σ1 is diagnostic of the dynamics. For example, σ1 > 0 is indicative of chaos (i.e. sensitivity to initial conditions) 
while σ1 < 0 is indicative of fixed point dynamics. For a dissipative nonlinear dynamical system with n-degrees 
of freedom there are n Lyapunov exponents constituting a spectrum of LE ( σ1, . . . , σn ). The global spectrum of 
LEs is an invariant of the system and for chaotic attractors there is at least one positive (nonlinearity) and one 
negative (dissipation) exponent. The sum of the spectrum of LEs is equal to the phase space volume contraction 
 rate2, � =

∑n
i=1 σi . In theory, if the spectrum of global LEs can be determined, then the volume contraction 

rate, and therefore dissipation rate and stability, can be directly inferred. This is easily accomplished when the 
underlying evolution laws are known.

In time series applications where data is usually available for only one of many degrees of freedom, the 
Lyapunov spectrum can be obtained by first invoking Taken’s embedding theorem to reconstruct the attractor. 
Wolf ’s algorithm, which tracks orbital  stability16, can be applied to the reconstructed attractor to reveal the LE 
spectrum, however only the largest (positive) global LE is considered a reliable  estimate17,18, and so the volume 
contraction rate is not reliably known. The efficacy of Wolf ’s algorithm is limited by high sensitivity to noise, large 
data length requirements, choice of embedding dimension, and the strict requirements placed on identifying 
neighboring trajectories. Other techniques have also been proposed to uncover the full spectrum by consider-
ing the evolution of various types of perturbations,  see19 for a review—needless to say, empirical settings almost 
never allow for one to explore ideal perturbation directions.

Other approaches for exploring phase space volume behavior involve measuring various entropy associated 
metrics. The Kolmogorov-Sinai (KS) entropy is related to the sum of positive Lyapunov exponents through Pesin’s 
 identity20. The practical limitation of the KS entropy for empirical work is the strong reliance on the nature of 
how phase space is partitioned for the calculation. Other metrics such as permutation  entropy21 are more easily 
computed however they lack a clear quantitative connection to KS entropy. Despite this, permutation entropy 
has been shown to provide utility in indicating when a system has crossed a bifurcation  point22 but a definitive 

(2)σ1 = lim
L→∞

lim
��x1(t)−�x2(t)�→0

1

L
ln

(

��x1(t + L)− �x2(t + L)�

��x1(t)− �x2(t)�
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trend related to system stability has not been shown. A more recent advance based on a modified permutation 
entropy  measure23 provides a reliable connection to KS entropy for systems with no noise present. This advance 
helps one to distinguish between chaotic and stochastic system  dynamics24–26 but again a relationship between 
this modified permutation entropy to the system stability is not clear. Other recent advances exploring sys-
tematically perturbed systems explicitly connect entropy-production and phase space volume contraction for 
nonequilibrium  systems27. Additionally, the Crooks Fluctuation  Theorem28,29 connects the forward and reverse 
time phase space trajectories to dissipation. These approaches however admittedly do not apply for most realistic 
systems where the Lyapunov exponents and contraction rates fluctuate along the attractor. Our work builds on 
these previous advances by noting that since temporal irreversibility is due to entropy production (dissipation), 
and entropy production rate is equivalent to the phase space volume contraction rate, then a measurement 
associated with time asymmetry should reflect aspects of system stability.

Phase space stability technique
To the best of our knowledge, no empirical technique currently exists to assess stability that does not presuppose 
linearity in the system structure or external perturbation response, require prohibitively large or noise free data 
with a minimal number of tunable parameters, have a theoretically justified connection to the origin of stability, 
or promise broad applicably across disparate systems. In this spirit, we hypothesize a measurement of stability 
based on phase space dissipation can be illustrated through temporal asymmetry in the aggregate phase space 
flow behavior. More specifically, our measurement technique probes how fast the average of all trajectories in 
phase space converge when proceeding forward in time and diverge backward in time and evaluates the differ-
ence. We show numerically that the magnitude of temporal asymmetry correlates with the amount of dissipation 
in the system, a quality of dynamics that unambiguously defines system stability.

Lyapunov exponents are an attractive approach to assess stability because of their generality, limited system 
assumptions, and clear connection to dissipation. Yet in empirical settings, one rarely has access to all perturba-
tion directions in phase space. Moreover the distribution of local Lyapunov exponents around an attractor is 
typically not  Gaussian30. In many circumstances it is not practicable to numerically evaluate the dissipation rate 
(volume contraction rate) via the sum of the globally averaged local LEs. Instead we describe a metric which 
correlates with dissipation rate that is based on the growth rate of the global average of local separation distances 
of initially nearby trajectories.

Consider two sets of phase space trajectories on the attractor each consisting of N states: 
�x1(ti) = �x1(t1), . . . , �x1(tN ) , and �x2(tj) = �x2(t1), . . . , �x2(tN ) . Pick a state with time index ti in �x1 and find the 
state in �x2 minimizing the Euclidean distance with respect to �x1(ti) . If this state is at time tk(i) in �x2 , then 
�x1(ti) and �x2(tk(i)) are said to be nearest-neighbors. The distance between these two states for all later times is 
di,k(i)(n) :=

∥

∥�x1(ti+n)− �x2(tk(i)+n)
∥

∥ , where n is the number of time steps forward. Conversely, following the 
separation backwards in time is di,k(i)(−n).

The first step toward our metric is to obtain the average of di,k(i)(n) for many or all points in �x1 , where each 
time series of separation distances di,k(i)(n) is normalized by the initial (i.e. closest) separating distance di,k(i)(0) 
before averaging across ti . To characterize the total quantity of flow convergence occurring heterogeneously 
across the attractor, we estimate the rate of growth from the phase-space averaged separation distances ( �(Ln)):

where Ln = n�t is the time horizon and �t is the measurement time interval. The time horizon considered 
ranges from n = 0 to n = M , where M is the number of time steps necessary to traverse a distance comparable 
to the average attractor size. We refer to Eq. (3) hereafter as the forward divergence rate �+ := �(L+n) . Similarly, 
if n is replaced with −n in Eq. (3), the backward-time divergence rate is obtained, �− := �(L−n) . As has been 
 noted31 asymmetries exist when looking at phase space distance behavior forward and backward in time. Our 
purpose here is to assess the temporal asymmetry between a measure of average phase flow behavior looking 
forward in time and backward in time. This is achieved by differencing the backward and forward divergence 
rates. Finally our metric, symbolized as �� , equals the maximum of this difference:

We will show numerically for several model nonlinear dissipative systems, that the metric presented herein as 
Eq. (4) correlates with the dissipation rate allowing for an empirical estimate of system stability.

To be clear, the distinction with our approach and a similar metric using the largest Lyapunov exponent is 
that we have taken the average operation inside the logarithm to focus the calculation on phase space distance 
separations rather than exponential constants. Also, rather than only observe L at large times we are evaluating 
the distance separations over small L and finding when the asymmetry in time is maximal. The change in dis-
tance between nearby trajectories is known to have three distinct regions: an initial alignment to the direction 
of largest growth with small change in separation; an exponential separation phase; a final, relatively constant 
distance at the scale of the attractor. By exploring the first two regions closely to find differences in behavior 
when going forward and backward in time we will demonstrate there is an observed correlation with the system’s 
dissipation rate in a range of systems.

Before proceeding to more complex examples, consider the case of an overdamped simple harmonic oscil-
lator. In this case the simple two dimensional phase space for the system is marked by constant convergence 
everywhere in the space toward the origin. The rate of convergence is simply the dissipation in the system. Any 
two nearby points taken as initial conditions will exponentially relax towards each other at the dissipation rate. In 

(3)�(Ln) =
1

|Ln|
log

(

1

N

N
∑

i=1

di,k(i)(n)

di,k(i)(0)

)

(4)�� = max{�− − �
+},
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this case �+ will measure exactly the negative of the value of dissipation in the system. And similarly, when time 
is reversed, it is clear that �− will measure exponential explosion of the nearby points, which will be given by the 
positive value of dissipation. Hence, in this pedestrian example, �� measures twice the amount of dissipation 
in the system. What makes this so simple of course is that a perturbation from any given point to a neighbor 
point in the space, no matter the direction of the perturbation, is along the axis of the only convergence rate, or 
Lyapunov exponent, in the system. When one probes in varying directions within a higher dimensional space 
holding more complex dynamics, the quantitative match to dissipation is less direct. So while we do not expect 
�� to measure exactly twice the dissipation in more complex dynamical systems, we will show that it nonetheless 
correlates with amount of dissipation and therefore stability in a range of systems.

Results
The efficacy of our phase space stability technique is demonstrated by application to the canonical Lorenz 
 system32. Utility is then demonstrated in reconstructed phase space of the Lorenz system, the Lorenz system 
with multiplicative noise, and the Rössler system with multiplicative noise. Finally we present an application to 
the financial market crash of October 1987, an event that is widely reported as having resulted from a reduction 
in internal system stability.

Application to the Lorenz system. The phase space stability technique is demonstrated first by applica-
tion to the Lorenz system. Library and test sets are constructed from the three system variables x, y and z, and the 
parameter values used are r = 45, b = 8/3 and s = 20 . Library and test sets consist of 3000 points each. Details 
of numerical method are found in “Methods” section. The forward divergence rate �+ as a function of L is the 
orange curve in Fig. 1a. When time is reversed, the divergence rate ( �− ) results in the blue curve in Fig. 1a. The 
difference between backward and forward divergence rates is the yellow curve in Fig.  1a, which typically peaks 
at intermediate values of L before vanishing as L grows large. We note that in some cases there is no observable 
peak in �+ or �− , such that divergence rates are large for small L and decreasing with increasing L. In these cases, 
there is still a clear peak in their difference. Figure 1b shows the average separation distance (i.e. the phase space 
average in Eq. (3)) for forward and back backward time directions and illustrates the more rapid backward tra-
jectory divergence suggested by the larger peak in Fig.  1a.

Next we show how �� varies with the phase space volume contraction rate in the Lorenz system, where the 
contraction rate is controlled via the parameter s, that is �∇ · �F(s) . The parameter s is varied between between 10 
and 40, while r = 45 and b = 8/3 are fixed. Figure 2a plots �−(L)− �

+(L) for 8 values of the contraction rate. A 
key element of Fig.  2a is demonstrated more clearly by the black curve in Fig.  2b where the peaks ( �� ) identified 
in Fig.  2a are plotted against volume contraction rate. Each point along the black curve in Fig.  2b corresponds 
to the ensemble mean of �� pertaining to 100 repeated solutions of the Lorenz system with random initial con-
ditions, and the error bars correspond to the ensemble standard deviation. A monotonic relationship between 
�� and contraction rate is observed such that as the volume contraction rate increases (or stability increases), 
the magnitude of the asymmetry between forward and backward divergence rates is larger. An analytical repre-
sentation of the non-isotropic flow divergence on the attractor and its variation with control parameters (here 
s) related to volume contraction escapes us and as far as we can tell, has escaped the community. Thus, as a first 
step, we are only revealing the correlation between our measure of the asymmetry �� and the volume contrac-
tion rate. Additionally, if contraction rate were instead varied as a function of b, similar results are obtained (see 
Supplementary Figure 1 in the accompanying Supplementary Information file). Further, the parameter r can be 
changed without impacting the contraction rate and in this case �� does not reveal a trend (see Supplementary 
Figure 2 in the accompanying Supplementary Information file).

Figure 1.  For the Lorenz system with parameters r = 45 , b = 8/3 , and s = 20 , panel (a) shows the rate of 
exponential divergence of the average separation distances as a function of time horizon ( �(L) ). The forward 
time divergence rate ( �+ ) is orange, and the backward time divergence rate ( �− ) is blue. The difference between 
backward and forward divergence rates is yellow. In panel (b) the average separation average across the phase 
space (the average of di,k(i) over index i in Eq. 3) is shown forward in time (orange), and backward in time (blue).



5

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5730  | https://doi.org/10.1038/s41598-021-84865-8

www.nature.com/scientificreports/

To test the efficacy of the �� metric in correlating with volume contraction rate for a reconstructed attractor, 
we reconstructed the phase space of the Lorenz system based on time series of the x-variable over the same range 
of control parameters used to generate the black curve in Fig.  2b. Both the library and test attractors consist of 
3000 points, of which 1500 points were queried for calculation of �� . The dashed curve in Fig.  2b displays �� as 
a function of volume contraction rate for 100 simulations per choice of s. Even in the reconstructed phase space, 
a statistically monotonic relationship between �� and volume contraction rate is observed. This relationship 
holds even when overembedding the reconstructed attractor into four, five, and six dimensions (Supplementary 
Figure 3).

Importantly, if one were to only calculate the maximal global LE for the varying amounts of volume contrac-
tion shown, the correlation we observe vanishes (Supplementary Figure 4). Using only the maximum of the 
forward local LE, it is possible to see a trend with volume contraction, however this trend is not a reliable measure 
as it appears even when using phase randomized surrogate data, while our metric �� does not (Supplementary 
Figure 5). We have observed that the relationship with volume contraction is weakly observable in the 2nd and 
3rd moment distributions of the largest local LE and error growth rates (as defined  in13,19 respectively). However 
we do not find this to be a particularly fruitful path for analysis since the connection between the distributional 
properties and the property of increased global volume contraction are not well understood. In the supplemental 
section, we present additional results using �� as a measure of volume contraction in a system comprised of 
two coupled diffusionless Lorenz systems (Supplementary Figure 6). In this case the phase space dimension is 
six and there can be multiple positive and negative LEs. Here again, �� tracks with the analytically determined 
volume contraction rate.

Application to stochastic nonlinear dissipative systems. While the Lorenz system is useful for illus-
trative purposes, it is rare that an empirical investigation will find such a smooth, low dimensional dynamical 
system. More commonly, irregular system behavior is driven by both low dimensional nonlinearity and the 
influence of noise, which can be interpreted as a connection to a large reservoir of unmeasured degrees of free-
dom. To explore the efficacy of our metric in measuring stability when noise is dynamically embedded into the 
low dimensional nonlinear dynamics, we investigate the Lorenz system and Rössler system with multiplicative 
(state-dependent) Gaussian noise. See the supplemental section for an analysis of the Lorenz system with obser-
vational noise (Supplementary Figure 7).

The variation of �� as a function of contraction rate for the reconstructed phase spaces of the stochastic 
Lorenz and Rössler systems is shown in Fig.  3a,c respectively. The error bars correspond to the ensemble mean 
and standard deviation from 100 repeated solutions of both systems with random initial conditions. In both 
systems, �� increases as the volume contraction rate increases.

For systems that approach a simple bifurcation when varying a control parameter, the coefficient of variation 
and autoregressive lag-1 coefficient, AR(1), have been demonstrated to increase thereby providing an indica-
tion of decreasing stability. These measures are commonly referred to as critical slowing down indicators. For 
the stochastic Lorenz and Rössler systems, the coefficient of variation and AR(1) coefficient as a function of 
volume contraction rate are shown in Fig.  3b,d. The coefficient of variation for the stochastic Lorenz system 
is the blue line in Fig.  3b and does not bear any relation to the volume contraction rate. The AR(1) coefficient 
(black line) in Fig.  3b is negative while decreases in magnitude as the volume contraction rate becomes larger. 
In the framework of critical slowing down, a system that is losing stability should display an increase in the lag-1 
autocorrelation, however the opposite appears to be the case for the stochastic Lorenz system. Turning to the 
stochastic Rössler system, the coefficient of variation is the blue line in Fig.  3d and there again appears to be no 
dependence on volume contraction rate. The AR(1) coefficient (black line in Fig.  3d increases with decreasing 
volume contraction rate. In this case the AR(1) coefficient is in agreement with �� (Fig. 3c), where both metrics 

Figure 2.  Variation of the stability metric with volume contraction for the Lorenz system. Panel (a) plots the 
difference between backward and forward divergence rates as a function of L based on the full Lorenz attractor 
where line color corresponds to the value of phase space volume contraction rate �∇ · �F which is varied through 
the dissipative control parameter s. Panel (b) shows �� as a function of volume contraction rate for the full 
Lorenz attractor (black), and the reconstructed attractor (dashed). The standard deviation of �� is indicated by 
the error bars.
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indicate stability is decreasing as the volume contraction rate grows smaller. Last we performed a surrogate data 
test of �� , AR(1), and the coefficient of variation for the Rössler system as a function of volume contraction 
rate shown in Supplementary Figure 8. The AR(1) coefficient reproduces the same signal as in Fig.  3d even after 
the effective removal of dynamics via fourier phase randomization (see “Methods”). In contrast, �� shows no 
variation with volume contraction when surrogate data are used. This further highlights the strength of �� as a 
measurement of stability based on the system dynamics.

We explored the performance of �� as a function of the test and library set lengths used to reconstruct the 
attractor in phase space, and as a function of the number of points evaluated within the test set (N from Eq. 3). 
Results presented in Supplementary Figure 9 pertain to the stochastic Lorenz system and shows increasing time 
series length allows for finer variations in volume contraction rate to be discerned. We note that there is no theo-
retically justified universal data length requirement for attractor reconstruction and data length requirements 
may be unique to each system. However it is safe to assume that as the dimensionality of a system increases, 
more data is needed to faithfully reconstruct an attractor.

Application to stock market stability. Empirical analysis tools related to dissipative nonlinear dynami-
cal  systems25,33, and in some cases specifically attractor  reconstruction34,35, have been used in a wide range of 
economic settings. In this spirit, here we apply our metric to evaluate financial market stability during the 1980s, 
with specific focus on time period surrounding the October 1987 financial market crash referred to as Black 
Monday. Financial markets can be considered as complex adaptive systems composed of many heterogeneous 
interacting agents who process information to form expectations based on exogenous (e.g. news) and endoge-
nous sources (e.g. other agent opinions) with the goal of maximizing stock market  investments36,37. Both empiri-
cal and theoretical studies show strong support for this dynamical systems conceptualization of economies and 
markets, for example  see33,38,39. A market crash can result from both exogenous shocks to the economy (e.g. a 
pandemic) or endogenous dynamics (e.g. speculative bubbles), or some combination  therein40. Black Monday 
was the single largest proportional drop in the history of the S&P500 and is considered to be entirely the result 
of internal dynamics, specifically positive feedbacks between speculative and fundamentalist stock  traders38,39.

We apply the phase space stability technique to the price return time series of the S&P500. Figure 4 demon-
strates that system stability �� was higher in the years preceding and proceeding the 1987 crash, and was nearly 
absent in period around the crash. While previous work suggests a suitable embedding dimension ( DE)of 5 for 
the S&P 500 returns time series, robustness of the result is partially validated by testing DE of 4,5, and 6. For all 
three choices of DE , �� is lower in the time period around 1987.

Figure 3.  �� as a function of phase volume contraction rate for the reconstructed stochastic Lorenz attractor 
with linear multiplicative noise (a) and for the reconstructed stochastic Rössler attractor with multiplicative 
noise (c). Panels (b,d) compare the two most common critical slowing indicators: the Autoregressive lag-1 
(AR1) parameter and coefficient of variation corresponding to the Lorenz (b) and Rössler (d) systems with 
multiplicative noise respectively, given as a function of phase volume contraction rate.
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Discussion
We have presented a technique to quantify the phase space stability of nonlinear dissipative systems based on 
time series observations. The technique is applied in the context of canonical nonlinear and stochastic dynamical 
systems and we provide application to the S&P 500 time series that contains a verifiable financial market insta-
bility which occurred globally in 1987. Stability in the context of the present study refers to the internal system 
stability reflecting interplay of the underlying nonlinear and dissipative dynamic processes. Previous efforts to 
quantify stability from time series effectively assume stability is constant throughout the attractor and that a 
change in stability is immediately detectable. For example, Critical Slowing Down indicators would interpret a 
change in the amplitude or variability of an external stochastic forcing as a change in stability, even while nothing 
has changed in the internal dynamics. Our technique assesses the context of a perturbation (i.e. the attractor), 
and therefore would correctly predict no change in stability. This is because our technique quantifies the rate of 
dissipation across the whole attractor, as opposed to extrapolating local stability properties of the attractor which 
are well-known to vary heterogeneously throughout the attractor.

Why should we expect an observable temporal asymmetry in the phase space of dissipative nonlinear dynami-
cal systems to exist and why would this be connected to stability? We hypothesize that backward time divergence 
is larger than forward time divergence owing to variations in the strength of converging and diverging regions on 
an  attractor19,41 and the action of dissipation in reducing differences in system state. While volume contraction 
rate in the full space for the Lorenz attractor is constant, the rate of separation between trajectories varies around 
the attractor as the direction to near neighbors varies throughout the phase space. When choosing points to test 
for distance spreading, we use nearest neighbors which ensures that we have chosen from regions of strong dis-
sipation and hence relatively strong flow convergence (dissipation reduces state differences). Conversely, when 
one marches backwards in time from these close neighbor points on the attractor, the flow tends toward diver-
gence. To be clear, this is not true for every point used in the analysis but when averaged around the attractor, the 
choosing of very near neighbors has provided enough preference to areas of dissipation to reveal a strong time 
asymmetry. In fact, if one uses neighbors that are far apart to calculate �� , the asymmetry vanishes (not shown).

In the context of attractor reconstruction, the technique presented here is subject to the same limitations 
that have been carefully detailed elsewhere, e.g. data length and  stationarity17. In application of our technique, 
a pre-analysis following the protocols outlined  in17 should first be conducted to ensure that the reconstructed 
attractor reveals a signal of low dimensional nonlinear determinism. In this pre-analysis one may encounter 
spurious or irregular amounts nonlinear predictability as a function of embedding dimension, embedding lag, 
or prediction distance. This would be in principle due to insufficient data lengths, high-dimensionality, or the 
absence of nonlinear-determinism. Although it may not be possible to determine which is the cause. Another 
limitation is that a particular value of our dissipation metric, �� , does not always have an obvious connection 
to the analytically calculated rate of phase space convergence. Increasing the embedding dimension for the same 
system will decrease the magnitude of �� . That is to say �� is itself a function of dE and it is the trend in �� when 
dE is held fixed that is important. Said another way, it is only in comparing �� for similar systems or evaluating 
�� through time that one gains insight into relative stability. This caveat is equivalent to assuming the system 
under study is not changing in the number of effective degrees of freedom.

The range of potential applications for our dissipation metric is as wide as the range of utility for attractor 
reconstruction. One realm of application is in model testing. A given numerical model will have measurable and 
controllable amounts of dissipation. By comparing two simulations with varying amounts of dissipation to a time 
series from a natural system, one should be able to test a model’s ability to simulate the relative stability of the 
system in question by measuring our metric for the model and natural system. Beyond model testing, particularly 

Figure 4.  Stability of the S&P 500 index during three time periods in the mid to late 1980s. �� is shown as a 
function of time (year) and for three values of phase space embedding dimensions (indicated by color). Error 
bars correspond to one standard deviation of the distribution of �� calculated over each corresponding time 
period. These results demonstrate that market stability was significantly lower in the time around the October 
1987 global stock market crash, when compared to the years before and after the crash.
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provocative opportunities for using our metric include gaining insight into the amount of dissipation and stabil-
ity and how that has changed over time in increasingly stressed climate, ecological, financial, or social systems.

Methods
Lorenz system. The Lorenz system is a set of coupled nonlinear ordinary differential equations. There are 
three degrees of freedom, x, y,  and z, and three constants s, r, and b.

Numerical solutions are obtained using a fourth order Runge-Kutta method with time step �t = 5× 10−3 . To 
ensure convergence onto the attractor, all numerical solutions were obtained after integrating for 5× 104 time 
steps. The phase volume contraction rate is obtained by taking the divergence of Eq. (5):

The volume contraction rate is a function of two parameters s and b. For simplicity, we take s as the parameter 
controlling the divergence rate for all results pertaining to the Lorenz system. However we find similar results 
when taking b as the controlling parameter. Example time series of the x variable for the Lorenz system for vari-
ous values of s are provided in Supplementary Figure 10.

Stochastic Lorenz system. The Lorenz system with multiplicative noise is a set of Ito stochastic differen-
tial  equations42:

The term dWt is the increment of a Wiener process that is independently drawn for each degree of freedom, 
and σ 2 is variance. Parameter values for r and b are the same as those from Fig. 2. The volume contraction rate 
is similar to that in the deterministic Lorenz but with an additional term reflecting the contribution of the mul-
tiplicative noise  term43:

The range of contraction rates in Fig.  3a is obtained by varying s between 2 and 100. The noise standard devia-
tion ( σ ) is set to 0.2. Numerical solution of Eq. (7) is obtained using the Euler-Maruyama method with a time 
step of �t = 5× 10−3 . The stochastic Lorenz attractor is reconstructed from the x variable using an embedding 
dimension DE = 3 and embedding time lag τ = 20 . The multiplicative noise term contributes a small random 
component to the contraction rate (Eq. 8) and so ensemble results are displayed as binned averages. Example 
time series of the x variable for the stochastic Lorenz system for various values of s are provided in Supplemen-
tary Figure 11.

Performance of two common Critical Slowing Down indicators are examined for time series output of the 
stochastic Lorenz system (Eq. 7) as a function of volume contraction. To apply the AR(1) coefficient to the time 
series output of a continuous system, we first sample the time series data at an interval equal to the embedding 
lag ( τ , see “Attractor reconstruction”) used for delay embedding in attractor reconstruction. If this step is not 
taken, the AR(1) coefficient shows small variations occurring at the third decimal place, reflecting only the con-
tinuous time nature of the system. The AR(1) coefficient is estimated by taking the linear correlation coefficient 
of the time series and itself lagged at 1. The coefficient of variation is simply the standard deviation of the time 
series divided by the mean.

Stochastic Rössler system. The stochastic Rössler  system44 with multiplicative noise, similar to the sto-
chastic Lorenz system (Eq. 7), is a set of Ito stochastic differential equations:

where a,b, and c are parameters. The average volume contraction rate is:

Results presented in Fig.  3c are obtained by varying the dissipative control parameter c between 2 and 100, the 
noise standard deviation is σ = 0.2 , and the fixed parameter are a = 0.1 and b = 0.3 . Numerical solution to 

(5)

dx

dt
= s(y − x)

dy

dt
= x(r − z)− y

dz

dt
= xy − bz

(6)�∇ · �F = −s − 1− b

(7)
dx = s(y − x)dt + σx dWt

dy = (rx − y − xz)dt + σy dWt

dz = (xy − bz)dt + σ z dWt

(8)�∇ · �F = −s − 1− b+ 3σ lim
t→∞

Wt

t

(9)
dx = −(y + z)dt + σxdWt

dy = (x + ay)dt + σydWt

dz = (b+ xz − cz)dt + σ zdWt

(10)�∇ · p�F = a− c + x̄ + 3σ lim
t→∞

Wt

t
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Eq. (9) is obtained using the Euler-Maruyama method with a time step of �t = 1× 10−2 . The stochastic Rössler 
attractor is reconstructed based on the x variable using an embedding dimension DE = 3 and embedding time 
lag τ = 40 . Example time series of the x variable for the stochastic Rössler system for various values of s are 
provided in Supplementary Figure 12.

Attractor reconstruction. The delay-embedding theorem offers a way to recover the complete phase space 
behavior of a dynamical system from a time series of just one of the system variables. To reconstruct the attractor, 
a time series, x(n), is embedded into a d-dimensional space to form a trajectory composed of vectors ( �yn ) whose 
components are lagged sequences of the original time series:

where the constants d and τ are referred to as the embedding dimension and time delay respectively. Critically, 
the reconstructed attractor �yn is identical to the unknown attractor up to a smooth local change of coordinates, 
and contains all the topological properties of the unknown attractor i.e. system invariants.

There is an extensive literature on how to appropriately choose the values of τ and d. We take the first mini-
mum of the mutual  information13 to determine τ and the number of degrees of freedom from the originating 
system as the embedding dimension. When comparing stability between similar systems (as in Figs.  2,3, 4), the 
choice of τ is kept fixed. This is because an optimized prediction horizon is not the objective here. The objective 
is to detect relative changes in the flow contraction which could be obfuscated by embedding similar systems 
with widely varying embedding time lags τ.

S&P 500 index returns time series. Time series for S&P50045 returns are based on the adjusted closing 
prices P. The price return at time t over some interval T is:

For example when T = 1 then the returns are daily. Since daily returns are very noisy, we analyze monthly returns 
( T = 20 ) for the analysis presented herein. After obtaining monthly returns, the returns time series is divided 
into 3 groups spanning the years 1984–1986, 1986–1988, and 1988–1990. This way we test the stability preceding, 
during, and after the Black Monday crash of 1987. Within each group, we calculate �� based on a sliding sliding 
window library and test set that are each 252 points (1 year). For example, in the grouping spanning 1984 through 
1986, the first library set spans 01/03/1984 to 12/28/1984 and the test set spans 01/03/1985 through 12/28/1985 
and �� is estimated. This procedure is repeated by advancing to the start and end dates of both the library and test 
sets by 1 day, until the end date of the test set reaches 12/28/1986. The same procedure is applied to each group 
resulting in approximately 252 estimates of �� . The mean and standard deviation are presented in Fig.  4. The 
embedding time lag is obtained from the first minimum in the average mutual information from the returns time 
series spanning 1980-1990 and is found to be τ = 10 . Previous studies have suggested an embedding dimension 
of around 5 for the S&P50046, therefore we present results corresponding to embedding dimensions of 4, 5, and 6.

Code availability
MATLAB code available at https ://githu b.com/zcwil liams /stabi lity_metri c.

Received: 8 September 2020; Accepted: 17 February 2021

References
 1. Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).
 2. Nicolis, G. & Nicolis, G. Introduction to Nonlinear Science (Cambridge University Press, Cambridge, 1995).
 3. Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).
 4. Dakos, V., Carpenter, S. R., van Nes, E. H. & Scheffer, M. Resilience indicators: Prospects and limitations for early warnings of 

regime shifts. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130263 (2015).
 5. Dakos, V., Glaser, S. M., Hsieh, C.-H. & Sugihara, G. Elevated nonlinearity as an indicator of shifts in the dynamics of populations 

under stress. J. R. Soc. Interface 14, 20160845 (2017).
 6. Van Nes, E. H. & Scheffer, M. Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift. Am. Nat. 169, 

738–747 (2007).
 7. Wagner, T. J. & Eisenman, I. False alarms: How early warning signals falsely predict abrupt sea ice loss. Geophys. Res. Lett. 42, 

10–333 (2015).
 8. Menck, P. J., Heitzig, J., Marwan, N. & Kurths, J. How basin stability complements the linear-stability paradigm. Nat. Phys. 9, 89–92 

(2013).
 9. Karnatak, R., Kantz, H. & Bialonski, S. Early warning signal for interior crises in excitable systems. Phys. Rev. E 96, 042211 (2017).
 10. Boettigers, C. & Hastings, A. Early warning signals and the prosecutor’s fallacy. Proc. R. Soc. B Biol. Sci. 279, 4734–4739 (2012).
 11. Ashwin, P., Wieczorek, S., Vitolo, R. & Cox, P. Tipping points in open systems: Bifurcation, noise-induced and rate-dependent 

examples in the climate system. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 370, 1166–1184 (2012).
 12. Ushio, M. et al. Fluctuating interaction network and time-varying stability of a natural fish community. Nature 554, 360–363 

(2018).
 13. Abarbanel, H. D., Brown, R. & Kennel, M. B. Variation of Lyapunov exponents on a strange attractor. J. Nonlinear Sci. 1, 175–199 

(1991).

(11)�yn = [x(n), x(n− τ), . . . , x(n− (d − 1)τ )]

(12)rTt =
Pt − Pt−T

Pt−T

https://github.com/zcwilliams/stability_metric


10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5730  | https://doi.org/10.1038/s41598-021-84865-8

www.nature.com/scientificreports/

 14. Norwood, A., Kalnay, E., Ide, K., Yang, S.-C. & Wolfe, C. Lyapunov, singular and bred vectors in a multi-scale system: An empirical 
exploration of vectors related to instabilities. J. Phys. A Math. Theor. 46, 254021 (2013).

 15. Brown, R., Bryant, P. & Abarbanel, H. D. Computing the Lyapunov spectrum of a dynamical system from an observed time series. 
Phys. Rev. A 43, 2787 (1991).

 16. Wolf, A., Swift, J. B., Swinney, H. L. & Vastano, J. A. Determining Lyapunov exponents from a time series. Phys. D 16, 285–317 
(1985).

 17. Kantz, H. & Schreiber, T. Nonlinear Time Series Analysis Vol. 7 (Cambridge University Press, 2004).
 18. Sugihara, G. & May, R. M. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 

344, 734–741 (1990).
 19. Trevisan, A. & Legnani, R. Transient error growth and local predictability: A study in the Lorenz system. Tellus A 47, 103–117 

(1995).
 20. Pesin, Y. B. Characteristic Lyapunov exponents and smooth ergodic theory. Uspekhi Mat. Nauk 32, 55–112 (1977).
 21. Bandt, C. & Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 88, 174102 (2002).
 22. Cao, Y., Tung, W.-W., Gao, J., Protopopescu, V. A. & Hively, L. M. Detecting dynamical changes in time series using the permuta-

tion entropy. Phys. Rev. E 70, 046217 (2004).
 23. Politi, A. Quantifying the dynamical complexity of chaotic time series. Phys. Rev. Lett. 118, 144101 (2017).
 24. Stone, L., Landan, G. & May, R. . M. Detecting time’s arrow: A method for identifying nonlinearity and deterministic chaos in 

time-series data. Proc. R. Soc. Lond. B 263, 1509–1513 (1996).
 25. Zanin, M., Rodríguez-González, A., Menasalvas Ruiz, E. & Papo, D. Assessing time series reversibility through permutation pat-

terns. Entropy 20, 665 (2018).
 26. Roldán, É. & Parrondo, J. M. Estimating dissipation from single stationary trajectories. Phys. Rev. Lett. 105, 150607 (2010).
 27. Daems, D. & Nicolis, G. Entropy production and phase space volume contraction. Phys. Rev. E 59, 4000 (1999).
 28. Crooks, G. E. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. 

Rev. E 60, 2721 (1999).
 29. Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690 (1997).
 30. Abarbanel, H. D., Brown, R., Sidorowich, J. J. & Tsimring, L. S. The analysis of observed chaotic data in physical systems. Rev. Mod. 

Phys. 65, 1331 (1993).
 31. Pikovsky, A. & Politi, A. Lyapunov Exponents: A Tool to Explore Complex Dynamics (Cambridge University Press, 2016).
 32. Lorenz, E. N. Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963).
 33. Brock, W. A. et al. Nonlinear Dynamics, Chaos, and Instability: Statistical Theory and Economic Evidence (MIT Press, 1991).
 34. Berg, E. & Huffaker, R. Economic dynamics of the German hog-price cycle. Int. J. Food Syst. Dyn. 6, 64–80 (2015).
 35. Hsieh, D. A. Chaos and nonlinear dynamics: Application to financial markets. J. Financ. 46, 1839–1877 (1991).
 36. Arthur, W. B. Complexity and the economy. Science 284, 107–109 (1999).
 37. Hommes, C. H. Financial markets as nonlinear adaptive evolutionary systems. Inbergen Inst. Discuss. Pap. 01—-0014, 1–30 (2001).
 38. Shiller, R. J. Speculative prices and popular models. J. Econ. Perspect. 4, 55–65 (1990).
 39. Sornette, D. & Johansen, A. Large financial crashes. Phys. A 245, 411–422 (1997).
 40. Johansen, A. et al. Shocks, crashes and bubbles in financial markets. Brussels Econ. Rev. 53, 201–253 (2010).
 41. Sterk, A., Holland, M., Rabassa, P., Broer, H. & Vitolo, R. Predictability of extreme values in geophysical models. Nonlinear Processes 

Geophys. 19, 529–539 (2012).
 42. Dijkstra, H. A. Nonlinear Climate Dynamics (Cambridge University Press, 2013).
 43. Geurts, B. J., Holm, D. D. & Luesink, E. Lyapunov exponents of two stochastic Lorenz 63 systems. J. Stat. Phys. 20, 1–23 (2019).
 44. Rössler, O. E. An equation for continuous chaos. Phys. Lett. A 57, 397–398 (1976).
 45. S&p 500 (2020). Retrieved from FRED, Federal Reserve Bank of St. Louis. https ://fred.stlou isfed .org/serie s/SP500 .
 46. Peters, E. E. A chaotic attractor for the s&p 500. Financ. Anal. J. 47, 55–62 (1991).

Acknowledgements
We are grateful to B.T. Werner and S. Singh for insightful conversations and feedback. Support for this project 
was provided by the National Science Foundation (EAR 1715638).

Author contributions
Z.C.W. and D.E.M. jointly conceived of the study, designed the study, coordinated the study and drafted the 
manuscript. Z.C.W. carried out the numerical analyses. All authors gave final approval for publication.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https ://doi.
org/10.1038/s4159 8-021-84865 -8.

Correspondence and requests for materials should be addressed to Z.C.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2021

https://fred.stlouisfed.org/series/SP500
https://doi.org/10.1038/s41598-021-84865-8
https://doi.org/10.1038/s41598-021-84865-8
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Variations in stability revealed by temporal asymmetries in contraction of phase space flow
	Phase space stability technique
	Results
	Application to the Lorenz system. 
	Application to stochastic nonlinear dissipative systems. 
	Application to stock market stability. 

	Discussion
	Methods
	Lorenz system. 
	Stochastic Lorenz system. 
	Stochastic Rössler system. 
	Attractor reconstruction. 
	S&P 500 index returns time series. 

	References
	Acknowledgements


