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EMeth: An EM algorithm for cell 
type decomposition based on DNA 
methylation data
Hanyu Zhang1, Ruoyi Cai2, James Dai3 & Wei Sun2,3,4*

We introduce a new computational method named EMeth to estimate cell type proportions using 
DNA methylation data. EMeth is a reference-based method that requires cell type-specific DNA 
methylation data from relevant cell types. EMeth improves on the existing reference-based methods 
by detecting the CpGs whose DNA methylation are inconsistent with the deconvolution model and 
reducing their contributions to cell type decomposition. Another novel feature of EMeth is that it 
allows a cell type with known proportions but unknown reference and estimates its methylation. This 
is motivated by the case of studying methylation in tumor cells while bulk tumor samples include 
tumor cells as well as other cell types such as infiltrating immune cells, and tumor cell proportion can 
be estimated by copy number data. We demonstrate that EMeth delivers more accurate estimates 
of cell type proportions than several other methods using simulated data and in silico mixtures. 
Applications in cancer studies show that the proportions of T regulatory cells estimated by DNA 
methylation have expected associations with mutation load and survival time, while the estimates 
from gene expression miss such associations.

Almost all bulk tissue samples are composed of multiple cell types. Cell type proportion estimates can be very 
valuable for -omic data analysis or clinical studies. For example, accounting for cell type proportion variation is 
critical in Epigenome Wide Association  Studies1. Another example is that immune cell composition in tumor 
samples can predict response to checkpoint inhibitor  immunotherapy2. This is likely because checkpoint inhibi-
tors work by reinvigorating a pre-existing tumor immune response, which can be characterized by the cell types 
and the extent of immune cell infiltration in tumor  samples3.

Both gene expression and DNA methylation vary across cell types and can be used to estimate cell type com-
position. An advantage to estimate cell type composition using DNA methylation instead of gene expression is 
that DNA methylation is usually more stable than gene expression and it is easier to measure in formalin-fixed 
paraffin-embedded or FFPE  tissues4, which is the most commonly used forms to store tissue samples. More com-
putational methods have been developed for cell type deconvolution using gene expression data. Many lessons 
learned from gene-expression-based deconvolution methods are useful for DNA-methylation-based deconvolu-
tion, and thus we will briefly review the earlier works using either gene expression or DNA methylation data.

CIBERSORT/CIBERSORTx is among the most popular methods for gene-expression-based deconvolution 
and it delivers comparable or more accurate estimates of cell type composition than many earlier  methods5,6. 
The core of CIBERSORT is a support vector regression where the response variable is the gene expression from 
bulk tissues and each covariate corresponds to the gene expression from one cell type, which are usually esti-
mated from external reference samples. The good performance of CIBERSORT is in part due to the fact that the 
objective function of a support vector regression is robust to the noise in the data. In contrast, some commonly 
used objective functions (e.g., the summation of squared residuals of a linear regression) are sensitive to outli-
ers. We will include support vector regression as one of the competing methods for DNA-methylation-based 
deconvolution in this study.

Another recent method for gene expression-based deconvolution is ICeD-T7, which models gene expression 
by a log-normal distribution. This model choice allows the decomposition in linear-scale8 and evaluation of 
the loss function in log-scale where gene expression variance is much more stable than in linear scale. ICeD-T 
employs a mixture of regression model to identify those genes whose expression in a tissue sample is inconsistent 
with the deconvolution model and it down-weighs the contribution of those genes for cell type deconvolution. 
Our EMeth method is motivated by the ICeD-T method and adopts a similar mixture of regression approach.
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In general, there are two classes of methods studying cell type decomposition using DNA methylation data: 
reference-based methods vs. reference-free methods. Reference-free methods do not require the reference of 
cell type-specific DNA  methylation9–11. Their main goal is to account for the variation of cell type composition 
in the association analysis of DNA  methylation12, and the latent factors estimated from these methods are often 
linear combinations of cell type proportions rather than the cell type proportions themselves. The reference-based 
methods, which require prior knowledge of cell type-specific DNA methylation, can estimate the proportion of 
each cell type. Our EMeth method is a reference-based method.

A few reference-based methods have been developed in a regression framework where the response vari-
able is the DNA methylation of multiple CpGs in a tissue sample and each covariate is the DNA methylation of 
these CpGs in a cell type. Houseman et al.13 proposed a linear regression method with quadratic programming 
to impose the constraint that the regression coefficients are none-negative. Teschendorff et al.14 proposed a 
method Epidish that replaces linear regression with robust linear regression (R function MASS/rlm) that uses 
a weighted loss function so that the data points with larger residuals have smaller weights. Motivated by the suc-
cess of CIBERSORT in gene expression decomposition, Teschendorff et al.14 and Chakravarthy et al.15 employed 
support vector regression to estimate cell type composition using DNA methylation data.

A limitation of reference-based methods is that for some CpGs, the DNA methylation in the reference samples 
may not accurately capture the cell type-specific DNA methylation in a tissue sample. Another limitation is that 
reference may not be available for all cell types. For example, when studying tumor immune microenvironment, 
we often have the reference for immune cell types, but not for tumor cells. Chakravarthy et al.15 have used the 
DNA methylation derived from tumor cell lines as the reference for tumor cells, which may not be ideal for many 
cancer types where there are considerable differences between cell lines and bulk tumor samples.

To overcome these two limitations, we propose a new method for cell type decomposition using DNA meth-
ylation data. We name our method EMeth, since it uses an EM (Expectation-Maximization) algorithm for param-
eter estimation and it is applied on DNA methylation data. To overcome the challenge of inaccurate reference 
for some CpGs, EMeth models the observed DNA methylation of each CpG by a mixture distribution with one 
component for regular/consistent CpGs and the other component for aberrant CpGs whose DNA methylation 
are inconsistent with what is expected from the deconvolution model. EMeth automatically down-weighs the 
contributions of the aberrant CpGs on cell type deconvolution. To overcome the second challenge of unknown 
reference, EMeth includes a special cell type without methylation reference, but with known cell type proportions. 
This is motivated by cancer studies where tumor purity can be estimated from DNA copy number data, or even 
methylation data  itself16. EMeth estimates the DNA methylation of this special cell type.

We evaluated EMeth and four competing methods (linear regression, robust linear regression, quadratic 
programming, and support vector regression) by two sets of studies where DNA methylation were generated by 
simulation or in silico mixture of observed cell type-specific DNA methylation. Our results demonstrate that 
EMeth has better performance than all the competing methods. Then we applied EMeth on four cancer types 
that have relatively higher mutation burdens, hence higher likelihood of immune  infiltration17: colon adenocar-
cinoma (COAD), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and skin cutaneous 
melanoma (SKCM). We found that cell type proportions estimated by EMeth have good consistency with the 
estimates from gene expression data for CD8T and B cells, but correlated poorly for T regulatory cells (Tregs). 
The Tregs proportion estimates by DNA methylation were negatively associated with mutation load and sur-
vival time, consistent with the functional roles of Tregs. Such associations were missed by the Treg proportion 
estimates by gene expression. Therefore, the cell type proportion estimates by DNA methylation provide some 
helpful additions to those estimates by gene expression.

Results
Method overview and study design. DNA methylation of a CpG site can be measured by a beta-value 
or an M-value. A beta-value is between 0 and 1 and it quantifies the proportion of DNA molecules in which this 
CpG is methylated. An M-value is the logit transformation of a beta-value. Appropriate decomposition should 
be performed using beta-values13.

The input data of EMeth include the methylation data (beta-values) from bulk tissue samples and the refer-
ence data of cell type-specific DNA methylation in a pre-defined set of CpGs. For each bulk sample, these CpGs 
can be divided into two groups: the consistent (or aberrant) CpGs on which the DNA methylation in the bulk 
sample is consistent (or inconsistent) with what is expected from the deconvolution model. Note that the set of 
aberrant CpGs may vary across bulk tissue samples. EMeth models the DNA methylation data in a tissue sample 
by a normal mixture of regression model with two components, designed for consistent and aberrant CpGs, 
respectively. We assume the aberrant component has a larger variance, which can be estimated from the data 
and such larger variance automatically down-weighs the contribution of the aberrant CpGs for cell type decon-
volution. Within each mixture component, EMeth assumes the mean value of DNA methylation is a weighted 
summation of cell type-specific DNA methylation where the weights are cell type proportions. A standard EM 
algorithm can be used to estimate the parameters of this mixture of regression model. From our exploratory 
analysis, we found the estimation may be unstable when two or more cell types have highly correlated cell type-
specific DNA methylation. To alleviate this problem, we added a ridge penalty on cell type compositions and 
incorporated it in the likelihood function for EMeth.

EMeth allows a special cell type of which the cell type proportions in tissue samples are known but the cor-
responding cell type-specific methylation reference is unknown. This is often the case for tumor tissues where 
tumor purity is known but DNA methylation in tumor cells is unknown. The methylation level of this special cell 
type can be estimated by borrowing information across tissue samples. For each CpG, the expected contribution 
of this special cell type to the observed methylation is proportional to the product of its proportion in a tissue 
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sample and its methylation. Therefore, its methylation can be estimated by a regression using the methylation 
data of this CpG across tissue samples, where the response variable is the observed methylation, and the covariate 
is the proportion of this cell type. See the Methods Section for more details.

Among the outputs of EMeth, most users may be interested in the estimates of cell type proportions and the 
DNA methylation in the special cell type. Though we also provide the estimate of aberrant probability for each 
CpG in each bulk sample, which can be informative for CpGs selection by other deconvolution methods that 
do automatically weigh each CpG.

EMeth is implemented in an open-source R package, freely available at https ://githu b.com/Hanyu z1996 
/EMeth . More details of EMeth are presented in the Methods Section, and Section 1 of the Supplementary 
Materials.

We compared EMeth versus the following four methods.

1. Ordinary linear regression that minimizes residual sum squares of the model fit (least squares or LS).
2. Support vector regression (SVR) with linear kernel. This is the method used by CIBERSORT/CIBER-

SORTx5,15. There is a cost parameter in svr that balances the model fit and penalty. The default cost parameter 
does not work well, and we choose it by cross-validation.

3. Robust linear regression (RLS) with Huber loss. This is the method used by  Epidish14.
4. Linear regression with constraints that the regression coefficients are non-negative, solved by quadratic 

programming (QP). This is the method used by Houseman et al.13.

For all these methods, the regression coefficients are the estimates of cell type proportions. In the first three 
methods, a coefficient is set to 0 if it is smaller than 0. Then we re-normalize the coefficients such that they add 
up to one for each sample. All these four methods are based on a linear mean structure of methylation but do 
not consider variance structure. In contrast, EMeth uses the variance to detect aberrant CpGs. These methods 
also do not allow a special cell type with known proportions but unknown methylation.

Evaluation of different methods using simulated data. This simulation study is based on cell type-
specific DNA methylation data from seven types of immune cells (CD4T, CD8T, B cells, Natural Killer cells, 
Neutrophils, Monocytes, and T Regulatory Cells). In order to generate this cell type-specific reference dataset, 
we combined cell type-specific DNA methylation data measured by Illumina 450k arrays from six  studies18–23. 
The raw data were processed to remove batch effects due to different data sources, see Section 2 of the Supple-
mentary Materials for details.

We first estimated the mean methylation level per CpG and per cell type using this cell type-specific reference 
dataset. For the special cell type without reference, the mean methylation of each CpG was simulated indepen-
dently across CpGs from a uniform (0,1) distribution. Then we randomly simulated cell type proportions for each 
tissue sample and calculated the mean methylation of each CpG in each tissue sample by the weighted summation 
of cell type-specific methylation, where the weights were cell type proportions. Finally, we simulated methyla-
tion in each tissue sample by a normal distribution with these mean values and variances calculated based on 
a mean-variance relation of the binomial distribution (see Methods Section for more details). For each sample, 
the proportion of aberrant CpGs was sampled from a uniform distribution in the range of 5% to 15%. We set 
the number of bulk tissue samples to be 100 for all simulations and selected 946 CpGs to construct the reference 
data. The details of CpG selection can be found in Section 3 of the Supplementary Materials.

The key parameters in this simulation include (1) a variance parameter σ 2
c  , which represents the noise level 

in the consistent CpGs; and (2) the ratio of the variance of aberrant CpGs vs. consistent CpGs: � = σ 2
a /σ

2
c  . The 

value of σ 2
c  is based on the estimates from four cancer types that are part of The Cancer Genome Atlas (TCGA) 

study. We evaluate the performance of different methods by rooted mean square error (RMSE). Specifically, we 
first computed the difference of the estimated proportions and the true proportions for each cell type, and then 
computed the square root of the average of the squared difference. For each method, the average was taken across 
all cell types and all samples. More details of simulation setup are provided in Section 3.1 of the Supplementary 
Materials.

EMeth always reaches the lowest RMSE in all simulation settings (Table 1). Among the four benchmark algo-
rithms, SVR and RLS have similar performance and both have smaller RMSE than QP, which has slightly smaller 
RMSE than LR. When � = σ 2

a /σ
2
c  increases from 2 to 100, the performance of all the four competing methods 

become worse, which is expected since there is more noise in the data; while in contrast, the performance of 
EMeth becomes better. This is because larger � makes it easier for EMeth to separate the aberrant CpGs from 
the consistent ones and thus appropriately down-weighs their contributions to the final estimates. For example, 
for the middle level of σ 2

c = 0.00221 (corresponding to the σ 2
c  estimate from lung adenocarcinoma (LUAD) 

patients) and � = 2 , EMeth reduces the RMSE of SVR by 31% (from 0.466 to 0.322). For the same σ 2
c  but with 

larger � = 100 , EMeth reduces the RMSE of SVR by 36% (from 0.486 to 0.310). We also conducted additional 
simulations where the proportion of aberrant CpG probes varies from 5 to 35% and reached the same conclusion 
that EMeth consistently outperforms all the other methods (Supplementary Table S3).

We also investigated the cell proportion estimates for each cell type separately. EMeth performs the best for 
all the cell types in most simulation settings (Fig. 1 and Figures S5-S22 in Section 3 of the Supplementary Materi-
als). The estimation accuracy varies a lot across cell types. For some cell types all the methods provide accurate 
estimates. For example, the RMSE can be as low as 0.01 for monocyte by all the methods. This low RMSE is not 
an artifact of low cell type proportions since the expected proportions of all the cell types are the same in this 
simulation. In contrast, the RMSE can be relatively high for CD4T or CD8T. RMSE for CD8T can be as high as 
0.05 for EMeth, and higher than 0.05 for all the other four methods. The difficulty in estimating the proportions 

https://github.com/Hanyuz1996/EMeth
https://github.com/Hanyuz1996/EMeth
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of CD4T and CD8T is due to the high level of similarity of DNA methylation for these two cell types. In the 
reference data, the correlation between the average methylation of CD4T and CD8T can reach 0.96. The ridge 
penalty in our model helps improve the robustness against this collinearity and leads to more accurate estimates.

In addition to cell type proportions, EMeth also estimates the DNA methylation in the special cell type with-
out reference. Our simulation results show that the EMeth estimates are reasonably accurate. The correlations 
between the estimates and the true values are around or above 0.7 in most cases (Table S2 in the Supplementary 
Materials).

Evaluation of different methods using in silico mixtures of cell type-specific DNA methylation 
data. Next, we evaluated different methods by directly mixing individual-specific and cell type-specific DNA 
methylation data to generate pseudo tissue samples. This approach captures the variation of cell type-specific 
DNA methylation across individuals and does not rely on any distribution assumption. To this end, we used the 
methylation and gene expression data in three human immune cell types (Monocytes, Neutrophils and naive 
CD4 T cells) from blood samples of 197 individuals, which were generated as part of the BLUEPRINT  project25. 
This is a very unique and valuable dataset because it includes cell type-specific omic data in a large number of 
individuals. We selected the 124 individuals with complete gene expression and DNA methylation data for all 
three cell types for this evaluation. We compared cell type decomposition based on DNA methylation data by 
EMeth and four other methods as well as cell type decomposition using gene expression data by  CIBERSORTx26. 
We did not consider the special cell type with unknown methylation in this in silico mixing dataset.

For each individual, we simulated a mixture by linearly combining cell type-specific data, followed by adding 
Gaussian noise in M-value scale for methylation data and in log-scale for expression data. The only parameter 
in this simulation study is the variance of the Gaussian noise. Since we use the same mixture proportions on 
both methylation and gene expression data, we are able to compare the cell type proportion estimates from these 
two types of data. We used the data from 56 individuals to construct the reference data and the remaining 68 
individuals to generate mixture samples. We added the same level of noise to both expression and methylation 
data. See Section 4 of the Supplementary Materials for more details.

Both EMeth and RLS have accurate estimation results (correlation with true cell type proportions as high as 
0.95 and RMSE around 10−3 for each cell type) and they consistently outperform other methods (Fig. 2). The 
estimates by EMeth and RLS based on methylation data are more accurate than the estimates by CIBERSORTx 
based on expression data. The superior performances of EMeth and RLS are more apparent by examining the 
cell type proportion estimates for each cell type across all the individuals (Fig. 3).

Results on TCGA data. We studied immune cell type composition for four cancer types (colon cancer, 
lung adenocarcinoma, lung squamous cell carcinoma, and skin cutaneous melanoma) using the gene expression 
data (bulk RNA-seq data) and DNA methylation data (Illumina 450k array) from The Cancer Genome Atlas 
(TCGA). We applied EMeth using the reference data of the seven immune cell types used in our simulation 
study. To estimate cell type proportions using gene expression data, we applied  CIBERSORTx26 using its default 

Table 1.  Estimation results from a simulation study. Cell type proportion estimation accuracy, evaluated in 
terms of rooted mean square error (RMSE) for 18 simulation settings, with six values of σ 2

c  , the noise level for 
consistent CpGs, and 3 values of � , the ratio of the noise level between the aberrant CpGs and the consistent 
CpGs. Four of the six values of σ 2

c  are selected according to estimation from four cancer types of the TCGA 
study.

σ 2
c � = σ 2

a /σ
2
c EMeth SVR LS RLS QP

0.004

2 0.0268 0.0412 0.0806 0.0384 0.0771

10 0.0261 0.0418 0.0833 0.0400 0.0794

100 0.0263 0.0429 0.0907 0.0423 0.0856

0.00298 (LUSC)

2 0.0264 0.0403 0.0781 0.0362 0.0749

10 0.0262 0.0410 0.0807 0.0376 0.0771

100 0.0258 0.0419 0.0878 0.0397 0.0832

0.00221 (LUAD)

2 0.0259 0.0397 0.0758 0.0344 0.0730

10 0.0258 0.04021 0.0782 0.0356 0.0750

100 0.0253 0.0411 0.0850 0.0374 0.0808

0.00141 (SKCM)

2 0.0249 0.0387 0.0727 0.0322 0.0703

10 0.0251 0.0309 0.0747 0.0331 0.0720

100 0.0251 0.0399 0.00810 0.0347 0.0774

0.00118 (COAD)

2 0.0248 0.0384 0.0716 0.0315 0.0693

10 0.0250 0.0388 0.0735 0.0324 0.0710

100 0.0248 0.0396 0.0795 0.0338 0.0762

0.001

2 0.0245 0.0382 0.0706 0.0309 0.0684

10 0.0248 0.0386 0.0724 0.0317 0.0700

100 0.0249 0.0393 0.0782 0.0330 0.0750
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reference of 22 immune cell types (referred to as LM22), followed by cell size correction. Cell size correction is 
needed because CIBERSORTx estimates the proportion of gene expression from each cell type, and thus if one 
cell type has more transcripts per cell, its proportion will be over-estimated28. We further collapsed the cell type 
proportion estimates to the seven cell types used for DNA methylation-based deconvolution to facilitate direct 
comparisons.

Across all the cancer types, the cell proportion estimates using DNA methylation and gene expression have 
good consistency for B cells and monocytes, with correlation > 0.7 for most cancer types or deconvolution meth-
ods (Fig. 4 and Figures S23-S25 in Supplementary Materials). The proportions of CD8T have good consistency 
by correlation, though the estimates using gene expression is often higher, leading to relatively large RMSE when 
comparing the estimates using the two types of data (Figures S26-S30). Consistency for CD4T and neutrophil 
varies according to cancer types or methods. The proportion estimates of natural killer and T regulatory cells 
(Treg) by gene expression and DNA methylation often have very low correlations (Figures S31-S34), which could 
be partly due to the low abundance of these two cell types.

Without independent cell type proportion estimates by other approaches for the same samples (e.g., flow 
cytometry), it is not possible to assess which type of omic data (gene expression or DNA methylation) provide 
more accurate estimates. We sought to assess this indirectly by examining the associations between cell type 
proportions and two variables of interest: mutation burden and survival time.

We used the mutation burden calculated in an earlier work of our  group29, where we defined the mutation 
burden of a tumor sample as the total number of non-silent single nucleotide variants (SNVs) plus the number 
of indels. A tumor cell with higher mutation burden may present more mutated peptides on its cell surface, and 
thus has higher chance to be recognized by the immune system. This will in turn triggers immune infiltration 
in tumor, particularly CD8 T cells. Colon cancer is an ideal case to study the relation between mutation burden 

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��
���� ����

���� ��

��

��
��

0.0

0.1

0.2

CD4T CD8T Monocyte B NK Neutrophil Treg
CellTypes

R
M
SE

Methods
EMeth
ls
qp
rls
svr

Estimation Result

�� ��

��

��

��

����

��

��

��

��

��

��

��

��

��

��

��
��

��
��

��

��
��

��

��

��

��

��

��

��

�� ��

��

��

��

��

��

��

��

��

��
��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��
����

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��
��

��

����

��

��

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.1 0.2 0.3 0.4 0.5
true

EM
et
hE

st
im

at
e

EMeth

��

��

��

��

��

��
��

��

��

��

��

��

����

��

��

��
��

��

��

����

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��
��

��

����

��

��

��

��

��

��

��

��

��

��

��

��
��

��

��

��
��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

����

��

��

��

��

�� ��

��

��

��

��

��

��

��

��

��

��

����

��

��

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.1 0.2 0.3 0.4 0.5
true

sv
rE
st
im

at
e

svr

Figure 1.  Evaluation of different methods using simulated data. The upper panel shows the RMSE in 25 
repetitions of all five methods in one group of simulation parameters ( σ 2

c = 0.004 , � = 10 ). We compare the 
RMSE for each cell type separately. Under this setting, EMeth dominates the result in all cell types. Two panels 
in the bottom panel display estimates of CD4T proportions by EMeth and SVRs for 100 samples. In this case, 
both methods have reasonable performances, though SVR has a systematic bias. These plots were generated 
using ggplot2 version 3.3.124.
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Figure 2.  Evaluation of different methods using in silico mixtures. The upper row shows the correlation 
between the estimated proportions and the true proportions for each cell type and each method. The lower 
row displays the RMSE. The noise level parameter c were set as 5 to better demonstrate the difference across 
methods, and the conclusions are the same for other values of c. These plots were generated using R version 
3.6.227.
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Figure 3.  Evaluation of cell type proportion estimates for CD4 T cells using in silico mixtures. The y-axis is 
the true proportion of CD4 T cells for all 68 samples and the x-axis is the proportion estimates by six different 
methods. EMeth and RLS give very accurate estimates from methylation data and other methods provide 
reasonable but less accurate estimates. These plots were generated using R version 3.6.227.
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and immune infiltration because there is a subset of tumor samples that are hypermutated (Fig. 5A). We observe 
that CD8T cells proportions (either the ones estimated using gene expression/CIBERSORTx or DNA methyla-
tion/EMeth) are indeed higher in the hypermutated subset (Fig. 5B). The Treg proportions estimated by gene 
expression are similar between the two subsets. In contrast, Treg proportions estimated by DNA methylation are 
lower in the hypermutated subsets (Fig. 5B), consistent with earlier finding that Tregs are depleted in hypermu-
tated colon cancer  samples30. Angelova et al.30 used gene expression to infer immune cell abundance. Instead of 
deconvolution based on references, as was done by CIBERSORTx or EMeth, they inferred the abundance of a cell 
type using weighted average of a group of genes that are highly expressed in that cell type. Therefore the method 
of Angelova et al. is less quantitative (since they do not give exact proportions) but more robust because they do 
not fit a deconvolution model. The fact that their conclusions match our EMeth results (i.e., Tregs are depleted 
in hypermutated colon cancer samples) provides a strong support for the accuracy of EMeth.

We assessed the associations between survival time and cell type proportion estimates (from either gene 
expression or DNA methylation) in all cancer types and only detected significant associations in melanoma 
(SKCM) samples, therefore here we focused on the results from SKCM samples. The association patterns for 
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Figure 4.  Compare cell type proportion estimates from colon cancer samples The top row illustrates the 
consistency (in terms of correlation and RMSE) between cell type proportion estimates from methylation data 
(by multiple methods) and gene expression data (by CIBERSORTx). The middle row displays the estimation 
result for B cells, an example where cell type proportion estimates from DNA methylation and gene expression 
are highly consistent. Each point corresponds to one tumor sample and it is colored by tumor purity (eta). The 
bottom row shows the results for natural killer cell, an example where cell type proportion estimates from DNA 
methylation and gene expression have very low correlations. These plots were generated using ggplot2 version 
3.3.124.
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CD8T are consistent between cell type proportions estimated by gene expression and DNA methylation: higher 
abundance of CD8T is associated with better survival outcomes (see Fig. 5C for log-rank test results and Table S4 
in the Supplementary Materials for Cox regression results). This is expected since more immune infiltration 
leads to better survival  outcomes2,3. Since T regulatory cells function in suppressing tumor-specific immune 
 responses31, negative association between Treg abundance and survival time is expected. This is the case for the 
DNA-methylation-based Treg proportions, but not true for the gene expression-based Treg proportions (Fig. 5C 
and Table S4 in Supplementary Materials).

The discrepancy of Treg proportion estimates by gene expression and DNA methylation could be due to 
inaccuracy of cell type-specific reference. While DNA methylation of bulk tumor samples and reference were 
both measured by Illumina 450k arrays, the gene expression data were measured by two different platforms: 
RNA-seq for bulk tumor samples and microarray for reference. Such platform difference could lead to bias in cell 
proportion estimates. To address this potential issue, we prepared another gene expression reference of 11 cell 
types using single cell RNA-seq (scRNA-seq) data of 16,291 immune cells from 48 tumor samples of melanoma 
 patients33, and we refer to it as SF11 reference matrix. For each cell type, gene expression in this scRNA-seq data 
has positive, but sometime moderate correlation with the gene expression in the LM22 matrix (Figure S34), 
reflecting difference due to two platforms and two types of samples (blood samples for LM22 and tumor samples 
for SF11). We selected 594 genes for the SF11 signature matrix based on the results of differential expression 
analysis. The expression of a few signature genes were illustrated in Figures S35-S40. See Section 5.2 of the Sup-
plementary Materials for more details on how this SF11 signature was prepared, and the complete pipeline is 
available at https ://githu b.com/Sun-lab/IT-predi ctor/tree/maste r/R/SF201 8_analy sis.

We estimated cell proportions in the TCGA SKCM samples by CIBERSORTx, using the SF11 signature matrix, 
and compared the estimates with the estimates based on gene expression LM22 signature and DNA methylation 

Figure 5.  Association analysis for cell type proportions. (A) The distribution of mutation loads across colon 
cancer patients. The vertical line indicates the cutoff to classify samples to be hypermutated. (B) Comparison 
of cell type proportions of the hypermutated samples versus non-hypermutated colon cancer samples. The cell 
proportions estimated by gene expression are labeled by a suffix “.E”. (C) Associations between survival time and 
cell type proportions for melanoma patients. All the samples are divided into two groups based the median of 
cell type proportion estimates (abundance/ab high or low). More than half of the Treg proportions (estimated 
by DNA methylation) are 0’s and thus the group of “ab high” is less than 50% of the samples. These plots were 
generated using ggplot2 version 3.3.124 and survminer 0.4.832.

https://github.com/Sun-lab/IT-predictor/tree/master/R/SF2018_analysis
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EMeth signature (Figure S41). The cell types that have relatively high correlation between LM22 and EMeth esti-
mates, such as B cells or CD8T cells, also have high correlation between LM22 and SF11 estimates. In contrast, 
Treg proportion estimates using SF11 and LM22 have weaker correlation. In fact, the Treg proportion estimates 
using LM22 has stronger correlation with SF11 estimates in 3 other cell types (correlation 0.74, 0.55, and 0.54 for 
B cells, CD4T, and monocyte, respectively) than with Treg itself (correlation 0.5). The Treg proportion estimates 
using either SF11 or LM22 have negative correlations with EMeth estimates (correlation -0.18 and -0.2 for SF11 
and LM22 estimates, respectively, Figure S41). It is worth noting that for some cell types, the proportion estimates 
from gene expression and DNA methylation have higher correlations than the estimates from two gene expres-
sion signatures. For example, for B cells, the correlations between EMeth estimates and SF11/LM22 estimates 
are 0.84 and 0.90, respectively, while the correlation between SF11 and LM22 estimates is 0.79.

Method
EMeth overview. Suppose we have I bulk samples, each one of which consists of a mixture of Q + 1 cell 
types. Assume the cell type-specific methylation are known for the first Q cell types, and the mixture proportion 
is denoted by ρqi for the q-th cell type in the i-th sample. The (Q + 1)-th cell type is a special one that does not 
have cell type-specific methylation information but has known cell type proportions in bulk samples, denoted by 
ηi for sample i. In tumor samples, this cell type can be tumor cell and its proportion is tumor purity that can be 
estimated by copy number data. We also allow aberrant CpGs whose cell type-specific methylation is inconsist-
ent between bulk tissue sample and reference of cell type-specific methylation.

Denote the methylation (in the scale of β-value) at the k-th CpG and the i-th bulk sample by zki . We model 
zki by a mixture of two normal distributions.

Here πai and πci are the probabilities that a CpG being aberrant or consistent in sample i, respectively, and 
πai + πci = 1 . N (µki , σ

2
a wki) , the aberrant component, is a normal distribution with mean value µki and vari-

ance σ 2
a wki . The consistent component N (µki , σ

2
c wki) is another normal distribution with the same mean value 

but smaller variance: σc < σa . The decomposition into multiple cell types is achieved by a regression model 
µki = ηiν0k +

∑Q
q=1 ρqiνqk , where ηi +

∑Q
q=1 ρqi = 1 . Furthermore, we assume that ηi is known for each sample 

and νqk is known for each CpG and each cell type. From this model, we can see that the cell type-specific DNA 
methylation in the special cell type ( ν0k ) is estimable because it can be considered as the regression coefficient 
for ηi in a CpG-specific regression. As the consequence, a reasonable sample size and sufficient variation of cell 
type proportions across tissue samples is needed to estimate ν0k.

By default, we set wki ≡ 1 , other choices of wki may further improve the performance of EMeth. As an example, 
in the Supplementary Materials we compare original version of EMeth with a new version EMeth-Binom that 
sets the weights based on the binomial distribution: wki =

∑

q ρqiνqk(1− νqk)+ ηiν0k(1− ν0k) . EMeth-Binom 
can provide more accurate estimates of the model parameters but did not improve the estimates of cell type 
proportions, and thus we focus on the results of standard EMeth with all the weights being 1. In our simulation 
studies, we simulated DNA methylation using the mean-variance relation specified by EMeth-Binom.

Since we are interested in estimating ρqi , the model can be reorganized as

where εki ∼ πaiN (0, σ 2
a wki)+ πciN (0, σ 2

c wki) and 
∑Q

q=1 ρqi = 1− ηi , ρqi ≥ 0 . For this mixture of regression 
model, it is natural to propose an EM-type algorithm to maximize the likelihood. The reference data often have 
strong collinearity between two closely related cell types. We provide a simple remedy to this issue by adding a 
ridge penalty term: 

∑

ρ2
qi . The missing data in EM algorithm is denoted by γik , which denotes whether the j-th 

CpG is aberrant or consistent for the i-th bulk tumor sample. To conclude, in our model the complete penalized 
likelihood is given by

where eki = zki − ηiν0k −
∑Q

q=1 ρqiνqk.
The details of the computation of EMeth are presented in Section 1 of the Supplementary Materials. We also 

consider a variant by replacing the normal distribution with Laplace distribution (EMeth-Lap). Note that the 
Laplace distribution is also in the location-scale family, the main difference is to replace the ℓ2-loss correspond-
ing to normal distribution to ℓ1-loss corresponding to the Laplace distribution, i.e., replace e2ki by |eki| . We still 

(1)zki ∼ πaiN (µki , σ
2
a wki)+ πciN (µki , σ

2
c wki),

(2)zki = ηiν0k +

Q
∑

q=1

ρqiνqk + εki ,

(3)

ℓ(ρ) =
∑

k

∑

i

[

γki logπai + (1− γki) log(1− πai)
]

−
1

2

∑

k

∑

i

γki

(

log σ 2
a wki +

e2ki
σ 2
a wki

)

−
1

2

∑

k

∑

i

(1− γki)

(

log σ 2
c wki +

e2ki
σ 2
c wki

)

− �

∑

i,q

ρ2
qi + Const ,
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include the ridge penalty term in EMeth-Lap. Its performance is similar to standard version of EMeth and thus 
we focus on the results of the standard EMeth in this paper.

Discussion
Estimates of cell type proportions, particular for immune cell infiltration in tumor samples, are highly valuable 
for down-stream association analyses. Many efforts have been devoted to this topic and most of the existing 
works focus on deconvolution of cell type proportions using gene expression data. DNA methylation is an 
attractive alternative because it is often a more stable than gene expression. Our method, EMeth, is designed for 
deconvolution using DNA methylation and it has two novelties. One is to allow a subset of aberrant CpGs and 
thus increase the robustness of the method. The other one is to allow one cell type without reference and estimate 
the DNA methylation of this cell type. We have demonstrated the advantages of EMeth in simulations studies. 
In our case study using TCGA data, the proportion of T regulatory cells (Tregs) estimated from gene expression 
and DNA methylation have very low correlation, and discrepant association results. We found the association 
results using Treg proportion estimates from DNA methylation is more consistent with the functional roles of 
Tregs. However, for the cell types with low proportions across most of the samples, e.g., Tregs, the estimation 
noise may have large impact on the association signals and further studies are warranted.

In this study, we focus on Illumina 450k methylation array because it is the platform where we can find good 
amount of cell type-specific and bulk tissue DNA methylation data. Since we only select around 900 CpGs for the 
final deconvolution, our approach should be applicable to the platforms with fewer CpGs such as the Illumina 
27k methylation array that still have enough CpGs to make selection. Our method is also applicable to the newer 
arrays such as the MethylationEPIC arrays with 850k CpGs or whole genome bisulfite sequencing. It is ideal to 
generate cell type-specific reference using the same platform though we expect the reference generated from 
450k array can be used for deconvolution of methylation data from other array platforms, after a new round of 
CpG selection to match the array platforms. Whether such array based reference is appropriate for deconvolution 
using bisulfite sequencing data warrants further studies.

Although our EMeth method is motivated by cancer studies (e.g., the special cell type with known propor-
tion is designed to mimic tumor cells), it can be applied to other tissues, such as blood, to study the cell type 
composition associated with other disorders such as autoimmune diseases. Our simulation study is designed to 
mimic the level of noise observed in cancer studies (Table 1). Since the noise in tumor tissues is often larger than 
other tissues, the simulation study could be considered as a more challenging case. In contrast, our in silico study 
used a very unique and valuable dataset with cell type-specific DNA methylation measured in ∼ 200 individu-
als. The unique advantage of this dataset is that we can generate mixture of multiple cell types while preserving 
the biological variation across individuals. At the same time, we can use a subset of the individuals to estimate 
cell type-specific reference, and evaluate deconvolution performance using the remaining individuals, and thus 
preserve the biological variation between reference data and bulk tissue samples. Because the reference and bulk 
are generated from the same study and thus we can avoid batch effects, this in silico study represents an easier 
case. The fact that EMeth performs well in both cases suggest it has robust performance in different settings.

A limitation for DNA methylation-based deconvolution, compared with gene expression-based ones is the 
lack of cell type-specific DNA methylation data in different cell types. For example, in our deconvolution analy-
sis, we only considered seven cell types. Some of the cell types could be further refined and it is desirable to 
include more cell types. We believe as more works demonstrate the value of cell type-specific DNA methylation 
data, and with the technique advancement, more of such reference data will be generated in the near future. 
Although EMeth allows a special cell type without reference, we do assume the proportions of this cell type are 
known. EMeth cannot handle an arbitrary missing cell type without either cell type-specific reference or cell 
type proportions.

When the cell type-specific reference is inappropriate, EMeth may find the vast majority of of the CpG probes 
are aberrant. With a very limited number of CpG probes usable, there is risk of over-fitting. EMeth will issue a 
warning in such situation and suggest improvement of the cell type-specific references.

Single cell DNA methylation data is potential resource to generate cell type-specific reference. However, 
currently such data are often very sparse and expensive to generate. A promising direction is to leverage cell 
type-specific scRNA-Seq data to generate corresponding cell-type-specific DNA methylation reference  matrix34. 
In the near future, the technique development may be more mature to measure both gene expression and DNA 
methylation in the same single  cell35, and thus making it feasible to combine gene expression and DNA methyla-
tion to infer cell type-specific DNA methylation reference matrix.

Finally, we conclude with the computational efficiency of EMeth. The EM is known to be slow in convergence. 
Though in our application, we use EM for a classical mixture model where convergence is relatively fast. For 
example, in our analysis of TCGA melanoma data from 393 bulk tumor samples, it took about 10 minutes to 
run the EM algorithm 20 times (4 penalty parameters and 5-fold cross validation), using a MacBook Pro with 
2.3GHz CPU and single thread. The pipelines for analyzing simulated data and TCGA data can be found at https 
://githu b.com/Sun-lab/dMeth .
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