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Radiative flow of non Newtonian 
nanofluids within inclined porous 
enclosures with time fractional 
derivative
Anas A. M. Arafa1*, Z. Z. Rashed2 & Sameh E. Ahmed3

An unsteady convection-radiation interaction flow of power-law non-Newtonian nanofluids using the 
time-fractional derivative is examined. The flow domain is an enclosure that has a free surface located 
at the top boundaries. Also, the geometry is filled by aluminum foam as a porous medium and the 
overall thermal conductivity as well as the heat capacity are approximated using a linear combination 
of the properties of the fluid and porous phases. Additionally, the dynamic viscosity and thermal 
conductivity of the mixture are expressed as a function of velocity gradients with a fractional power. 
Marangoni influences are imposed to the top free surface while the bottom boundaries are partially 
heated. Steps of the solution methodology are consisting of approximation of the time fractional 
derivatives using the conformable definition, using the finite differences method to discretize the 
governing system and implementation the resulting algebraic system. The main outcomes reveled 
that as the fractional order approaches to one, the maximum values of the stream function, the bulk-
averaged temperature and cup-mixing temperature are reduces, regardless values of the time.

List of symbols
cp  Specific heat at constant pressure
Da  Darcy Number
g  Gravity acceleration
H  Length
K  Permeability
k  Thermal conductivity
Ma  Marangoni number
N  Power-law index
Nu  Local Nusselt number
Nuav  Average Nusselt number
P  Pressure
Pr  Prandtl number
Ra  Rayleigh number
Rd  Radiation parameter
T  Temperature
t   Time
(u, v)  Velocity components in the x and y direction
(U ,V)  Dimensionless velocity components in the x and y direction
(

x, y
)

  Dimensional Cartesian coordinates
(X,Y)  Dimensionless Cartesian coordinates
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Greek symbols
αf   Thermal diffusivity
β  Coefficient of thermal expansion
γ  Inclination angle
ε  Porosity of the porous media
θ  Dimensionless temperature
µ  Dynamic viscosity
ν  Kinematic viscosity
ρ  Density
σ  Surface tension
τij  Shear stress tensor
τ  Dimensionless time
φ  Solid volume fraction

Subscripts
eff   Effective
f   Fluid
nf   Nanofluid
p  Porous media
c  Cold
h  Hot

Svey of the heat transport using the non-Newtonian fluid within domains filled by porous elements is a major 
topic in the CFD (computational fluid dynamic) filed due to the important practical applications in the real 
life. These enforcements include oil recovery, material processing, polymer, synthetic lubricants, liquid films, 
cosmetics, oil–water emulsion, paints, jellies, etc.1–3. The power-law non-Newtonian nanofluids are new cat-
egory of the nanomixtures which contains a non-Newtonain base fluid (For example Carboxymethyl Cellulose 
(CMC) solutions) and one or more type of the nanoparticles. The purpose of these compounds is to support 
the thermal transfer of conventional fluids. An enormous number of studies have been presented using New-
tonian  nanofluids4–9 while the interest in the non-Newtonian nanofluids is still weak. The FVM (finite volume 
method) was applied by Zhuang and  Zhu10 to study the double diffusive within the cubic enclosure filled with a 
heterogeneous porous medium. The Marangoni effects together with the CMC-Cuo nanofluids were considered. 
The findings revealed that the decrease of the power-law index causes an increase in the heat and mass transfer 
rate as well as intensification in the fluid motion. The heat transfer due to the Marangoni convection using the 
power –law fluid over a surface saturated porous media has been presented by Jiao et al.11. The surface tension is 
considered as a quadratic function of the gradients of the temperature. It is noticeable that the velocity is reduced 
while the temperature is increased as the porosity parameter is grown. Lin et al.12 investigated the radiation- 
Marangoni interaction flow using the pseudo-plastic nanofluids having a variable thermal conductivity. The 
results indicating that the shear stress of CMC-TiO2 nanofluid is diminished as the power-law index is altered.

Over the years ago, fractional calculus theory is generalizing the integer order of differentiation to non-integer 
order. It has many advantageous in several real life fields such as fluid mechanics, optics, plasma, electromagne-
tism physics, engineering, biology and economics because it shows the new properties of these  problems13–15. 
Non- Newtonian fluids dynamics are one of these fields that was modeled by fractional derivatives models 
because the non-locality of fractional calculus which gives long-term  memory16–25. However, it is very difficult to 
achieve the exact solution for nonlinear fractional problems. It is possible to use some numerical and approximate 
methods to find numerical solutions for most nonlinear fractional  problems26–30. The natural convection along a 
vertical wall and cylinder using Caputo time-fractional derivatives are presented  in31,32. Also, several concepts of 
fractional derivatives such as fractional logistic models, fractional-Legendre spectral Galerkin method for frac-
tional Sturm–Liouville problems, simulating of COVID-19 using the fractional derivatives and natural convection 
flow of a fluid using Atangana and Baleanu fractional model are presented  in33–37. There are many definitions for 
fractional derivatives and fractional integrals are defined in different ways such as Riemann Liouville, Caputo 
and  others13–15. Khalil et al.38 presented a new operator called “conformable derivative” which satisfied new con-
ventional properties. Several authors effectively used the conformable operators of fractional order in modelling 
several  models39–47. Some recent works use the conformable fractional operator to discuss fractional Newtonian 
 mechanics26,48.Tabulated  in48, the conformable fractional operator Dβ

τ  of a function w
(

x, y, τ
)

 is denoted as:

This fractional derivative has the following properties as it is stated  in38–47:

D
β
t w

(

x, y, τ
)

= lim
θ→0

w
(

x, y, θτ 1−β
)

− w
(

x, y, τ
)

θ
, 0�β ≤ 1, t�0.

(i)Dβ
τ (c) = 0, c is a constant,

(ii)Dβ
τ

(

τ k
)

= kτ k−β , k ∈ R,

(iii)Dβ
τ (aw1 + bw2) = aDβ

τ w1 + bDβ
τ w2,
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(vi)Ifw1 is differentiable with respect to τ , then Dβ
τ w1 = τ 1−β ∂w1

∂τ
,

where w1

(

x, y, τ
)

, andw2

(

x, y, τ
)

 are β − differentiable function at
(

x, y
)

∈ R × (0,∞).
In addition to the previous survey, the fractional derivatives are used to simulate the convective flow in vari-

ous published  works49–59. Further, the Marangoni convection, non-Newtonian second grade nanofluid flow and 
non-Newtonian ferrofluid flow are presented in the valuable  investigations60–64.

This paper aims to use the fractional derivative approaches to examine the radiation and Marangoni influ-
ences on the power-law non-Newtonian nanofluid flow within an inclined domains. The geometry has a free 
surface where the surface tension is a function of the temperature gradients and is filled by a porous medium. 
The worked liquid is consisting of carboxymethyl cellulose (CMC) as a non-Newtonian base fluid while CuO 
elements are considered as nanoparticles. Also, the aluminum foam is considered as porous elements while the 
radiation flux is considered in the normal direction. The conformable operator is used for estimating the time 
fractional derivatives while the dimensionless governing system is solved numerically using an implicit FDM. 
The novelty of this work appears in simulating important impacts such as Marangoni influences on the flow of 
unused nanofluids frequently using the fractional partial differential equations that is did not presented before, 
and is more attractive for the researchers. Also, the results of the current simulations can be effective in various 
industrial practices such as oil recovery and materials processing. Further, a good survey on applications of the 
fractional calculus to oil industry is presented in Martínez-Salgado et al.65.

Description and formulation of the problem
The flow domain is illustrated in Fig. 1. This situation is consisting of an enclosure that has a free-surface and 
partially heated from below. The following hypotheses are considered to formulate the mathematical model of 
this physical case:

• Height of the enclosure is H and the inclination angle is γ.
• Length of the heated section is b and its location is denoted by d.
• A low temperature condition ( T = Tc) is decreed to the side walls and the bottom wall is partially heated 

( T = Th ) and thermally insulated.
• The free surface (top wall) has a heat transfer based on the Newton’s low cooling.
• The surface tension σ at the free surface is a function in the nanofluid temperature and it is expressed as:

(iv)Dβ
τ (w1 · w2) = w1D

β
τ w2 + w2D

β
τ w1,

(v)Dβ
τ (w1/w2) =

w2D
β
τ w1 − w1D

β
τ w2

w2
2

,

Figure 1.  Physical model of the problem.
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where γ = − 1
σ0

∂σ
∂T  , T0 =

Th+Tc
2 .

• The nanofluid flow is unsteady, laminar and two dimensional.
• The non-Newtonian power law nanofluids are represented by the single-phase model.
• The base fluid is carboxymethyl cellulose (CMC) while CuO is assumed as nanoparticles.
• The thermophysical properties of the components of the nanofluid are given in Table 1 while the dynamical 

properties of the CMC-water are included in Table 2.
• The domain is filled by homogeneous aluminum foam and the Darcy model is applied.
• The thermal conductivity of the porous medium is considered variable and the thermal radiation is taken in 

Y-direction.
• The thermal equilibrium state is satisfied between the porous and nanofluid phase.

The mathematical formulations of the present case are modeled using the continuity, momentum and energy 
equations based on the previous assumptions; those are written as,  see10,11,66,67:

In Eq. (6), I2 = 1
2 tr

(

D2
)

 is the second invariant of the deformation tensor where D = 1
2

[

∇V + (∇V)T
]

 and tr 
denotes the trace of a second-order tensor. Here, it should be mentioned that the form of the dynamic viscosity 
(Eq. 6) is given in Zhuang and  Zhu10.

Also, n is the power-law index where n < 1 and n > 1 correspond to the case of shear thinning fluids and shear 
thickening fluids, respectively. More specific:

The overall thermal conductivity is depending on the features of the power-law (see Ming et al.42) as:

(1)σ = σ0(1− γ (T − T0)

(2)∇ · V = 0

(3)ρnf

[

1

ε
D
β
t V +

1

ε2
V · ∇V

]

= −∇p+∇ · τ −
µeff

K
V + (ρβ)nf (T − Tc)g

(4)
[

ε(ρC)nf + (1− ε)(ρC)s

]

D
β
t T + (ρC)nfV · ∇T = ∇ ·

(

keff∇T
)

−
∂qr

∂y

(5)τij = 2µeff Dij =
µeff

ε

[

∂Vi

∂xj
+

∂Vj

∂xi

]

(6)µeff = µnf .I
0.5(n−1)
2

(7)I2 =
1

ε2

[

2

(

∂u

∂x

)2

+ 2

(

∂v

∂y

)2

+

(

∂u

∂y
+

∂v

∂x

)2
]

Table 1.  Properties of the base fluid, porous medium and nanoparticles; see Shah et al.54.

Physical properties CMC CuO Aluminum foam

cp (J/kg K) 4179 535.6 897

ρ (kg/m3) 997.1 6500 2700

k (W/mK) 0.613 20 205

Table 2.  Values of dynamical viscosity of the base fluid (CMC-Water), see Zhuang and  Zhu10.

CMC (%) n K  (Nsn/m2)

0.0 1.0 0.000855

0.1 0.91 0.006319

0.2 0.85 0.017540

0.3 0.81 0.0313603

0.4 0.76 0.0785254
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Introducing the following boundary conditions:

Introducing the next dimensionless quantities:

The next system is obtained by using Eq. (11)

The dimensionless boundary conditions are:

(8)keff = εk + (1− ε)ks = εk + (1− ε)ks

(9)k = knf I
0.5(n−1)
2

(10a)x = 0, u = 0, v = 0,T = Tc

(10b)x = H , u = 0, v = 0,T = Tc

(10c)y = 0 on the heated part, u = v = 0,T = Th

(10d)y = 0 on the insulated parts, u = v = 0,
∂T

∂y
= 0

(10e)y = H ,µ
∂u

∂y
= −

∂σ

∂T

∂T

∂x
, v = 0,

∂T

∂y
= 0

(11)

X =
x

H
, Y =

y

H
, U =

u
αf
H

, V =
v
αf
H

, τ =
t
αf

H2

, θ =
T − Tc

Th − Tc
,

P =
pL2

ρf α
2
f

, Da =
kf

H2
, θ =

T − Tc

�T
, Ra =

gβf (Th − Tc)H
3

νf αf
, Pr =

νf

αf
, Rd =

4T3
c

kbf

σ ∗

k∗

(12)
∂U

∂X
+

∂V

∂Y
= 0

(13)

1

ε
Dβ
τ U+

U

ε2

∂U

∂X
+
V

ε2

∂U

∂Y
= −

∂P

∂X
+

ρf

ρnf

µnf

µf

[

Pr

ε

[

∂τXX

∂X
+

∂τXY

∂Y

]

−
Prµ

Da
U

]

+Ra Pr
(ρβ)nf

(ρβ)f

ρf

ρnf
θ cos γ

(14)

1

ε
Dβ
τ V+

U

ε2

∂V

∂X
+
V

ε2

∂V

∂Y
= −

∂P

∂Y
+

ρf

ρnf

µnf

µf

[

Pr

ε

[

∂τXY

∂X
+

∂τYY

∂Y

]

−
Prµ

Da
V

]

+Ra Pr
(ρβ)nf

(ρβ)f

ρf

ρnf
θ sin γ

(15)

(1− ε)
(

ρcp
)

p
+ ε

(

ρcp
)

nf
(

ρcp
)

nf

Dβ
τ θ+U

∂θ

∂X
+V

∂θ

∂Y
=

(ρC)f

(ρC)nf

[

∂

∂X

(

keff

kf

∂θ

∂X

)

+

(

1+ 4
Rd

3

)

∂

∂Y

(

keff

kf

∂θ

∂Y

)]

(16)τxx =
2µ

ε

∂U

∂X

(17)τyy =
2µ

ε

∂V

∂Y

(18)τxy = τyx =
µ

ε

[

∂U

∂Y
+

∂V

∂X

]

(19)µ =

[

2

[

1

ε

∂U

∂X

]2

+ 2

[

1

ε

∂V

∂Y

]2

+
1

ε2

[

∂U

∂Y
+

∂V

∂X

]2
]

n−1
2

(20)
keff

kf
= ε

k

kf
+ (1− ε)

ks

kf

(21a)X = 0,U = 0,V = 0, θ = 0

(21b)X = 1,U = 0,V = 0, θ = 0
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In Eq. (21e), Ma = −
H�T ∂σ

∂T
µf αf

 is the Marangoni number. Here it should be mentioned that the Roseland 
approximation is applied for the radiation flux, as follows:

In Eq. (22), σ ∗ is the Stephan–Boltzman constant and k∗ is the mean absorption coefficient. Also, the follow-
ing correlations are applied for the nanofluid properties:

Heat transfer coefficients. In the current case, the definition of the local Nusselt number is depending on 
two sources of the heat flux, namely, the heat flux due to the heated section and the heat flux due to the thermal 
radiation. The overall heat flux is expressed as:

Consequently, the local Nusselt number at the heated section is denoted as:

The average Nusselt number for the CMC-nanofluid is defined as follow:

Thermal mixing. In this part, the cup-mixing and bulk-averaged temperatures are defined as:

If the non-dimensional temperature changes between 0 and 1, then the value of θCUP and θavr cannot run 
over 1.

Entropy generation. The entropy equations can be writing in the following form:

Using the Fourier law of the heat conduction 
(

q = −keff∇T
)

 and substituting Eq. (24) for the heat flux in 
Y-direction as well as using the dimensionless variables and the characteristics entropy 

(

S′′′0 =
k0(�T)2

H2T2
0

)

 , the 
entropy generation is given by:

(21c)Y = 0 on the heated part, U = V = 0, θ = 1

(21d)Y = 0 on the insulated parts, U = V = 0,
∂θ

∂Y
= 0

(21e)y = H ,µ
∂U

∂Y
= Ma

∂θ

∂X
,V = 0,

∂θ

∂Y
= 0

(22)qy = −
4σ ∗

3k∗
∂T4

∂y
, T4 ∼= 4T3

c T − 3T4
c

(23)

ρnf

ρf
= 1+ φ

(

ρp

ρf
− 1

)

,

(

ρcp
)

nf
(

ρcp
)

f

= 1+ φ

(
(

ρcp
)

p
(

ρcp
)

f

− 1

)

,
(ρβ)nf

(ρβ)f
= 1+ φ

(

(ρβ)p

(ρβ)f
− 1

)

knf

kf
=

(

kp + 2kf
)

− 2φ
(

kf − kp
)

(

kp + 2kf
)

+ φ
(

kf − kp
) ,

µnf

µf
=

1

(1− ϕ)2.5

(24)q′′′y = −keff
∂T

∂y

∣

∣

∣

∣

y=0

−
4σ ∗

3k∗
∂T4

∂y

∣

∣

∣

∣

y=0

(25)Nu = −
keff

kf

(

1+ 4
Rd

3

)

∂θ

∂Y

∣

∣

∣

∣

Y=0

(26)Nuav = −
1

B

D+0.5B
∫

D−0.5B

NudX

(27)θcup =

∫∫ ⌣

V
δy
δx (X,Y)θf (X,Y)dXdy
∫∫ ⌣

V(X,Y)dXdy
where

⌣

V(X,Y) =
√

U2 + V2

(28)θavr =

∫∫

θf (X,Y)dXdy
∫∫

dXdy

(29)s′′′gen = −
1

T2
0

q · ∇T +
µeff

T0K
(V · V)+

µeff

T0

(

τij : ∇V
)
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In the above equation � =
µf T0
k0

(

αf
H�T

)2
 is ratio of the irreversibility distribution. In addition the local and 

average Bejan number are expressed as:

Numerical method and validation
An implicit scheme based on the finite differences technique is presented for the governing system of the frac-
tional PDE’s. Firstly, the time-fractional derivatives are approximated using the conformable definition then the 
first upwind and the second differences approaches are used for the both the first and second derivatives. The 
FDM for the time fractional derivatives is expressed as:

In addition the FDM for the diffusion terms in the RHS of Eqs. (12)-(20) are given as:

Finally, the following algebraic system is obtained:

Here, the following algorithm is used to implement the obtained discretized equations:

(a) Select a suitable grid. It is recommended to start with 31× 31.
(b) All dependent variables are initialized to zero.
(c) The new boundary conditions at the first iteration are calculated
(d) The new temperature at the current iteration is calculated from previous values at all internal grid points.
(e) The velocities ( U ,V  and θ ) as well as the stream function are calculated in the same way as in step (d).
(f) The same procedure is followed by starting with step (c)to obtain the solution at the next iteration.
(g) The iteration process is terminated if the following condition satisfies:

(h) The Nusselt and entropy generation are then calculated.

The alternating direction implicit (ADI) is applied to solve the resulting system while the time step is selected 
to be 10−4 . A grid independency investigation is performed and presented in Table 3. It is noted that the grid 
size of ( 121× 121) is suitable for all the computations. Additionally, there are many validation tests are carried 
out for the obtained results. Table 4 shows comparisons of the average Nusselt number (at β = 1 ) with those 
obtained by Biswas and  Manna67. Also, Fig. 2 shows graphical comparisons with Biswas and  Manna67. All these 
validation tests show that there are excellent agreements between the outcomes.

(30)

S′′′gen =
keff

kf

[

(

∂θ

∂X

)2

+

(

1.+ 4.
Rd

3

)(

∂θ

∂Y

)2
]

+
µnf

µf

µ

Da
�
(

U2 + V2
)

+
µnfµ

µf
�

[

2

[

(

∂U

∂X

)2

+

(

∂V

∂Y

)2
]

+

[

∂U

∂Y
+

∂V

∂X

]2
]

= ST + SF

(31)Be(X,Y) =
ST

S′′′gen

(32)Beav =

∫

A Be(X,Y)dA
∫

A dA

(33)cDβ
τ �

(

xi , yi , τn+1

)

= τ1−β �
(

xi , yi , τn+1

)

−�
(

xi , yi , τn
)

(�τ)

(34)∂

∂X

(

∂�

∂X

)

+
∂

∂Y

(

∂�

∂Y

)

=
(�)n+1

i,j−1 − 2(�)n+1
i,j + (�)n+1

i,j+1

(�Y)2
+

(�)n+1
i+1,j − 2(�)n+1

i,j + (�)n+1
i−1,j

(�X)2

(35)Ap�
n+1
i,j = AE�

n+1
i+1,j + AW�n+1

i−1,j + AN�
n+1
i,j+1 + AS�

n+1
i,j−1 + Sp

∑

∣

∣

∣
�New

i,j −�old
i,j

∣

∣

∣
≤ 10−6

Table 3.  Grid independency study at Ra = 105, Da = 10−3, b = 0.6, d = 0.5, Ma = 1000,

φ = 2%, Rd = 1, � = 10−4, N = 0.91, γ = 90, β = 0.95.

Grid 41× 41 61× 61 81× 81 101× 101 121× 121 141× 141

Nuav 5.886469 5.929441 5.954048 5.974059 5.994110 6.015994

θcup 0.337602 0.341369 0.343260 0.344345 0.344842 0.344917

θav 0.335150 0.339948 0.341959 0.342499 0.342121 0.340911
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Results and discussion
A comprehensive discussion of the obtained outcomes is presented in this section. Here, it is interested with the 
influences of the time parameter ( 0.1 ≤ τ ≤ 0.5) (unsteady state), variations of the fractional order ( 0.8 ≤ β ≤ 1) , 
the power-law index ( 0.76 ≤ N ≤ 1) , the radiation parameter ( 0 ≤ Rd ≤ 3) and the inclination angle ( 0 ≤ γ ≤ π/2) . 
Also, the corresponding value of the Prandtl number is set as Pr = 204 . The outcomes presentation tools are the 
contours of the streamlines, isotherms, entropy due to fluid friction and local Bejan number. Also, graphical illustra-
tions for the average Nusselt number, cup-mixing temperature, bulk-averaged temperature, total entropy and average 
Bejan number are taken into account. Impacts of the fraction derivatives order β and dimensionless time parameter 
τ on the maximum values of the stream function, cup-mixing temperature, bulk-averaged temperature and average 
Nusselt  number  at  Ra = 105, Da = 10−3, b = 0.6, d = 0.5, Ma = 1000, φ = 2%, Rd = 1,

� = 10−4, N = 0.91, γ = 90 are presented in Table 5. Here, effects of the fraction order are examined for vari-
ous cases of the unsteady flows. It is noted that as the fractional order approaches to one, a clear reduction in values 
of the maximum stream function, cup-mixing temperature and bulk-averaged temperature is obtained. On the 
contrary, values of the average Nusselt number are enhanced with the increase in the fractional order. These 
behaviors are noted for all the considered values of the time. In the same context, as the time is progressed, the 
maximum values of the stream function, cup-mixing temperature and bulk-averaged temperature are enhanced 
while the average Nusselt number is reduced. Features of the streamlines, temperature, irreversibility of the fluid 
friction and local Bejan number for the alteration of the power-law index N are shown in Fig. 3. These findings 
are conducted at Ra = 105, Da = 10−3, b = 0.6, d = 0.5, Ma = 1000, β = 0.95, τ = 1, φ =

2%, Rd = 1, � = 10−4, γ = 90 . It is noticeable that the increase in the power-law index causes a weakness 
in the mixture flow while the temperature distributions are not much affected by the variations of N . Physically, 
the increase in N results in a supporting in the overall dynamic viscosity and hence the nanofluid flow is slowdown. 
Like effects of N on the streamlines, the irreversibility due to the fluid friction is diminished as N approaches to one. 
This behavior returns to the decrease in the velocity gradients due to the enhancement in the dynamic viscosity. 
Additionally, features of the local Bejan number show a dominance of the heat transfer entropy at high values 
of N  comparing with the fluid friction entropy due to the increase in the thermal boundary layers. Impacts 
of the radiation parameter Rd on the streamlines, temperature, entropy due to the fluid friction and local 
Bejan number at Ra = 105, Da = 10−3, b = 0.6, d = 0.5, Ma = 1000, β = 0.95, τ = 1, φ =

2%, N = 0.91, � = 10−4, γ = 90 are examined using Fig. 4. The results indicated that significant aug-
mentations in both the mixture flow and thermal boundary layers are given as Rd is altered. The physical 
explanations of these observations are due the extra heat flux obtained from the presence of the radiation 
that causes an increase in the buoyancy force. Also, the gradients of the velocity are enhanced as Rd is 
increased which causes a supporting in both values and distributions of the fluid friction entropy. In the same 
context, features of the local Bejan number show that the dominance of the heat transfer irreversibility is decreased 
as Rd is increased due to the increase of dominance of the fluid friction irreversibility on the flow domain. In Fig. 5, 
various configurations of the flow features are noted as the inclination angle is altered. At this point, the flow features 
are represented by a major anti-clockwise circular vortex at the low values of γ ( γ = 0, 30 ). However, as γ is varied 
( γ = 60) , a minor clockwise vortex is formulated near the right wall. This cell is enlarged as γ is increased until a 
symmetrically flow is obtained at γ = 90 . The temperature distributions show an enhancement in the temperature 
gradients as γ is increased indicating a good rate of the heat transfer at γ = 90 . The fluid friction entropy indicates 
that the fluid friction irreversibility is occurred near the left and bottom walls while as γ is increased, values of the 
fluid friction entropy is enhanced due to the enhancement of the velocity gradients. Figure 6 displays the profiles of 
the average Bejan number for the variations of the inclination angle γ and the power-law index N . It is noted that 
Beav > 0.5 for all values of γ and N which indicating to the dominance of the heat transfer entropy comparing with 
the fluid friction entropy. The results, also, disclosed that the increase in the power-law index enhances the tempera-
ture gradients and hence the average Bejan number is augmented. Figure 7 exhibits that the total entropy confined 
the flow domain is a decreasing function in the power-law index N due to the increase in the dynamic viscosity while 
as the inclination angle γ is growing, an enhancement in the temperature differences are obtained and hence Stotal is 
supported. Impacts of γ and N on values of the average Nusselt number Nuav are examined with the help of Fig. 8. 
The figure revealed that the growing in the power-law index N causes a reduction in the rate of the heat transfer while 
the thermal boundary layer near the heated section is enhanced as γ approaches to 90. The cup-mixing temperature 
shows the inverse behavior of the average Nusselt number when the impacts of γ is examined. These observations 
are presented in Fig. 9. It is, also, noted that the power-law index N has a negative effects on the cup-mixing tempera-
ture. In the same context, Fig. 10 presents the profiles of the bulk-averaged temperature θav for the different values 
of γ  and N  at Ra = 105, Da = 10−3, b = 0.6, d = 0.5, Ma = 1000, β = 0.95, τ = 1, φ =

2%, Rd = 1, � = 10−4 . It is remarkable that the changing in values of γ enhances the bulk-averaged temperature 

Table 4.  Comparison of the average Nusselt number for the different values of Biot number at 
Re = 200, Gr = 105, Ma = 1000.

Bi

Assisting flow ( downward lid motion)

% Errors

Opposing flow ( upward lid motion)

% ErrorsPresent results Biswas and  Manna67 Present results Biswas and  Manna67

0 10.706 10.729 0.214 10.451 10.364 − 0.839

1 10.736 10.758 0.204 10.418 10.353 − 0.628

5 10.791 10.767 − 0.223 10.383 10.342 − 0.396
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Figure 2.  comparison of the streamlines for the different values of Biot number at 
Re = 200, Gr = 105, Ma = 1000.
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while the opposite observations are found when the power-law index N is growing. All these behaviors are due the 
increase in the overall dynamic viscosity that reduces the convective-radiation mode.

Conclusions
Using the fractional derivatives basics, the unsteady convective-radiation flow confined an enclosure filled with 
CMC-water power-law non-Newtonian nanofluids was investigated. The fractional derivatives were taken on 
the time while the conformable definitions were used to approximate the calculations. The Marangoni effects 
are imposed to the top-free surface of the domain while the bottom boundaries are partially heated. The one-
phase model in which the overall dynamic viscosity and thermal conductivity are functions of the power-law 
index is presented while the Rosseland approximation is used for the thermal radiation. Beside the cup-mixing 
temperature and the bulk-averaged temperature, the entropy of the system is examined for the variations of the 
controlling parameter. The main outcomes of this study revealed that the increase in the fractional order enhances 
the average Nusselt number while the maximum values of the stream function, the cup-mixing temperature and 
the bulk-averaged temperature are reduced as β approaches to one, regardless values of the time. Also, presence 
of the radiation parameter within the domain accelerates the mixture flow and enhances the thermal bound-
ary layer. Additionally, the increase in the power-law index reduces the convective mode, the total entropy, the 
cup-mixing temperature and the bulk-averaged temperature while the average Nusselt number is enhanced.

Table 5.  Impacts of the fraction derivatives order β and dimensionless time parameter τ on the 
maximum values of the stream function, cup-mixing temperature, bulk-averaged temperature and 
average Nusselt number at Ra = 105, Da = 10−3, b = 0.6, d = 0.5, Ma = 1000, φ = 2%,

Rd = 1, � = 10−4, N = 0.91, γ = 90.

τ β ψmax θcup θav Nuav

0.1

0.8 1.909413 0.324477 0.250873 6.904846

0.85 1.909034 0.324467 0.250828 6.905488

0.9 1.908571 0.324457 0.250773 6.906251

0.95 1.908004 0.324442 0.250710 6.907175

1.0 1.907308 0.324425 0.250632 6.908265

0.2

0.8 3.339026 0.334704 0.305505 6.305857

0.85 3.338609 0.334694 0.305474 6.306139

0.90 3.338117 0.334685 0.305438 6.306466

0.95 3.337536 0.334674 0.305397 6.306841

1.0 3.336846 0.334662 0.305350 6.307249

0.5

0.8 4.536020 0.344846 0.342137 5.993988

0.85 4.535823 0.344844 0.342133 5.994018

0.9 4.535704 0.344843 0.342127 5.994056

0.95 4.535573 0.344842 0.342121 5.994108

1.0 4.535487 0.344841 0.342115 5.994159
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Figure 3.  Impacts of the power-law index N on the fluid flow, temperature distributions and entropy 
generation at Ra = 105, Da = 10−3, b = 0.6, d = 0.5, Ma = 1000, β = 0.95, τ = 1,

φ = 2%, Rd = 1, � = 10−4, γ = 90.
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Figure 4.  Impacts of the radiation parameter R on the fluid flow, temperature distributions and entropy 
generation at Ra = 105, Da = 10−3, b = 0.6, d = 0.5, Ma = 1000, β = 0.95, τ = 1,

φ = 2%, N = 0.91, � = 10−4, γ = 90.
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Figure 5.  Impacts of the inclination angle γ on the fluid flow, temperature distributions and entropy generation 
at Ra = 105, Da = 10−3, b = 0.6, d = 0.5, Ma = 1000, β = 0.95, τ = 1,

φ = 2%, N = 0.85, Rd = 1, � = 10−4.
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Figure 6.  Impacts of the power-law index N and inclination angle γ on the average Bejan number at 
Ra = 105, Da = 10−3, b = 0.6, d = 0.5, Ma = 1000, β = 0.95, τ = 1,

φ = 2%, Rd = 1, � = 10−4.
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Figure 7.  Impacts of the power-law index N and inclination angle γ on the total entropy generation at 
Ra = 105, Da = 10−3, b = 0.6, d = 0.5, Ma = 1000, β = 0.95, τ = 1,

φ = 2%, Rd = 1, � = 10−4.
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Figure 8.  Impacts of the power-law index N and inclination angle γ on the average Nusselt number at 
Ra = 105, Da = 10−3, b = 0.6, d = 0.5, Ma = 1000, β = 0.95, τ = 1,

φ = 2%, Rd = 1, � = 10−4.
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Figure 9.  Impacts of the power-law index N and inclination angle γ on the cup-mixing temperature at 
Ra = 105, Da = 10−3, b = 0.6, d = 0.5, Ma = 1000, β = 0.95, τ = 1,

φ = 2%, Rd = 1, � = 10−4.
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