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Visibility graph based temporal 
community detection 
with applications in biological time 
series
Minzhang Zheng1,2, Sergii Domanskyi3, Carlo Piermarocchi3 & George I. Mias1,2,3*

Temporal behavior is an essential aspect of all biological systems. Time series have been previously 
represented as networks. Such representations must address two fundamental problems on how 
to: (1) Create appropriate networks to reflect the characteristics of biological time series. (2) Detect 
characteristic dynamic patterns or events as network temporal communities. General community 
detection methods use metrics comparing the connectivity within a community to random models, 
or are based on the betweenness centrality of edges or nodes. However, such methods were not 
designed for network representations of time series. We introduce a visibility-graph-based method 
to build networks from time series and detect temporal communities within these networks. To 
characterize unevenly sampled time series (typical of biological experiments), and simultaneously 
capture events associated to peaks and troughs, we introduce the Weighted Dual-Perspective Visibility 
Graph (WDPVG). To detect temporal communities in individual signals, we first find the shortest path 
of the network between start and end nodes, identifying high intensity nodes as the main stem of 
our community detection algorithm that act as hubs for each community. Then, we aggregate nodes 
outside the shortest path to the closest nodes found on the main stem based on the closest path 
length, thereby assigning every node to a temporal community based on proximity to the stem nodes/
hubs. We demonstrate the validity and effectiveness of our method through simulation and biological 
applications.

Longitudinal behavior is an inherent aspect of all biological systems, and has been widely investigated in vari-
ous contexts, such as systems  biology1, metabolic pathway  analysis2, and, recently, gene  expression3. With the 
development of novel technologies in sequencing, mass spectrometry and other omics, multi-level biological 
time series are becoming easier to obtain. An important example is provided by longitudinal data from personal 
health monitoring devices. Recent studies have shown that omics time series have a wide range of applications 
in personal health and precision medicine. Multi-omics time series data can be used in precision  health4, and 
have provided insights into the onset of type 2 diabetes  mellitus5 and lung  development6. Omics time series 
can also be used to monitor health events, changes in physiological  states7,8 and in molecular and medical 
 phenotypes9. The rapidly increasing availability of biological time series requires new methods to integrate dif-
ferent types of data, analyze them, and interpret the results in a fast and informative way. Many platforms for 
multi-biological and multi-omics data integration have been developed, including software such as  DAVID10, 
 Galaxy11 and  GenePattern12, our recent frameworks  MathIOmica13 and  PyIOmica14, which incorporate time-
series categorization, and many more.

While typical time series analysis utilizes linear models, non-linear topological methods can provide addi-
tional insights into complex temporal behavior. Multiple recent efforts have used networks and graph theory to 
analyze time series. Network analysis offers a multi-level perspective that can capture non-linear behavior, iden-
tify motifs, quantify non-periodic recurrence, and represent the dynamics at different  scales15–22. Time series are 
transformed into networks that conserve their topology in the presence of noise and identify noise-independent 
temporal structures. The network characteristics reflect the equivalent time series temporal structure, including 
non-linearity and chaotic behavior, and can be used as features to identify trends and build machine learning 
models, and potentially allow for more accurate learning  approaches23,24.
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Currently, several methods exist for transforming time series to complex networks. For example, complex net-
works have been constructed from pseudo-periodic time series by Zhang and  Small15, who used single nodes to 
represent cycles, and introduced a correlation-based threshold to link node pairs. Another effective and efficient 
approach is to consider time series points as a series of sequential intensity bars that are then connected based 
their inter-visibility to obtain a visibility graph (VG) representation of the time  series16, which recently attracted 
great interdisciplinary  interest17,25.VGs have been used in diverse time series studies, including investigations 
into natural phenomena such as  hurricanes26 and  earthquakes27–29,  finance22,30, solar  wind31 and solar  activity32, 
as well as for physiological signal pattern analyses, such as  heartbeat33, electroencephalograms (EEGs)25,34,35, 
 epilepsy36–38, and  fMRIs39.

There are two types of VG typically considered: (1) the Natural Visibility Graph (NVG) and, (2) the Horizontal 
Visibility Graph (HVG)40. To construct a VG, we consider {s(tx); tx = 1, 2, 3, . . . ,N} as an N time point series 
in temporal ordering. The VG is obtained by first representing the time series points as N nodes in a network, 
where nodes i and j represent times ti and tj , with intensities s(ti) and s(tj) respectively. Edges are constructed by 
joining nodes i, j if any other intermediate time point tk , such as ti < tk < tj , has intensity s(tk) that satisfies the 
following conditions for NVG and HVG respectively:

Here, in the NVG formulation, an edge is added connecting nodes i and j if any other time point tk , between 
ti and tj , has a corresponding intensity s(tk) that lies below the line connecting s(ti) and s(tj) (i.e. there is a direct 
line-of-sight between these peaks). The HVG has a simpler edge construction condition: an edge is added con-
necting nodes i, j only if all intermediate intensities s(tk) are less than both s(ti) and s(tj).

NVGs and HVGs are connected networks. The VG conserves the structure of the time series in the graph 
 topology16. However, the HVG original constructions do not account explicitly for the potential effects of uneven 
time sampling or missing time points. In the NVG such uneven sampling results in different visibility of time-
points (changes in viewing angles in the construction), which implicitly incorporates the effect of time distances, 
but without explicitly weighting the edges the actual distance between nodes cannot be accounted for. In realistic 
situations outside a laboratory setting, uneven sampling occurs often. This may be due to technical limitations 
(for example in mass spectrometry proteomics technical replicates may still sample different proteins and lead 
to missing data and hence uneven sampling), or limitations in subject participation (for example in clinical tri-
als and human subject research, the subjects’ work-dependent schedules may affect their regular participation). 
These shortcomings limit the traditional VG application in biological/medical time series analysis. Another 
limitation of the traditional VG is the inability to simultaneously capture peaks and troughs (points below the 
baseline). For example, the VG maps sinusoidal and cosinusoidal time series to different graphs, but these two 
kinds of time series should be considered equivalent up to a change of phase.

Another challenge in network representations of biological time series is the lack of specific methods for 
detecting temporal communities in individual signals. A community is defined as a group of nodes, where the 
nodes within a community are tightly connected, whereas the nodes between different communities have loose 
 connections41. Each community in complex networks representing a biological time series thus identifies nodes 
with similar temporal behavior that are likely to represent the same underlying biological system state. Thus, these 
temporal communities correspond to sets of timepoints within a single biological signal that show consistent 
temporal behavior, corresponding to a distinct biological state. As we move from one temporal community to the 
adjacent next community the signal characteristics change and we effectively transition into different biological 
behavior or state. One highly effective approach for identifying communities is to compare the actual number 
of intra-community edges to what one would expect by a random placement of the  edges41–43. This approach is 
based on the assumption of a random graph null model. However, VGs cannot be considered as random graphs, 
even if a VG is constructed based on a random time series. This is due to the sequential nature of the nodes, the 
resulting connected graph, and the underlying degree  distribution40.

In this investigation, we introduce the method of “weighted dual perspective visibility graph” (WDPVG) for 
mapping time series to complex networks. Our WDPVG approach considers uneven sampling effects, and simul-
taneously captures peaks and troughs of time series. Previously, VG edge weights had been assigned based on 
the arctangent of ( (sj − si)/(tj − ti) ), which computes the “view angle” along the direct line-of-sight connecting 
one intensity peak to  another36. Our method provides multiple choices for the edge weights: (1) the Euclidean 
distance between nodes/intensity peaks, (2) the tangent of the view angle between two nodes, (3) the time dif-
ference between time points corresponding to connected nodes, or (4) none. We then combine the natural view 
perspective VG with the “reflected view perspective VG” introduced in the methods below to create a complex 
network that can capture both the positive and negative intensities changes. We note, that this is the first time 
that Euclidean distance has been used for edge weights in VGs, to the best of our knowledge.

We also provide a new automated VG community detection method, which is based on shortest path calcula-
tions between VG nodes. Our method is suitable for VGs as it does not depend on random graph null models, 
which are commonly used in other approaches such as Newman’s  method43. Briefly, as described below, we 
compute the shortest path of the VG between start and end nodes as a main stem. The nodes on the main stem 
are seeds for communities, and we then aggregate nodes outside the shortest path to their most proximal seed 
nodes on the main stem, where proximity is determined using graph path lengths. In utilizing the shortest path as 
seed nodes, we are using the time points that display the peaks of highest intensity. These peaks are the dominant 

(1)
s (tk) < s(tj)+ (s(ti)− s(tj))

tj − tk

tj − ti
NVG,

s (ti), s(tj) > s(tk) HVG.
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features in the signal, and represent prominent temporal behaviour. Biologically the nodes in the shortest VG 
path correspond to drivers of the signal’s response.

We used various simulated time series to test our method effectiveness, and demonstrated that our automated 
method has high tolerance for uneven sampling and signal noise. Our comparison of our method to traditional 
community detection methods, such as Girvan–Newman41 and  Louvain44, indicated that our approach is more 
suitable for VGs. To show that our method can capture biological processes we also applied it to several experi-
mentally obtained time series, longitudinal multi-omics data from blood components in prediabetics (cytokines, 
glucose and haemoglobin A1c)5, saliva omics data (mean gene expression)14 and signals from wearable biosen-
sors (radiation exposure)45.

The methods of building WDPVG and visibility graph based community detection are available as a module 
of the open source Python package  PyIOmica14. The dataset and codes we used as described below are available 
with a Python notebook, publicly available online at https ://doi.org/10.5281/zenod o.36939 84.

In summary, in this study we: (1) Provide, to the best of our knowledge, the first dedicated method to calculate 
communities in visibility graphs, (2) define the WDPVG visibility graph construction that allows for an equal 
treatment of events above or below a baseline, (3) utilize our method to identify changepoints (i.e. community 
boundaries) in biological signals corresponding to perturbation-induced changes.

Materials and methods
Weighted dual perspective visibility graph (WDPVG). The VG can characterize time series in terms 
of complex network theory as it can inherit the structure properties of the time series data from which it was cre-
ated. VGs are robust to noise and not affected by the selection of method parameters (e.g. cutoffs/thresholds)46. 
VGs have been widely applied in many  fields22,36,47. However, as we discussed above, the VG has two disadvan-
tages: first, it does not consider the effect of uneven sampling; second, it cannot capture the time series changes 
below a zero baseline. Here we provide a new method, WDPVG, to overcome these limitations that restrict VG 
applications in biological time series analysis.

We use the following four steps to create WDPVGs, utilizing auxiliary natural visibility graphs (NVGs).
Step 1: NVG construction. We create an NVG from time series {s(tx); tx = 1, 2, 3, . . . ,N} as it was described 

above by Eq. (1), using the NVG mapping criteria.
Step 2: Assign edge weights between two nodes. In our software implementation we provide flexible choices for 

the edge weight between two nodes, including no weighting (NO), Euclidean distance (ED, Eq. 2), the tangent 
of the view angle (TAN, Eq. 3), or the time difference (TD, Eq. 4):

where, wij represents the weight of the edge between nodes i and j, which correspond time points ti and tj 
respectively, in time series {s(tx)} . In Eq. (3), we added the offset 10−8 to account for the case s(ti)− s(tj) = 0 . 
The algorithm implementation details are available in the documentation of the functions in PyIOmica. In this 
manuscript, we use Euclidean distance between nodes as the edge weight. The choice of distance depends on 
the application. For example, if considering sequential timepoints as a series of states, where time differences 
have secondary importance, then weights for the edges could be ignored. In contrast, the Euclidean distance 
takes explicitly into account both intensity differences and time differences, compared to other distance options, 
and hence may offer an advantage in uneven sampling cases, and in anomaly detection applications where the 
intensity differences should be taken into consideration.

After Step 2, We compute the adjacency matrix, A, of the normal perspective NVG.
Step 3. Compute the reflected perspective NVG. We invert the time series {s(tx)} , by reflecting across the time 

axis, i.e. for each s(ti) in {s(tx)} , let s′(ti) = −s(ti) , where we obtain the inverted time series {s′(tx)} . We then 
repeat Steps 1 and 2 for s′(tx) to get the reflected perspective NVG and the adjacency matrix A′.

Step 4. Combine the normal perspective NVG and reflected perspective NVG. For any pair of i, j, elements Aij 
and A′

ij have two possible relationships: either Aij = A′
ij , or one of them is 0 but the other one is non-zero. We 

can combine the A and A′ to get the WDPVG adjacency matrix Ad by the following criteria:

If we use the HVG mapping criteria, i.e. s (ti), s(tj) > s(tk) ti < tk < tj , instead of the NVG mapping 
criteria, we can obtain the weighted dual perspective horizontal visibility graph.

It is important to note that in case that either we are not interested in changes below the baseline, or that the 
intensities of the time series are all non-negative, the normal perspective weighted VG is enough, and we do not 
need to create a WDPVG.

Shortest path based community detection. The central problem solved in this section may be sum-
marized as: Given a time series s(tx) , and assuming a visibility graph representation g,(where g is constructed as 
an NVG, or HVG, or WDPVG), segment g into k segments (communities), where 1 ≤ k ≤ N) , to minimize the 

(2)wij =

√

(s(ti)− s(tj))2 + (ti − tj)2,

(3)wij =

∣

∣

∣

∣

s(ti)− s(tj)

ti − tj

∣

∣

∣

∣

+ 10−8,

(4)wij =|ti − tj|,

(5)Ad
ij = max {Aij ,A

′
ij}
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shortest path length of nodes assigned to each segment k, to nodes on the shortest path in g. The shortest path in 
a VG between the start node (corresponding to first time point) and end node (corresponding to last time point) 
identifies a bundle of nodes which have high intensities, and thus is the determining factor for the entire network 
structure. This shortest path acts as a stem for community identification in VG. Our method chooses the shortest 
path between start node and end node in VG as the main stem, and each node on this stem is a natural hub of a 
community, as described below.

Step 1. Construct the shortest path between VG first and last nodes. Given a VG g with N nodes, construct the 
shortest path {vsi ; i = 1, 2, 3, . . . , k} (comprised of k nodes) between the start node and end node in g.

Step 2. Hub construction. We define the nodes outside the shortest path as {voj ; j = 1, 2, 3...m} , where 
m = N − k . For any node vop in {voj } , we compare the shortest path length between vop and each node in {vsi } , to 
identify the minimal path length value lpq and corresponding node vsq in {vsi } . vop is then assigned to the commu-
nity whose hub is vsq . If there are more than one hubs corresponding to the minimal value, we always choose the 
“left” hub, which corresponds to the earlier time point, as the target community’s hub. We then iterate through 
all nodes in {voj } , to get the community structure.

Step 3 (optional). Hub merging. Finally, we measure the shortest path length between any pairs of hubs, i.e. the 
nodes in {vsi } , and if the shortest path length between them is less than a chosen cutoff, ǫ , we then combine the 
two associated communities to obtain the final community structure. Normally, the minimal ǫ is the cutoff for 
which the network has the same number of communities as the number of hubs. Similarly, the maximal value 
of ǫ corresponds to the case where the whole network becomes a single community. By changing the value of ǫ 
between minimum and maximum, one can modify the community structure, i.e. the number of communities. 
In our Python implementation, we have provided the following options for cutoff selection: (1) with or without 
cutoff, (2) fixed cutoff, or (3) automatically selected cutoff. The cutoff is selected as the largest ǫ for which the 
distance between hub nodes is smaller than the median shortest path length distance within the VG. The merg-
ing feature is unique to our method.

An additional feature of our method is that we can choose the direction of how the nodes are connected 
in the community construction. Specifically, we can restrict the node vop in {voj } to only link to the community 
with hub vsq for which the corresponding time point tq is earlier than the time point tp corresponding to vop . This 
feature essentially imposes a causality condition, where time points only depend on other past time points, and 
not future ones. It is important to keep time order in the community detection for characterizing biological time 
series from living systems. We have allowed flexibility in the implementation of the method, so the user can also 
choose node linking directions as earlier side, later side or both sides - this may be required for systems where 
there is time reversal symmetry.

Figure 1 provides a simple illustration of how our method works. A simulated time series is created from 
a cosine wave signal mixed with 40% random noise (Fig. 1A). Then, we construct the weighted NVG and the 
reflected perspective NVG in Fig. 1B,C. Afterwards, the weighted dual natural visibility graph is created by 
combining the NVG and the reflected perspective NVG (Fig. 1D). We use our community detection method to 
the graph in Fig. 1E showing the communities corresponding to the original time series.

Simulation. We used simulated time series to evaluate our method. We illustrate here three types of time 
series: cosine, square, and saw-tooth wave signals. Then we added different intensity random noise to each of 
these signals to test the tolerance of the community detection to noise. We also randomly removed different 
percentages of time points from these time series to check the robustness to missing data and the resulting 
uneven sampling. We then built the WDPVG for these time series, and detected communities using our method. 
The results of our method were compared to traditional community detection methods such as the Louvain 
method, which is a widely used method of fast greedy optimization of  modularity44, and the Girvan–Newman 
hierarchical method which is based on centrality  notions41. The Louvain method was implemented using the 
Python python-louvain package, (https ://githu b.com/tayna ud/pytho n-louva in). The Girvan–Newman method 
is available in NetworkX, which is the most popular open source network analysis package in  Python48. Finally, 
we compared the community structure obtained by our algorithm under the different types of edge weights, as 
well as the algorithm’s performance for different amplitudes and frequencies.

Our community structure detection algorithm includes two parts. The first part of the algorithm finds the 
shortest path length. The time complexity of this part is O(|E| + N logN)49, where |E| is the number of edges 
and N is the number of nodes in the VG, g. The second part assigns m nodes outside the shortest path to the 
k nodes on the shortest path between the start and end nodes. The time complexity of this part is O(km) , 
which equals O((N − k)k) . Hence, the total time complexity of our algorithm is the sum of these two parts, 
O(|E| + N logN + (N − k)k)).

Experimental biological time-series applications. We also compared the results of our method to the 
Louvain and Girvan–Newman methods when applied to several experimentally acquired biological datasets. 
These datasets used are summarized below.

Saliva Set (DS1) We used a saliva RNA-sequencing dataset we generated, that was obtained from a clini-
cal trial monitoring individualized response to the standard 23-valent pneumococcal polysaccharide vaccine 
(PPSV23)50. The saliva was sampled from a healthy individual. We had first carried out a 24-h hourly sampling 
to establish a normal physiological state baseline. Then, we repeated with another 24-h hourly sampling that also 
included vaccination with pneumococcal vaccine (PPSV23) to assess response to the vaccine. The vaccine was 
administered approximately 3.5 h following the first hourly sample. Approximately 7.5 h after vaccination, the 
individual reported having a fever that lasted about 4 h. Here, we analyzed the differences between the two 24 h 
periods: (1) the first 24 h hourly sampling (Sal1(t) ) and (2) the 24 h hourly sampling that included vaccination 

https://github.com/taynaud/python-louvain
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(Sal2(t) ). We then constructed the paired difference time series � , where for each timepoint i for each gene α , 
�αSal(ti) = Sal2α(ti)− Sal1α(ti) . We carried out a categorization into groups and subgroups of gene expression 
based on these data (see online Python notebook, and previous discussion using  PyIOmica13,14,51). For a given 
subgroup of genes, we constructed the mean time series across the members of this subgroup. We then built the 
WDPVG and compared the different temporal community detection methods results on this time series (see 
also online Python notebook for code and data at https ://doi.org/10.5281/zenod o.45425 67).

Diabetes Set (DS2) The second dataset came from personal multi-omics profiling data (e.g. including blood 
measurements of A1C, fasting glucose and selected immune cytokines etc.) from individuals with Type 2 diabetes 
mellitus at its earliest  stage5. As an example, we chose one individual’s A1C, fasting glucose and selected immune 
cytokines data from the rich dataset, as reported by the authors. These time series include 14 time points with 
different healthy condition. We constructed the VG from each of the time series and detected its corresponding 
communities, to assess whether our method can capture the physiological status of the subject for each of these 
time series.

Radiation Exposure Set (DS3) Finally, we analyzed a radiation exposure time series dataset from wearable 
 biosensors45. The data collected were hourly personal radiation exposure, assessed by a wearable biosensor for 
more than 100 days. We chose one day spans (24 h, from 12 am to 11 pm) as the natural time window. We then 
analyzed separately four days when the individual of this study had flight activity, and the radiation reported on 
these days was higher than non-flight days. We then applied our methods to assess if we can detect the radiation 
events as community structures.

Results
Simulation. To investigate whether our method captures periodic features we simulated well defined peri-
odic time series. We compared our path-length based method (PL) with two widely used community detection 
method, the Louvain method (LN)44 and the Girvan–Newman method (GN)41. Figure 2 shows the signal inten-
sity and communities for the cosine and square wave signals’ time series (top and bottom, respectively). The 

A

B

C

B

Reflected Perspective Natural Visibility Graph

Natural Visibility Graph

Time Series
D

E

Dual Perspective Natural Visibility Graph

Community Structure Network Graph

Figure 1.  Illustration of the construction of weighted perspective visibility graph and community structure 
based on the shortest path length community detection method. (A) is the simulated time series cosine signal 
with 40% noise in intensity. We construct the weighted NVG and reflected NVG, where the edge weights 
are based on Euclidean distance. Edge connections of NVG and reflected NVG are illustrated in (B) and (C) 
respectively. The dual weighted perspective visibility graph is created by combining NVG and reflected NVG, as 
shown in (D), where the links with red color come from NVG, and the blue links come from the reflected NVG. 
Using our shortest path length based community detection method, we can find the community structure of 
the time series, as shown in (E). The time points in the same community are encircled by a blue outline, and the 
color of the nodes represents the signal intensity. The time series separates into two communities that capture 
the cosine signal’s periodicity.

https://doi.org/10.5281/zenodo.4542567
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communities our method detected matched exactly with the signal periods. The Louvain method also captured 
precise periodic features in the square wave signal, where it assigned communities corresponding to half peri-
ods. However, the Louvain method obtained some unmatched results in the case of the cosine signal time series. 
Finally, the Girvan–Newman method obtained coarser results compared to the other two methods.

In addition, Fig. 3 shows results on the tolerance to noise and missing data for cosine wave (Fig. 3A–D), 
square wave (Fig. 3E–H), and saw-tooth wave signals (Fig. 3I–L). Compared to the Louvain and Girvan–New-
man methods, our method displays higher tolerance in either situation of noisy signals or uneven sampling. 
Whenever we added noise from 20 to 80%, or additionally removed time points from 20 to 80% (in the case of 
having 20% noise in the data), our method still captured the periodic changes. However, we do notice a change 

Figure 2.  The intensity and communities of cosine (top) and square wave (bottom) signal time series. The 
communities obtained by our method (PL), Louvain method (LN) and Girvan–Newman method (GN) are 
represented with color bars, with time points in the same community having the same color. The communities 
obtained with our automated method on both cosine and square wave time series are capturing the signal 
periods. The Louvain method captures the characteristics of the square wave signal but shows temporal 
timepoint mixing in communities on the cosine signal. The Girvan–Newman method captures the periods of 
the two time series with some errors at the boundaries.
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in the number of communities. In particular, adding noise may lead to merging of adjacent communities, for 
example merging the communities corresponding to different periods in the signal. To the contrary, the results 
of the two traditional methods were irregular, with coarsely defined communities and multiple nodes in com-
munities unmatched with the corresponding signal’s period. Even though the Louvain method worked well in 
the perfect square wave signal time series (e.g. without noisy and uneven sampling), the method showed low 
tolerance to noise or time point removal. Compared to our method that may merge communities, the Louvain 
method also appears to add additional spurious communities (or multiply-segmented communities), and displays 
high sensitivity to the noise structure.

We compared our path length based method for the different types of edge weights (ED, TAN and TD, see 
Eqs. 2, 3 and 4 respectively), as well as the no weighting method (NO, e.g. setting all edge weights to 1). The 
community detection results from building the WDPVG for cosine signals with different amount of noise or 
missing data under different types of edge weights are shown in Fig. 4A1–5. Our algorithm works well with edge 
weights of Euclidean distance and Time difference. The community structure for TAN and NO edge weights 
do not represent effectively the corresponding signal’s period. These methods result in non-contiguous com-
munities, mixing different signal regimes. The results from changing the amplitudes of the signals from 1 to 100 
(arbitrary units), and multiplying the signals’ frequencies by 5 and 10 are shown in Fig. 4B1–5. Using ED and 
TD edge weights still provides community structure corresponding to periodic signals, indicative of robustness 
of the algorithm under amplitude and frequency changes. The community structure does not change for small 
amplitude modifications, but shows modifications for the ED weights for larger amplitudes (merging of adjacent 
communities), while the TD method results are not affected—effectively removing the time change influence 
with dominant amplitudes receiving high weights in the ED method. The different frequency modifications 
change the number of communities, corresponding to the periodicity changes, with the TD and ED methods 
both matching the signals’ periods for different frequencies. The TD method is robust to changes in amplitude 
as it is independent of amplitude. 

Experimental biological time-series applications. We then applied our method to the experimentally 
acquired biological time series summarized in the method section above. First we used our method to detect 
communities from the saliva omics monitoring experiment, DS1. We chose genes signals from the data display-
ing autocorrelation at lag 1 (simulation adjusted p value< 0.01), and calculated the average across the signals 
for each time point. The average signal intensity is shown in Fig. 5A top. We then built the WDPVG from this 
signal and we obtained temporal communities using the different methods in Fig. 5A bottom. The community 
structure was found to reflect the four physiological states over the 24 h: (1) pre-vaccination baseline, (2) post-
vaccination to fever onset, (3) fever onset to resolution, (4) post vaccination baseline. The PL method showed 
alignment of the changing physiological state of the subject with the communities detected. While the LN and 
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Figure 3.  Community structure of different simulated signal time series. We simulated 3 types of signals: 
cosine time series (A–D), square wave time series (E–H) and saw-tooth wave time series (I–L). The community 
structure is represented by color bar, with time points in the same community assigned the same color. For each 
kind of signal, we also added 20% and 80% noise (the first and second subplots of each row respectively) to 
test the tolerance to noise. We also randomly removed 20% and 80% time points (the third and fourth subplots 
of each row respectively, where grey bars in the signal plots represent the removed time points, in the case of 
having 20% noise in the data) to check the robustness to missing data and uneven sampling. We compared our 
method (PL, first color bar of each subplot) with the two traditional community detection methods, Louvain 
method (LN, second color bar) and Girvan–Newman method (GN, third color bar). Our method identifies 
community structures matching with the characteristics of the various time series, even in the presence of noise 
or missing data.
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GN methods also performed well, they displayed, however, some mixing of timepoints across physiological 
states.

The analysis of the Type 2 diabetes dataset, DS2, focused on results previously reported (see Fig. 6B of the 
manuscript by Zhou et al.5). The data included signals of A1C, fasting glucose and selected immune cytokines. 
There are no negative values in the dataset, so we built a normal perspective NVGs from each entry, and obtained 
its corresponding community structure. Figure 5B top left shows the heatmap of standardized reported intensities 
(i.e. the results of Zhou et al.5, with the communities structures heatmaps, shown for PL, LN and GN methods as 
well in Fig. 5B respectively. The community structures detected for DS2 reflect the change of time series intensi-
ties changes. We note that our community detection method does not require standardization of the raw data. 
The community changes capture the status changes in each signal, while effectively filtering out the noise in the 
data. The PL method results overall reflect the respective durations of the different physiological states (healthy, 
stress and antibiotic regiments). Qualitatively, the LN and GN methods also yied separations, but with mixing 
across physiological states.

Finally, we applied our method to four separately days’ radiation exposure measurements from DS3. We 
show the four separate day results with high radiation exposure changes (when the individual was traveling by 
flight on these days) in Fig. 5C. The community structures of these four days all capture the radiation exposure 
changes, acting as an adverse event detector. Again, the PL method is more concordant with the radiation expo-
sure timeframes overall, without mixing of timepoint in the communities.

Conclusion
We have introduced new methods to characterize graphs derived from time series through the application of 
VGs. We have introduced WDPVGs that combine normal perspective and reflected perspective visibility graphs, 
so that the peaks and troughs of a time series can be simultaneously represented. The WDPVGs also take into 
account uneven sampling effects through weight assignments to the edges. The WDPVG approach thus produces 
a graph that captures well the characteristics of the underlying time series.

We have also developed a new method to detect communities of nodes in a VG. Our VG community detec-
tion method is based on the graph’s geometry and considers the shortest path from the start node to the end 
node. The method does not assume a random graph null model. This makes the method advantageous and more 
appropriate for all kinds of VGs (e.g. NVG, HVG or WDPVG), because VGs cannot be compared to random 
graphs due to the sequential nature of time points.

The several simulated time series we used to test our WDPVG and VG community detection methods sup-
ported their validity. Our methods also showed high tolerance for uneven sampling and signal noise. Our PL 
community detection method showed robustness to noise compared to traditional community detection methods 
such as the Louvain and Girvan–Newman methods. Overall, the results suggest that our approach is well-suited 
for community detection within VGs.

The application of our automated method to experimental biological datasets gave examples of how the 
method may be used to identify temporal communities that correspond to biological states (e.g. physiological 
state of a subject, changes in molecular measurements due to vaccination, or detection of radiation exposure). The 
method has great potential not only for detecting the boundaries of biological temporal states, but for medical 
implementation in detecting potential adverse medical events from temporal measurements.
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Figure 4.  Community structure for different edge weights, amplitudes and frequencies. We compared the 
path length based algorithm (PL), using a weighted dual perspective visibility graph (WDPVG), for 4 types of 
edge weights: Euclidean distance (ED), the tangent of the view angle (TAN), the time difference (TD) and no 
weighting (NO). We simulated sinusoidal signal time series with different noise levels and missing data (20% 
and 80%), and obtained the communities using the PL algorithm (A1–5). We also changed the amplitudes, 
A from 1 to 100 (arbitrary units), and the frequencies, f, from 1 to 10, and detected the communities of the 
WDPVG from the signals (B1–5). The community structure is represented by a color bar, with time points in 
same community assigned the same color. The edge weights of ED and TD work well among the 4 types edge 
weights, and the PL algorithm shows robustness under amplitude or frequency changes.
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Figure 5.  Results of our visibility graph based community detection method applied to experimental biological 
datasets. (A) Shows the results of applying different methods to an individual’s saliva omics time series before 
and after their vaccination, over a 24 h period. The time series indicates average gene expression for a subset of 
genes with autocorrelated behavior. The VG nodes’ color in (A) bottom represents the intensities of the time 
series, and nodes belonging to the same detected community are framed by a blue border. The communities 
correspond well to the four physiological subject states of biological significance: prior to vaccination, after 
vaccination, a post vaccination fever period and resolution, post fever relative recovery. (B) The standardized 
intensities of A1C, fasting glucose and selected immune cytokines time series from a subject with Type 2 
diabetes (B top left) and the community structures computed individually for each signal are shown for different 
methods. The data are ordered temporally from left to right, and physiological states are indicated per timepoint 
as one of H (healthy), S (stress), Ax (antibiotic regiment) and Im (immunization) states. For the experimental 
data, warm colors indicate higher and colder colors lower intensities respectively. In the methods’ results, nodes 
belonging to the same community are depicted with the same color bar. The communities structure reflects the 
changes in physiological state that result from molecular intensity differences. (C) The radiation intensity data 
from wearable biosensors in four separate days including flight activity are shown. The red disc indicates that the 
radiation was recorded during the airport carry-on luggage check. Stars represent radiation monitored during 
flight timepoints. Again, nodes in the same community are indicated with the same color in the horizontal bars. 
The PL community structures during each of these four days indicate the periods of varying radiation exposure, 
and correctly identify the onset of the exposure.
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The methods presented are used to identify communities in individual signals, and the community bounda-
ries can be considered as changepoints between different states (e.g. healthy biological signal versus a disease 
response signal behavior). The changepoints may correspond to anomalies, and the individual communities to 
motifs. In future work, we plan to extend these methods to compare community structure across different signals 
and define distance measures that will allow for graph-based classification of multiple signals. Furthermore, we 
plan to explore additional refinements, including rescaling of intensity and time based on the sampling rate to 
optimize community detection for weighted VGs. Another extension is to investigate the effect of missing peak 
data in the community detection. The missing data simulation results (Fig. 3C,D,G,H,K,L) show that in most 
cases our approach is not sensitive to missing peak values which are in general the community hubs. In the case 
that missing data correspond to pulse-like single peaks/spikes, with no additional features in the signal, then 
the particular signal spike characteristic cannot be detected. In the special case where missing peak values are 
much larger than other values, the community structure may also be changed. A sliding time window approach 
providing smoothing may address such issues with missing data corresponding to signal peaks and will be further 
investigated. Additionally, we plan to further automate the optimization of node-merging on the main hubs when 
constructing the communities, to obtain the most stable set of communities (the current selection is made with 
either a fixed cutoff, or with a cutoff constrained by the median shortest path distance).

There has been extensive interest in investigating the geometric aspects of community detection in graphs. 
Notably, in recent work Sia, et al. have proposed a novel geometric approach that is based on evaluating Ollivier-
Ricci curvature on graphs to obtain robust network  communities52. We plan to further extend our work to 
investigate applying geometric methods to VGs, for example, considering the Ollivier-Ricci curvature of the 
community hubs in our VG algorithm to optimize hub merging, identifying changepoints, and also building 
VG community hierarchies. Such hierarchies may be used in clustering biological time series with communities 
that display different temporal characteristics across different time scales, and identifying common patterns 
across multiple signals.

We have implemented a graph-based method to explore the community detection for graphs representing 
time series, building on previously established visibility graph approaches. There are also many other algorithms 
utilizing analytic methods for similar tasks, for example segmentation  algorithms53,54. A notable recent imple-
mentation is the FLOSS (Fast Low-cost Online Semantic Segmentation) algorithm, which also is visually similar 
to our approach, using ‘Arcs’ as connectivity variables, in contrast with our method using visibility  connections54. 
Since we have taken a graph-based approach, we use graph terminology: for example we refer to ‘temporal com-
munity detection’, instead of ‘regime discovery’ or ‘semantic segmentation’ which may be considered as analogous 
constructions, though with rather different underlying methodologies. Our algorithm offers an extension to time 
series graph-based methods, further extending the multiple methods available for time series analysis, providing 
different perspectives that can be particularly beneficial to the complexities of biological time series analysis.

Data availability
Methods in this manuscript are available as a module in the Python package PyIOmica, https ://doi.org/10.5281/
zenod o.45420 82 (Documentation: https ://pyiom ica.readt hedoc s.io/en/lates t/ ). Datasets and codes used are avail-
able at https ://doi.org/10.5281/zenod o.45425 67.
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