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A gene module identification 
algorithm and its applications to 
identify gene modules and key 
genes of hepatocellular carcinoma
Yan Zhang1, Zhengkui Lin2, Xiaofeng Lin2, Xue Zhang2, Qian Zhao2* & Yeqing Sun1*

To further improve the effect of gene modules identification, combining the Newman algorithm 
in community detection and K-means algorithm framework, a new method of gene module 
identification, GCNA-Kpca algorithm, was proposed. The core idea of the algorithm was to build a 
gene co-expression network (GCN) based on gene expression data firstly; Then the Newman algorithm 
was used to initially identify gene modules based on the topology of GCN, and the number of clusters 
and clustering centers were determined; Finally the number of clusters and clustering centers were 
input into the K-means algorithm framework, and the secondary clustering was performed based on 
the gene expression profile to obtain the final gene modules. The algorithm took into account the 
role of modularity in the clustering process, and could find the optimal membership module for each 
gene through multiple iterations. Experimental results showed that the algorithm proposed in this 
paper had the best performance in error rate, biological significance and CNN classification indicators 
(Precision, Recall and F-score). The gene module obtained by GCNA-Kpca was used for the task of key 
gene identification, and these key genes had the highest prognostic significance. Moreover, GCNA-
Kpca algorithm was used to identify 10 key genes in hepatocellular carcinoma (HCC): CDC20, CCNB1, 
EIF4A3, H2AFX, NOP56, RFC4, NOP58, AURKA, PCNA, and FEN1. According to the validation, it was 
reasonable to speculate that these 10 key genes could be biomarkers for HCC. And NOP56 and NOP58 
are key genes for HCC that we discovered for the first time.

With the development of sequencing technology, a lot of transcriptome data have emerged. Among them, genes 
have the characteristics of modularized function. To be specific, the expression levels of genes with the same 
function are often similar, the so-called “co-expression”, which provides a basis for identifying gene modules 
from gene expression data. At present, the gene module identification methods are mostly based on Gene Co-
expression Network Analysis (GCNA). The concept of gene co-expression network (GCN) was first proposed 
by Butte and Kohane in 1999, and they constructed the first GCN based on the Pearson correlation analysis of 
gene expression data1,2. Recently, the most commonly used algorithm in GCNA is Weighted Gene Co-expression 
Network Analysis (WGCNA)3, which identifies gene modules based on the idea of hierarchical clustering and 
combines the two tasks of “GCN construction” and “gene module identification” in one process.

Although the WGCNA algorithm has been widely used to identify gene modules, it still has some short-
comings need to be improved. Firstly, WGCNA algorithm is based on network clustering, but it fails to take 
modularity4 into account in module identification process. Modularity is an index proposed by Newman et al. 
to evaluate the community detection results. And the community detection refers to the clustering of nodes in 
the network using the topology of the network. A community corresponds to a cluster (gene module). Modu-
larity plays an important role in network clustering and community detection, and clustering results with high 
modularity are usually more reliable. Secondly, since the WGCNA algorithm is based on hierarchical clustering, 
once it is determined which branch of the tree that a gene belongs to during the execution of the algorithm, it 
cannot be undone. Which means the algorithm cannot find the best membership module for each gene with 
multiple iterations. These above two points might induce the WGCNA algorithm could not obtain the optimal 
gene modules. To optimize the gene module identification method, we combined community detection and 
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K-means algorithm framework to propose a new gene module identification method. Finally, experiments were 
conducted to verify the reliability of the proposed algorithm.

In the last decade, the high-throughput platforms were used to generate gene expression profiling in hepato-
cellular carcinoma (HCC). However, sequencing results are often limited and inconsistent owing to the hetero-
geneity of samples in independent studies. As such, this study sought to analyze a range of available HCC-related 
gene expression data sets by proposed algorithm, with the goal of identifying key gene module and genes for 
HCC treatment and diagnosis.

Above all, we downloaded the gene expression profile of HCC from the Cancer Genome Atlas (TCGA)5 and 
preprocessed it. Next, the algorithm proposed in this paper and seven algorithms were used to identify the gene 
modules in HCC, respectively. Then we compared the identification effects of the eight algorithms. Then, a key 
module was selected in the identification result of the algorithm we proposed, and we performed GO enrichment 
analysis on it. Besides, to identify key genes, key modules identified by K-means, WGCNA and GCNA-Kpca 
were used to construct protein protein interaction (PPI) network with Search Tool for the Retrieval of Interacting 
Genes (STRING) database6. And the identification effects of three algorithms were compared with two key gene 
identification algorithms which were most commonly used. Finally, key genes were validated by three methods, 
Oncomine analysis, GEO data set and ROC curve.

Materials and methods
Sources of data.  The HCC gene expression profiles used in this study were downloaded from TCGA (https​
://cance​rgeno​me.nih.gov), which were processed using the RNA-sequencing platform, and contained 416 sam-
ples, including 367 HCC samples and 49 normal samples. The data preprocessing method mainly included the 
four steps:

(1)	 The low-expression genes were filtered. That was, the gene whose maximum FPKM value was less than 1 
in HCC or normal samples was removed.

(2)	 Outliers from HCC samples were removed by hierarchical clustering with R function hclust() in the stats 
package (v3.6.1), and samples whose cluster height were significantly higher than most samples were 
removed (In this study, TCGA-DD-AAEB, TCGA-CC-5259 and TCGA-FV-A4ZP are removed, see Fig. S1).

(3)	 The fold change of each gene’s FPKM value between HCC and normal samples was calculated, and genes 
with FC ≥ 2 (up-regulated) or FC ≤ 0.5 (down-regulated) were retained. The cutoff values were obtained by 
combining the need for subsequent analysis and referring to reference7–9.

(4)	 T-test was performed on the genes retained in step (3) using the t.test() in stats R package (v3.6.1). The 
significance of the difference in RPKM values of each gene between HCC and normal samples was tested, 
and the genes with P-value < 0.05 were retained.

Construction of GCN.  Chang et al. showed that when Pearson correlation analysis was performed on the 
expression levels of two genes, if the absolute value of the correlation coefficient was greater than a certain thresh-
old and met statistical significance, it could be considered that the two genes have a co-expression interaction10. 
In this paper, Pearson correlation analysis was used to calculate the similarity between the two genes’ expression 
levels. If the absolute value of the Pearson correlation coefficient (PCC) of the two genes was greater than the 
given threshold (|PCC|≥ 0.65) and met statistical significance (P-value < 0.05), the two genes were considered to 
have a co-expression interaction. All co-expression interactions were represented by networks, which was GCN.

Community detection algorithm.  The community detection algorithm is a kind of clustering algorithm, 
which divides the nodes in the network into several communities (clusters) based on the network topology. The 
nodes within the community are closely connected, while the nodes between the communities are sparsely con-
nected. In GCNA, a community detection algorithm can be used to divide genes in the network into different 
communities, and a community is a gene module.

In 2006, Newman proposed a community detection algorithm with the goal of maximizing modularity (called 
Newman algorithm in this paper)11,12. The Newman algorithm takes modularity optimization as the main idea. It 
can divide genes in the GCN into different communities and realize the identification of gene modules. However, 
this algorithm is still unable to find the best membership module for each gene through multiple iterations.

Gene module identification method based on Newman algorithm and K‑means algo-
rithm.  K-means algorithm is a classical clustering method, and it finds the best membership cluster for each 
sample point through multiple iterations. But it still has two problems: Firstly, the number of clusters K needs to 
be determined before the algorithm is executed. Secondly, it is necessary to initialize the clustering center, and 
the selection of the initial clustering center will have a key influence on the clustering results.

In this study, GCNA-Kpca algorithm was proposed by combining Newman algorithm and traditional K-means 
algorithm. The core idea is that a GCN is constructed using gene expression data firstly; then Newman algorithm 
is used to initially identify gene modules based on the topological structure of the GCN, and the number of 
clusters and clustering centers are determined; finally, the number of clusters and clustering centers are input 
into the K-means algorithm framework, and secondary clustering is performed based on the gene expression 
profile to obtain the final gene modules. This algorithm combines the advantages of Newman algorithm and 
K-means algorithm, and could find the optimal membership module for each gene through multiple iterations, 
and at the same time makes full use of the topology of GCN and gene expression profiles, so as to identify gene 
modules more accurately.

https://cancergenome.nih.gov
https://cancergenome.nih.gov
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However, the traditional K-means algorithm could not achieve good results directly for the identification 
of gene modules, so we improved the algorithm on two aspects in this study. One is to change the definition of 
distance. The distance in the K-means algorithm is always defined between a sample point (gene) and a clustering 
center. The traditional K-means algorithm uses Euclidean distance, which is obviously not suitable for clustering 
genes. We learned from the method used in the construction of GCN and used the PCC to define the distance. 
The specific formula is as follows:

where, g represents a gene, C represents a cluster center, and the calculated result of function cor() is the PCC 
of the two variables.

The second is to change the strategy of determining clustering center. Before the K-means algorithm is 
executed, the initial clustering center must be determined; after the K-means algorithm has completed a division 
of genes, the clustering center must be determined again. To better explain the method of determining cluster-
ing center in this paper, the concept of module eigengene (ME) is introduced: In GCNA, a vector ME is often 
used to represent the expression profiles of all genes in a gene module (cluster). Generally, Principal Component 
Analysis (PCA) is performed on the expression of all genes in a gene module, in which the first principal com-
ponent is ME of the module. A study have shown that the stronger the correlation between gene g and the ME 
of module i, the more likely it is that gene g belongs to module i13. Based on this principle, we aimed to find the 
best membership module for each gene through multiple iterations. Therefore, the MEs of gene modules in the 
preliminary clustering result of Newman algorithm were used as initial clustering centers of K-means algorithm 
in this study. The strategy for updating a clustering center was to perform PCA on all genes contained in a cluster, 
and made the first principal component as the new clustering center.

The process of the GCNA-Kpca algorithm is as follows:

Step 1 Let Pn×m be the expression matrix of n genes in m samples.
Step 2 Pearson correlation analysis is performed for all row vectors in Pn×m in pairs to construct a GCN G.
Step 3 Use Newman algorithm to recursively split G, and community structure is obtained.
Step 4 The number of communities K and ME of each gene module were obtained.
Step 5 Initialize the number of clusters as K, and initialize the clustering centers as K MEs.
Step 6 Use formula (1) to calculate the distance from each gene to each clustering center.
Step 7 Cluster each gene to the nearest clustering center.
Step 8 Perform PCA on all genes contained in a cluster, and make the first principal component as a new 
clustering center.
Step 9 Check whether the termination condition is met. If the termination condition is met, the algorithm 
ends; otherwise, go to Step 6.

Evaluation indicators for gene module identification.  In order to prove the superiority of the 
GCNA-Kpca algorithm, clustering algorithms based on different principles were used for comparative experi-
ments, including seven algorithms: K-means, K-means++, K-medoids, Gaussian Mixture Model (GMM), Spec-
tral Clustering, Fuzzy c-means (FCM) and WGCNA.

We evaluated the identification effect from the following aspects. One is the error rate of clustering. As we 
all know, when Pearson correlation analysis is performed between a gene and ME of its corresponding module, 
the absolute value of the PCC is called the module membership (MM) of this gene13. In an ideal situation, genes 
in the same module should be highly correlated. That is, if there is a gene g ∈ module i, then for ∀j �= i , there is

Among them,MMg is the MM of gene g, and MEj is the ME of module j. If a gene doesn’t satisfy formula (2), 
the membership of the gene in its module is low. That is, the gene is wrongly divided into this module. There-
fore, the error rate was defined as the ratio of the number of genes that didn’t satisfy the formula (2) to the total 
number of genes.

The second is the biological significance of the module. Biological process (BP) in the results of Gene Ontol-
ogy (GO) enrichment analysis can help understand the biological functions that a gene module involves in, and 
Fisher’s precise test can characterize the significance and reliability of these biological functions. Based on this, 
we defined the calculation formula of biological significance (Sigi) of the ith gene module as follows:

where, n represents the number of GO terms (BP) in the ith gene module, and P valuej represents the significance 
P-value value of Fisher’s exact test corresponding to the jth GO Term in this module. Therefore, the biological 
significance (Sig) of the results of an algorithm is shown in Formula (4):

where, m represents the total number of gene modules identified by this algorithm.

(1)D(g ,C) = 1−
∣

∣cor(g ,C)
∣

∣,

(2)MMg ≥
∣

∣cor(g ,MEj)
∣

∣.

(3)Sigi =

n
∑

j=1

− log10(P valuej),

(4)Sig =

m
∑

i=1

Sigi/m,
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After obtaining the labels from clustering, we built supervised classification models using Convolutional 
Neural Networks (CNN) to further evaluate the reliability of the clustering results. For the clustering results 
obtained by each algorithm, we constructed a model using the 70% TCGA samples (training set) and predicted 
the labels in 30% samples (test set), and the evaluation indicators included Precision, Recall and F-score.

Application of gene modules.  In this paper, an important downstream task of gene module identifica-
tion, the identification of key genes, was selected to further prove the good effect of GCNA-Kpca algorithm in 
gene module identification, and also to demonstrate the application of this algorithm in bioinformatics analysis.

We selected the key modules (the module with the highest biological significance) in the results of the 
K-means, WGCNA and GCNA-Kpca, and input genes in the three key modules into the STRING database (https​
://strin​g-db.org/) respectively to build PPI networks. Then we defined the 10 genes with the highest PageRank 
algorithm14 score in each network as the key genes identified by this algorithm.

Evaluation indicators for key gene identification.  To compare the value of key genes obtained by dif-
ferent algorithms, survival analysis was used to evaluate the reliability of a gene. Generally, if the Logrank P-value 
of a gene is less than 0.05, it can be considered that the expression level of the gene is significantly correlated 
with overall survival (OS), and the smaller the P-value, the stronger the correlation. Therefore, the prognostic 
significance (Sig_SA) of all key genes obtained by an algorithm is defined as shown in Formula (5):

where, n represents the number of key genes (in this paper n = 10); P valuei represents the Logrank P-value of 
the ith gene.

Verification of key genes.  Three methods were used to further verify the role of key genes identified 
by GCNA-Kpca algorithm: Firstly, the mRNA expression of key genes was explored in common cancer using 
Oncomine15 (https​://www.oncom​ine.org). The parameters were set as follows: threshold (P-value) = 0.05, 
THRESHOLD (FOLD CHANGE) = 1.5. Then, we downloaded a test data set, GSE138485, from the gene expres-
sion omnibus (GEO) (https​://www.ncbi.nlm.nih.gov/geo), and this data set included 64 paired normal and HCC 
samples (Table  S1). The t-test was used to verify the differential expression of the key genes in GSE138485. 
Ultimately, ROC curve and AUC were used to detect the ability of key genes to distinguish tumors from normal 
tissues.

Results
Preprocessing of gene expression data.  A workflow of this study is shown in Fig. 1. We preprocessed 
the gene expression data of HCC firstly, and the gene expression matrix P4601 × 364 was obtained for further 
analysis (Fig. 216), which contained 4601 genes and 364 samples, all of which were HCC samples.

Identification of gene modules and comparative analysis of results.  Seven algorithms (K-means, 
K-means++, K-medoids, GMM, Spectral Clustering, FCM, WGCNA) and the GCNA-Kpca algorithm were used 
to analyze the preprocessed data to identify gene modules. Then, the error rate of the identification results of the 
eight algorithms was calculated (Table 1). It can be seen that the GCNA-Kpca algorithm has the lowest error rate 
(0.06). Moreover, the error rate of community detection results using only Newman algorithm is 0.25, indicat-
ing that the effectiveness of the GCNA-Kpca algorithm has been greatly improved compared with the Newman 
algorithm.

Furthermore, the biological significance of the gene modules identified by the eight algorithms was calculated 
according to formulas (3) and (4) (Fig. 3). It can be seen that the results obtained by GCNA-Kpca algorithm have 
the highest biological significance (Sig = 956.52).

Finally, we used CNN to evaluate the clustering results (Table 2). Obviously, our algorithm, GCNA-Kpca, 
performs the best. It has the highest Precision (0.8410), Recall (0.7670), and F-score (0.7895). 

Identification and GO enrichment analysis of key module obtained by GCNA‑Kpca algo-
rithm.  The biological significance of the nine gene modules identified by GCNA-Kpca algorithm was cal-
culated respectively (Fig. 4). Module m1 had the highest biological significance, so m1 was defined as the key 
gene module identified by GCNA-Kpca algorithm. Further, GO enrichment analysis was performed on module 
m1, and the 20 BPs with the smallest P-value were shown in Table 3. The genes in m1 mainly participated in BPs 
associated with cell cycle process, cytoskeleton organization, and localization.

Identification of key genes.  We input the key modules identified by the three algorithms (K-means, 
WGCNA and GCNA-Kpca) into the STRING database to obtain the PPI networks (Fig. 517).

Furthermore, PageRank algorithm was used to identify key genes in three PPI networks. In addition, two of 
the most commonly used key gene identification algorithms, T test and DESeq2 algorithm18, were selected for 
comparative analysis. These two algorithms directly identify key genes by analyzing gene expression profiles, 
which is the traditional method for key genes identification. Each algorithm also identified 10 key genes (Table 4).

(5)Sig_SA =

n
∑

i=1

− log10(P valuei),

https://string-db.org/
https://string-db.org/
https://www.oncomine.org
https://www.ncbi.nlm.nih.gov/geo
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Figure 1.   Flow-chart of data analysis in this paper. This figure was drawn with Microsoft Visio 2010.

Figure 2.   Gene expression profiles of HCC samples. The results obtained by normalizing the RPKM values in 
364 HCC samples, each of which contained 4601 genes. A row corresponds to a gene, and a column corresponds 
to a sample. This figure was drawn with R software16.
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Comparative analysis of key gene identification results.  The survival analysis of key genes showed 
that the 10 key genes identified by GCNA-Kpca algorithm were all significantly correlated with OS (Logrank 
P-value <0.05) (Fig. 619). While each of the other 4 algorithms had several key genes that were not significantly 
correlated with OS (Logrank P-value ≥ 0.05). Where, the genes that are not significantly correlated to OS in each 

Table 1.   Comparison of error rates among the eight algorithms (K-means, K-means++, K-medoids, GMM, 
Spectral Clustering, FCM, WGCNA and GCNA-Kpca).

Algorithm Error rate

K-medoids 0.58

K-means 0.53

Spectral clustering 0.42

GMM 0.39

FCM 0.37

K-means++ 0.31

WGCNA 0.29

GCNA-Kpca 0.06

Figure 3.   The biological significance of gene modules identified by K-means, K-means++, K-medoids, GMM, 
Spectral Clustering, FCM, WGCNA and GCNA-Kpca. This figure was drawn with GraphPad Prism 9.

Table 2.   The classification results of CNN.

Clustering algorithm Precision Recall F-score

K-means++ 0.407837302 0.412309368 0.409291088

K-means 0.420653138 0.420298143 0.413029082

GMM 0.458085362 0.479953484 0.467910418

Spectral clustering 0.443782761 0.510982469 0.471149819

K-medoids 0.520787355 0.521708201 0.517168854

FCM 0.720416663 0.688164921 0.690147127

WGCNA 0.78614125 0.729279985 0.741099025

GCNA-Kpca 0.84104302 0.766970131 0.789498886



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5517  | https://doi.org/10.1038/s41598-021-84837-y

www.nature.com/scientificreports/

algorithm are as follows: K-means algorithm has one: SMC3; WGCNA algorithm has one: RBBP7; T-test has 
four: PPOX, LRRC14, PRCC, TBCE; DESeq2 algorithm has four: ADAMTS13, ANGPTL6, ECM1, CSRNP1.

Furthermore, formula (5) was used to calculate the prognostic significance of key genes obtained by each 
algorithm (Fig. 7). The results showed that the algorithm proposed in this paper had the highest prognostic 
significance (Sig_SA = 27.79).

Verification of key genes identified by GCNA‑Kpca algorithm.  We used three methods to further 
verify the role of key genes identified by GCNA-kpca algorithm: Firstly, the mRNA expression of 10 key genes 
in liver cancer was explored using Oncomine analysis. The result showed that all key genes were up-regulated in 
liver cancer as shown in Fig. 8. Then, the data of GEO (GSE138485) showed that the RPKM of these key genes 
were significantly (all P-values < 0.001) up-regulated in HCC samples compared with normal samples (Fig. 9). 
Moreover, based on the RPKM of these key genes in the GEO data set, we used ROC curve and AUC to classify 

Figure 4.   The biological significance of nine gene modules identified by GCNA-Kpca algorithm. This figure 
was drawn with GraphPad Prism 9.

Table 3.   The 20 GO Terms (BPs) with the smallest P-value in the key gene module (m1) identified by GCNA-
Kpca algorithm.

ID Description Count P-value

GO:0044770 Cell cycle phase transition 39 9.53E−17

GO:0044772 mItotic cell cycle phase transition 36 1.99E−15

GO:0034660 ncRNA metabolic process 35 2.35E−15

GO:0051301 Cell division 36 4.07E−15

GO:0016072 rRNA metabolic process 24 9.97E−15

GO:0007051 Spindle organization 21 2.54E−14

GO:0006261 DNA-dependent DNA replication 19 2.73E−14

GO:0010564 Regulation of cell cycle process 39 1.11E−13

GO:0007346 Regulation of mitotic cell cycle 37 1.14E−13

GO:0006403 RNA localization 22 1.50E−13

GO:0034470 ncRNA processing 27 2.19E−13

GO:0000280 Nuclear division 28 2.40E−13

GO:0006260 DNA replication 23 2.80E−13

GO:0140014 Mitotic nuclear division 23 3.03E−13

GO:0006281 DNA repair 32 4.19E−13

GO:0007052 Mitotic spindle organization 16 4.63E−13

GO:0033044 Regulation of chromosome organization 25 2.31E−12

GO:0048285 Organelle fission 28 3.04E−12

GO:1902850 Microtubule cytoskeleton organization involved in mitosis 16 1.37E−11

GO:0000723 Telomere maintenance 17 1.41E−11
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HCC and normal samples. The results showed that the whole 10 key genes had highly diagnostic efficiencies to 
distinguish tumors from normal tissues (AUC > 0.79 and P-value < 0.0001) (Fig. 10).

Figure 5.   PPI networks of the three key modules. These key gene modules identified by K-means, WGCNA 
and GCNA-Kpca respectively. And each node in PPI network corresponds to a gene. This figure was drawn with 
Cytoscape 3.7.117.

Table 4.   Key genes identified by five algorithms (K-means, WGCNA, T test, DESeq2 and GCNA-Kpca).

Algorithm Key gene

K-means TOP2A, RFC4, AURKA, ESPL1, MCM2, ZWINT, SMC3, MCM5, RRM2, POLD1

WGCNA CCNB1, CDC20, TOP2A, RFC4, RBBP7, PCNA, AURKA, FEN1, MCM2, MCM3

T test PPOX, MSTO1, TOMM40L, DAP3, LRRC14, VPS45, SCAMP3, TMCO1, PRCC, TBCE

DESeq2 ADAMTS13, ANGPTL6, VIPR1, OIT3, ECM1, CSRNP1, CFP, CCL23, CPEB3, CDC37L1

GCNA-Kpca CDC20, CCNB1, EIF4A3, H2AFX, NOP56, RFC4, NOP58, AURKA, PCNA, FEN1

Figure 6.   Significant correlation between key genes expression and survival. Survival curves of key genes 
identified by GCNA-kpca algorithm. X-axis represents survival time and Y-axis represents survival rate. This 
figure was drawn with OncoLnc19 (http://www.oncol​nc.org).

http://www.oncolnc.org
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Discussions
HCC is the main type of liver cancer, and it causes the death of more than 700,000 patients every year. HCC 
is the third leading cause of cancer-related deaths in the world and has become an important issue affecting 
human health20,21. Previous studies focused on the specific genes in the initiation and progression of HCC22–24. 
Although some bioinformatics research on HCC has been reported9,25, but the precise molecular mechanisms 
underlying HCC progression was not clear. Therefore, the GCNA-Kpca algorithm was used to analyze the gene 

Figure 7.   The prognostic significance of key genes obtained by K-means, WGCNA, T test, DESeq2 and GCNA-
Kpca. This figure was drawn with GraphPad Prism 9.

Figure 8.   The results returned from Oncomine database. The row corresponds to cancer, and the column 
corresponds to gene. The red square represents that the gene was up-regulated in cancer, the blue square 
represents that the gene was down-regulated in cancer, and the value in the square represents the number of 
related references. This figure was drawn with Oncomine15 (https​://www.oncom​ine.org).

https://www.oncomine.org
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expression profiles of HCC and more accurately identify the gene modules and key genes in HCC, so as to further 
understand the pathogenesis of HCC.

GO enrichment analysis showed that the key gene module of HCC which obtained by GCNA-Kpca algo-
rithm was related to many BPs. The top 20 GO terms with the lowest P value of BPs were divided into four 
categories with QucikGO (https​://www.ebi.ac.uk/Quick​GO/). Where, cell cycle phase transition (GO:0044770), 
mitotic cell cycle phase transition (GO:0044772), regulation of cell cycle process (GO:0010564), regulation of 
mitotic cell cycle (GO:0007346), cell division (GO:0051301), nuclear division (GO:0000280) and mitotic nuclear 
division (GO:0140014) are parts of cell cycle process (GO:0007049). Previous studies were shown that G2/M 
phase, apoptosis and cytoprotective autophagy was the key way to treat HCC26. Yan H et al. found that aberrant 
expression of cell cycle related genes (e.g., CDK1, CCNA2, CCNB1, BUB1, MAD2L1 and CDC20) and material 
metabolism related genes (e.g., CYP2B6, ACAA1, BHMT and ALDH2) may contribute to HCC occurrence27. 
Related studies had shown that Germline aberrations in critical DNA-repair and DNA damage-response genes 
caused cancer predisposition, whereas various tumors harbor somatic mutations causing defective DDR/DNA 
repair28. Moreover, aberrant activation of DNA repair was frequently associated with tumor progression and 
response to therapy in HCC29. And Lin et al. defined DNA repair based molecular classification that could 
predict the prognosis of patients with HCC29. Spindle organization (GO:0007051), mitotic spindle organiza-
tion (GO:0007052) and microtubule cytoskeleton organization involved in mitosis (GO:1902850) belong to 
cytoskeleton organization (GO:0007010). Interestingly, Cheng et al. performed laser confocal technology and 
Immunohistochemical staining technique, and found that nuclear pleomorphism of cancer cells was correlated 
with the cytoplasmic disorganization of cytoskeleton30. RNA localization (GO:0006403) belongs to localization 
(GO:0051179). Cheng et al. found that differentially expressed cancer lncRNAs and lncRNAs with multiple cancer 
target proteins tended to have higher target location diversity in multiple cancers31. It could be seen that the BPs 
enriched by key module (obtained by GCNA-Kpca algorithm) were significantly correlated with the initiation 
and progression of cancer, which further proved that GCNA-Kpca algorithm had a good performance in gene 
module identification.

According to the validation, the 10 key genes obtained by GCNA-Kpca might be good biomarkers in HCC. 
The eukaryotic translation initiation factor 4A-3 (EIF4A3) is the core component of the exon junction complex 
(EJC). Based on the analysis of HCC sequencing data, researchers revealed the key role of EIF4A3 as a bridging 
protein, and believed that the abnormalities in EIF4A3 were related to carcinogenesis32. The flap structure-
specific endonuclease 1 (FEN1) is over-expressed in a variety of malignant tumors, which may promote the 
invasiveness of tumor33. The expression levels of FEN1 were also positively correlated with tumor size (P = 
0.047 < 0.05), distant metastasis (P = 0.013 < 0.05) and vascular invasion (P = 0.024 < 0.05) in HCC34. Human 
replication factor C4 (RFC4) is involved in DNA replication as a clamp loading agent and plays a role in a vari-
ety of cancers35. Studies had shown that the over-expression of RFC4 in tumor tissues was related to the poor 
prognosis of HCC, and it could be potential therapeutic targets for HCC36. In addition, RFC4 could enhance the 
repair effect of chemotherapeutic drugs on DNA damage37. H2A histone family, member X (H2AFX) is impor-
tant in maintaining chromatin structure and genetic stability. Mutations in H2AFX may alter protein function, 
thereby altering cancer risk38. H2AFX were assessed by immunohistochemistry and/or immunoblotting and 
qRT-PCR in a collection of human HCC, and it was found that H2AFX was up-regulated in HCC39. Cyclin B1 
(CCNB1) belongs to a highly conserved cyclin family, which is significantly over-expressed in many cancers40. 
Correlated with advanced histologic grade and/or vascular invasion, up-regulation of CCNB1 in HCC tissues 
predicted worse OS and disease-free survival (DFS) in HCC patients41. Cell division cycle 20 (CDC20) plays an 

Figure 9.   The heat map of RPKM of key genes identified by GCNA-Kpca algorithm in normal and HCC 
samples. TA-Tf represents HCC samples in GSE138485, NTA-NTf represents normal samples in GSE138485. 
This figure was drawn with R software16.

https://www.ebi.ac.uk/QuickGO/
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important role in chromosome separation and mitosis42. CDC20 encodes a regulatory protein interacting with 
the anaphase-promoting complex/cyclosome in the cell cycle and plays important roles in tumorigenesis and 
progression of multiple tumors43. Immunohistochemistry result showed that, in the 132 matched HCC tissues, 
high expression levels of CDC20 were detected in 68.18% HCC samples, and over-expression of CDC20 was 
positively correlated with gender (P=0.013), tumor differentiation (P = 0.000), TNM stage (P = 0.012), P53 and 
Ki-67 expression (P = 0.023 and P=0.007, respectively)44. Aurora kinase A (AURKA) is an important regulator in 
mitotic progression and is often over-expressed in human cancers (including HCC)45. In fact, elevated AURKA 
expression was observed in several human cansers, such as pancreatic cancer, endometrioid ovarian carcinoma 
and colorectal cancer liver metastasis, and was associated with poor prognosis46. Moreover, AURKA regulated 
epithelial-mesenchymal transition and cancer stem cell properties in HCC to promote cancer metastasis47. 
Proliferating cell nuclear antigen (PCNA) plays critical roles in many aspects of DNA replication and replica-
tion-associated processes, including translesion synthesis, error-free damage bypass, break-induced replication, 
mismatch repair, and chromatin assembly48. Zheng et al. analyzed HCC data sets in GEO and TCGA and found 
that PCNA might be promising prognostic biomarker for HCC49. Nucleolar KKE/D repeat proteins NOP56p and 
NOP58p interact with NOP1p and are required for ribosome biogenesis50. Strikingly, NOP56p and NOP58p are 
highly homologous (45% identity). NOP56 is a nucleolar protein that closely relates to the expression oncogene51. 
Interestingly, NOP56 and NOP58, all from the key gene module, have not been shown to be associated with 
HCC to date, either in vivo or in vitro. But studies had shown that FAM83A-AS1 facilitated HCC progression 
by binding with NOP58 to enhance the stability of FAM83A52. Combined with the study in this paper, it was 
reasonable to speculate that these 10 key genes could be biomarkers for HCC. It is worth noting that NOP56 
and NOP58 are the HUB genes of HCC that we discovered for the first time. But the key role of these two genes 

Figure 10.   The ROC curves of key genes identified by GCNA-kpca algorithm. These ROC curves described 
the diagnostic efficiency of the mRNA levels of 10 key genes for HCC and normal tissues. This figure was drawn 
with IBM SPSS Statistics25.
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still needs to be verified by subsequent biological experiments. And it further proved the good performance of 
GCNA-Kpca algorithm in key gene identification.

WGCNA is the most classic method in gene module identification. However, WGCNA algorithm didn’t take 
modularity into account in gene module identification, and it could not find the best membership module for 
each gene through multiple iterations, so that its module identification effect was not ideal. To solve this problem, 
a gene module identification algorithm based on Newman algorithm and K-means algorithm framework, GCNA-
Kpca algorithm, was proposed. The results showed that compared to the other seven clustering algorithm, the 
GCNA-Kpca algorithm had the best performance in error rate, biological significance and CNN classification 
indicators (Precision, Recall and F-score). Moreover, the key gene identification results showed that all key genes 
identified by the GCNA-Kpca algorithm could be used as prognostic targets; And compared with the other four 
algorithms, the key genes obtained by this algorithm had the highest prognostic significance. It not only proved 
the reliability of the gene modules identified by the GCNA-Kpca algorithm, but also suggested that this algorithm 
could play a good performance in the identification of biomarkers and prognostic targets.

Conclusions
Taken together, GCNA-Kpca, a gene module identification algorithm combined with Newman algorithm and 
K-means algorithm, was proposed in this paper, and the gene expression profiles of HCC were analyzed by this 
algorithm. The results showed that the gene modules identified by this algorithm had the highest biological sig-
nificance. Moreover, all key genes identified by the GCNA-Kpca algorithm could be used as prognostic targets, 
and these key genes had the highest prognostic significance. Notably, NOP56 and NOP58 are key genes for HCC 
that we discovered for the first time. The experimental results showed that this algorithm performed well in the 
identification of gene modules and key genes.
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