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Single‑cell differential splicing 
analysis reveals high heterogeneity 
of liver tumor‑infiltrating T cells
Shang Liu1,2,3, Biaofeng Zhou1,2,3, Liang Wu1,2,3, Yan Sun1,2,3, Jie Chen1,2 & Shiping Liu2,3*

Recent advances in single‑cell RNA sequencing (scRNA‑seq) have improved our understanding of the 
association between tumor‑infiltrating lymphocyte (TILs) heterogeneity and cancer initiation and 
progression. However, studies investigating alternative splicing (AS) as an important regulatory factor 
of heterogeneity remain limited. Here, we developed a new computational tool, DESJ‑detection, 
which accurately detects differentially expressed splicing junctions (DESJs) between cell groups at 
the single‑cell level. We analyzed 5063 T cells of hepatocellular carcinoma (HCC) and identified 1176 
DESJs across 11 T cell subtypes. Interestingly, DESJs were enriched in UTRs, and have putative effects 
on heterogeneity. Cell subtypes with a similar function closely clustered together at the AS level. 
Meanwhile, we identified a novel cell state, pre‑activation with the isoform markers ARHGAP15‑205. 
In summary, we present a comprehensive investigation of alternative splicing differences, which 
provided novel insights into T cell heterogeneity and can be applied to other full‑length scRNA‑seq 
datasets.

T cell heterogeneity in the tumor microenvironment (TME) is tightly linked to tumor progression, prognosis, 
and therapeutic efficacy. Systematic interrogation of tumor-infiltrating lymphocytes has been performed in  liver1, 
 lung2,  colon3 and  breast4 cancers using scRNA-seq. Effector and cytotoxic T cells can exert anti-tumor effects 
by targeting tumor cells, and levels of effector  CD8+ T cells are predictive of good survival in several  cancers5–7. 
However, tumor-infiltrating regulatory T cells (Tregs) suppress the activity of T cells, myeloid cells, and stro-
mal  cells8 through different mediators including FOXP3. Immunosuppressive cytokines activate co-inhibitory 
receptors on T cells such as PD1 and CTLA4, thus driving T cell dysfunction and  exhaustion9. Meanwhile, the 
function of these immunosuppressive cytokines and co-inhibitory receptors is influenced by alternative splicing. 
For example, one of the isoforms of FOXP3 lacking exon 2 and exon 7 cannot perform its immunosuppressive 
 function10 and a soluble CTLA4 isoform exhibits different effects on the T cell state compared to the full-length 
CTLA4  isoform11. Therefore, investigating the influence of AS on the T cell state in TME will further our under-
standing of T cell heterogeneity and the development of cancer therapies.

Alternative splicing analysis based on scRNA-seq is revolutionizing our understanding of the effect of AS on 
immune cells. Recently, scRNA-seq revealed the bimodality of AS in immune cells, and bulk RNA-seq might 
mask differences in AS between single  cells12. However, the current computational framework for RNA-seq 
AS analysis does not effectively detect differential splicing between groups at the single-cell level.  DEXSeq13, 
 rMATS14, and  MISO15 were developed for bulk RNA-seq data. Therefore, these methods might lead to incorrect 
results as the underlying algorithms may not be appropriate to process scRNA-seq data due to the low sequencing 
depth and high dropout rate. Some programs,  BRIE16,  VALERIE17,  Millefy18,  Outrigger19, and an NMF-based 
 method20, were recently developed to process scRNA-seq data. However, BRIE requires performing a pairwise 
comparison between every two cells to detect differential splicing, which is time-consuming and impractical. 
Outrigger utilizes the distribution mode of percent-spliced-in (Psi) to detect differential splicing between cell 
groups. However, the distribution modes are limited to five types, and do not accurately reflect reality. Thus, 
there is an urgent need to develop a convenient and effective computation tool to detect differential splicing 
between groups.

To explore T cell splicing heterogeneity in high resolution, we developed a novel computation framework, 
DESJ-detection, to detect differential splicing between groups at the single-cell level. We applied it to a published 
scRNA-seq dataset from HCC patients. We identified 1176 DESJs across the 11 cell clusters and found that func-
tionally similar T cell subsets shared a similar splicing pattern. DESJs were enriched in UTRs, and play a potential 
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role in heterogeneity. We revealed a relationship between AS and T cell functional subpopulations, with a focus 
on pre-activation subpopulations. We also validated our findings in a single cell dataset from CRC patients. Thus, 
systematic evaluation of differential splicing across T cells in TME of HCC furthers our understanding of the AS 
characteristics of TILs and will facilitate improvements to cancer diagnosis and treatment.

Results
An overview of DESJ‑detection. Revealing splicing differences at the single-cell level would deepen our 
understanding of cell heterogeneity, function, and phenotype. Some major challenges of differential splicing 
analysis at the single-cell level include that scRNA-seq data has a high rate of dropout events and low sequencing 
depth compared to bulk RNA-Seq. These two features hinder our ability to accurately reveal the splicing struc-
ture of genes. In addition, splicing analysis is mainly limited to exon skipping (SE) and mutually exclusive exons 
(MXE). To address these challenges, we proposed DESJ-detection, an algorithm that uses junction-spanning 
reads to detect DESJs (Fig. 1A). First, we input all the junction read counts of each cell and output a junction-cell 
count matrix for each gene. Second, we applied iterative K-means to cluster cells and removed the clusters with 
low expression (standard deviation < 0.2 and mean < 1) of all junctions resulting from low coverage and high 
dropout rate. Next, we utilized a new normalization method at the gene level to eliminate the interference of 
DEGs on DESJ detection. Specifically, this normalized the junction read count with the read count of each gene 
rather than uniquely mapped reads of each cell. Finally, we identified DESJs based on the Limma-tread algo-
rithm with fold change and adjusted p-values. DESJ-detection can detect DESJs at any regions of a given gene; 
therefore, it can discover any type of AS, rather than being limited to SE and MXE events. We also developed a 
convenient pipeline (https ://githu b.com/liush ang17 /DESJ-detec tion), which covers the generation of junctions, 
filtering and annotation of junctions, preparation of junction count matrices, and detection of DESJs (Fig. S1A).

To assess the performance of the software in terms of DESJ detection, we simulated scRNA-seq data with a 
pipeline based on Spanki considering different factors including read coverage, dropout rate, and isoform usage 
difference. Our method proved to be effective. For example, the simulated cells were divided into five clusters by 
the expression of two isoforms of PPT1. Four cell clusters showed differential junction expression and another 
cluster with low gene expression was removed by iterative K-means clustering (Fig. S1B). We observed sensitiv-
ity up to ~ 70%, even at the lowest coverage level (RPK = 25) when the isoform usage difference is more than the 
control and without dropout events (Fig. 1B). The sensitivity was essentially maintained at 85% at the general 
coverage level (RPK >  = 50). In addition, the sensitivity exceeds 70% when the dropout rate is < 0. Over 95% of 
identified genes exhibited DESJ. Further, we also evaluated DESJ-detection by comparing it with other software 
including Outrigger, DEXSeq, rMATs, and Limma-trend (Fig. 1C). DESJ-detection performed the best (high 
TPR and low FPR) under all conditions tested. Outrigger had similarly low FPR but divergent TPR, and was 
especially influenced by coverage. High coverage led to better performance in Outrigger. rMATS and DEXseq 
were heavily influenced by dropout events. When the dropout ratio = 0.4, no gene was detected in rMATs, and 
DEXseq failed to run successfully. Limma-trend exhibited lower TPR but similar FPR to that of DESJ-detection. 
We also applied DESJ-detection to a dataset, which contain 63 iPSCs, 73 NPCs, and 70  MNs19. The differential 
usage of exon 9 and exon 10 of PKM gene, could be detected by DESJ-detection (Fig. S1C). Taken together, 
DESJ-detection is robust and highly sensitive to DESJs.

Differential usage of junctions in UTRs across T cell clusters. We performed DESJ-detection on a 
published scRNA-seq data  set1. This dataset included 5063 T cells from tumor tissues, normal tissues, and periph-
eral blood of six HCC patients that had been assigned to 11 T cell subsets including naïve T cells (C01_CD8.
LEF1, C06_CD4.CCR7), effector T cells (C02_CD8.CX3CR1, C11_CD4.GNLY), exhausted T cells (C04_CD8.
LAYN, C10_CD4.CXCL13), Tregs (C07_CD4.FOXP3, C08_CD4.CTLA4), mucosal-associated invariant T cells 
(C03_CD8.SLC4A10), and intermediate T cells (C05_CD8.GZMK, C09_CD4.GZMA). We obtained a set of 
134,414 junctions that were characterized by read counts < 4 in at least 10 cells, covering 12,587 genes (Fig. S2A 
and Fig. S2B). The junctions that were annotated to one gene were retained. In the end, we retained 119,311 
junctions from 10,556 genes. Using DESJs analysis, we identified 1176 DESJs across 11 clusters (log2(FC) ≥ 1, 
adjusted p-value ≤ 0.01; Supplementary Table2).

To characterize the distribution of DESJs across the genome, we investigated the frequency of DESJs in differ-
ent genomic regions. We found a significant higher frequency of DESJs in UTRs than in coding regions between 
clusters (p-value = 0.004 for  CD8+ T cells and 6.456e−13 for  CD4+ T cells; Student’s t test; Fig. 2A). AS in the 5′ 
UTR occurs more frequently than in the 3′ UTR (Fig. S2C), in line with the findings from previous  studies21. 
There are similar phenomena in the human reference transcriptome. A junction is considered to be involved 
in alternative splicing when this junction does appear in some isoforms of the gene, but not in all isoforms of 
the gene. AS in the UTRs (98.7%) occurs potentially more frequently than in the coding regions (83.6%). Total 
6115 AS junction happened in 5′ UTR while 4946 in 3′ UTR. AS events in UTRs might involves TTSs and TSSs 
(Fig. S2E). Higher frequency of DESJs in UTRs may be due to longer junction lengths in UTRs. Junction length 
refers to the genomic position of the last base of the intron minus the first base (Fig. S2F). We additionally 
observed that DESJs are significantly longer than non-DESJ in both UTRs and coding regions. The DESJs in 
UTRs were also longer than those in coding regions (Fig. 2B). UTRs are usually longer than coding regions. Thus, 
these two phenomena might be explained by the fact that longer junctions would provide more possible splice 
sites and potential regulatory regions. Therefore, our results highlight the generality of AS in UTRs.

In the meantime, we noticed that a few DEGs between clusters were also DESJ genes in T cells (Fig. 2C). 
The proportion ranged from 11–37% across T cell clusters, which is similar to findings from a previous  study22. 
For example, ARHGAP9, a member of RhoGAP family that is associated with good prognosis, was a differen-
tial expressed gene (highly expressed in C04_CD8.LAY, C10_CD4.CXCL13, and C08_CD4. CTLA4), and also 

https://github.com/liushang17/DESJ-detection
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showed differential splicing in UTRs across  CD8+ T cell clusters (C01_CD8.LEF1, C02_CD8.CX3CR1, C04_CD8.
LAYN, C05_CD8.GZMK). Specifically, ARHGAP9-203 was upregulated in exhausted T cells and tumor-infil-
trated Tregs, while ARHGAP9-204 was mainly expressed in naïve T cells and peripheral blood Tregs (Fig. 2D). 
Therefore, our results indicate that AS in UTRs may play a role in regulating gene expression between cell clusters.

The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of genes with DESJs in their UTRs 
revealed involvement of the VEGF signaling pathway, T cell receptor signaling pathway, spliceosome, and P53 
signaling  pathway23–25 (Fig. 2E). Meanwhile, the genes with DESJs in the coding region were associated with 
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Figure 1.  An overview of DESJ-detection. (A) DESJ-detection applies iterative k-means and gene-level 
normalization to filter cells and weaken the interference of gene expression. It provides a specific DESJ for each 
cell group. (B) A point plot demonstrating the TPR (true positive ratio) of DESJ-detection under different 
coverages, dropout rates, and isoform usage differences. (C) TPR, FPR (false positive ratio) and TP (true 
positive) are estimated by DESJ-detection and four other methods under different coverages, dropout rates, and 
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innate immune pathways and spliceosomes (Fig. S2G). This emphasizes that AS in UTRs may be related to the 
specific function(s) of cells. Taken together, AS in UTRs is common and may contribute to the regulation of 
gene expression and cell heterogeneity.

T cell heterogeneity at the splicing level. To explore the association between AS and the function of 
T cell heterogeneity, we examined DESJs across T cell clusters to obtain cell-type-specific DESJs. In this study, 
we detected 335 DESJs from 165 genes among  CD8+ sub-clusters and 484 junctions from 239 genes among 
 CD4+ sub-clusters (Supplementary Table 2). We used two distinct indices to hierarchically cluster T cells, the 
number of DESJ genes and the expression of DESJs across all cell clusters. Both indices revealed that cells with 
a similar function rather than lineage exhibited a similar AS pattern. (Fig. 3A). For example, tumor-infiltrating 
Tregs (C08_CD4.CTLA4, C10_CD4.CXCL13) and exhausted T cells (C04_CD8.LAYN) clustered together, 
demonstrating a huge difference between these cells and others. In addition, naïve T cells (C01_CD8.LEF1, 
C06_CD4.CCR7), effector T cells (C02_CD8.CX3CR1, C11_CD4.GNLY), and intermediate state T cells (C05_
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Figure 3.  T cell heterogeneity at the splicing level. (A) Upper: Heatmap of DESJ gene number between pairwise clusters 
across T cells. Below: z-score normalized mean expression of all DESJ in each T cell cluster. Boxes with different colors 
highlight the patterns of different functional T subtypes. (B) z-score normalized mean expression of selected DESJ with 
similar functions. (C) Sashimi plots illustrating the read distribution of WARS in  CD8+ T cells from the P0508 patient. 
WARS-204 is highly expressed in exhausted T clusters (C04_CD8.LAYN). (D) Violin plots comparing the expression of WARS 
among 11 T cell clusters. (E) A disease-free survival (DFS) curve based on TCGA HCC data showing that patients with higher 
expression of WARS had a poor prognosis. (F) DFS curve based on the TCGA HCC cohort showing that higher expression of 
WARS-204 in tumor is associated with bad prognosis.
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CD8.GZMK, C09_CD4.GZMA) clustered together respectively. We also utilize a published scRNA-Seq dataset, 
which contains 11,138 T cells from tumor tissues, normal tissues, and peripheral blood of 12 CRC  patients3, to 
further validate our findings. The hierarchically clustering of the number of DESJ genes and the expression of 
DESJs across all cell clusters, is similar to HCC, indicating that cells with a similar function exhibited a similar 
AS pattern. (Fig. S3A). Exhausted T cells in both CRC and HCC showed the highest number of DESJs compared 
to other T cells, indicating that exhausted T cells exhibit the greatest changes in AS. These results demonstrated 
that junction usage differences between cell clusters mainly depends on the functional state of the clusters.

We next focused on the DESJ genes in four functional states including naïve T cells, effector T cells, exhausted 
T cells, and intermediate T cells. Naïve and exhausted T cells mainly showed differential splicing in genes relating 
to splicing and immunity such as CD45, HSPB1, CLK1, SRSF2, SNRNP70, PRDM1, NOSIP; effector T cells were 
characterized by differential splicing in ZEB2, FYB1, and SYNE1 (Fig. 3B). The DESJs and DESJ genes between 
CRC and HCC show a significant overlap (Fig. S3B). Meanwhile, DESJ genes between clusters with different states 
in HCC shares most with DESJ genes between the clusters with the similar states in CRC (Fig. S3C). These genes, 
which shows the differential splicing across T cells population in HCC, also appear in T cells in CRC, including 
CD45, CLK1, SNRNP70, ZEB2, FYB1, and SYNE1 (Fig. S3B). Specially, PRDM1 and NOSIP shows differential 
splicing between exhaustion T cells and non-exhaustion T cell, not only in CRC and HCC, also appearing in 
non-small-cell lung  cancer26. WARS was highly expressed in exhausted T cells and is a marker of exhaustion 
that showed differential splicing between exhausted T cells and other T cells (Fig. 3C,D; Fig. S4A). The junction 
representing WARS-202 (chr14_100369259_100376259_2) showed widespread expression in all T cells while the 
junction representing WARS-204 (chr14_100369259_100375282_2) was widely expressed in Tregs (C08_CD4.
CTLA4) and exhausted T cells (C04_CD8.LAYN, C10_CD4.CXCL13). These phenomes also appear in CRC 
datasets (Fig. S4E). Prognostic analysis using TCGA LIHC data revealed that elevated expression of WARS was 
associated with poor prognosis (Fig. 3E). We found that elevated expression of the WARS-204 isoform was cor-
related with poor prognosis (Fig. 3F). Prognostic analyses with the TCGA LIHC data at the isoform level also 
supported our results (Fig. S4B). We hypothesized that various immunity therapy-related target genes might 
also show this pattern, and identified several T cell immunity checkpoint genes whose elevated expression was 
related to poor prognosis, such as TNFRSF4 (Fig. S4C). Expression of the two isoforms is mutually exclusive in T 
cells, rather than one isoform being more highly expressed than the other (Fig. S4D). In summary, these results 
demonstrate that AS significantly affects the function and phenotype of T cells and could be used as a potential 
marker for cancer prognosis and treatment.

A novel functional subpopulation in activation state identified by ARHGAP15‑205. To further 
reveal the heterogeneity of T cell clusters, we utilized DESJs to identify functional subpopulations. ARHGAP15, 
a Rac1-specific GAP, was reported to be associated with the development of diverse tumors, including colorec-
tal  cancer27,  glioma28 and pancreatic ductal  adenocarcinoma29. However, little is known about the relationship 
between T cell state and ARHGAP15 at the isoform level. Our study discovered that ARHGAP15-201 was uni-
versally expressed in all cell clusters, but ARHGAP15-205 exhibited elevated expression in C06_CD4.CCR7 and 
C09_CD4.GZMA (Fig. 4A). Further, ARHGAP15-205 shows a striking bimodal expression distribution in both 
CD4 naïve T cells (C06_CD4.CCR7) and CD8 naïve T cells (C01_CD8.LEF1) (Fig. 4B; Fig. S5C). This implies 
that ARHGAP15-205 may affect the functional state of naïve T cells. We identified 174 genes that were highly 
expressed in ARHGAP15-205+ naïve T cells (FDR < 0.01, log2(FC) ≥ 1; Supplementary Table 1). These genes sig-
nificantly overlapped with genes that are markers of an activated state as defined by previous studies (Fig. S5A). 
Thus, the ARHGAP15-205+ population may represent an activated state. Signature genes of ARHGAP15-205+ 
include S100A4, ITGB1, S100A6, and LGALS1, supporting that the ARHGAP15-205+ population trends towards 
an activated state (Fig. 4C). In contrast, the ARHGAP15-205− population was characterized by high expression 
of genes related to a resting state including CCR7, SELL, and LEF1. Meanwhile, GO biological process enrich-
ment analysis showed that the ARHGAP15-205+ population signature genes were enriched in cell differentiation 
(including leukocyte and lymphocyte differentiation) and cell activation (Fig.  S5B). In addition, pseudotime 
analysis of cells in C06_CD4.CCR7, C09_CD4.GZMA, C10_CD4.CXCL13, and C11_CD4.GNLY showed that 
ARHGAP15-205+ cells clustered more closely to cells in C09_CD4.GZMA and had a lower naïve score com-
pared with the ARHGAP15-205− population (Fig. 4D). These results suggest that ARHGAP15-205+ CD4 naive 
T cells might be in the “pre-activation” state and possess immune killing function. Similar results were associated 
with respect to CD8 naïve T cells (C01_CD8-LEF1; Fig. S5C and Fig. S5D). In addition, ARHGAP15 also shows 
the differential splicing across CD4 T cells clusters in CRC, similar to HCC (Fig. S5E). ARHGAP15-205 shows 
a striking bimodal expression distribution in both CD4_C02.ANXA1 and CD8_C02.GPR183, which is similar 
to naïve T cell in transcriptome, but in central memory state (Fig.  S5F). Furthermore, DEG analysis shows 
the ARHGAP15-205+ population in CD4_C02.ANXA1 clusters highly expresses S100A4, ANXA1, S100A6, and 
LGALS1, while ARHGAP15-205− population was characterized by high expression of genes related to a resting 
state including CCR7 (Fig.  S5G). These results further supported our findings in HCC. In summary, ARH-
GAP15-205 may play a role in T cell activation.

We used Seurat to cluster cells C06_CD4.CCR7 with a TPM expression matrix. The clustering results based 
on gene expression were dissimilar to the classification results using AS of ARHGAP15 (Fig. S5H). Meanwhile, 
the expression distribution of ARHGAP15 also demonstrates that clustering based on gene may not identify the 
population in activation state (Fig. S5I). These indicate that the novel cell subtype may be indeed determined by 
AS. Altogether, these results emphasize that AS analysis at single-cell level would reveal cell heterogeneity and 
facilitate the discovery of cell sub-clusters in higher resolution than at the gene expression level.
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Discussion
scRNA-seq technology has developed rapidly and has been widely applied in many fields including tumor 
heterogeneity, cell differentiation, and neural development. Compared to 3′ enrichment methods, full-length 
single-cell RNA data can not only quantify gene expression but also analyze the structure of genes in high reso-
lution, revealing features such as single nucleotide variants and AS events. Due to the lack of available software 
to analyze cell heterogeneity with AS, single-cell research is currently limited to gene expression profiling. Here 
we have developed software (DESJ-detection) for differential AS detection in full-length scRNA-seq datasets.

DESJ-detection was able to detect DESJs between different cell types at a single-cell level in a robust and 
effective manner. However, DESJ-detection could not accurately detect the isoform composition of a single cell 
for any given gene since some junctions may not uniquely belong to one isoform. Efforts to develop an improved 
version that addresses this shortcoming are ongoing, and will lead to the interpretation of isoform differences 
at a higher resolution.

We performed DESJs-detection in a T cell dataset from six patients diagnosed with HCC, which provided 
insight into T cell heterogeneity. Interestingly, cell clusters with a similar function displayed a low number of 
DESJ-related genes and possessed a similar DESJ expression pattern. These relationships may partly be because 
cells with a similar function would share similar expression profiles with respect to genes as well as isoforms. 
At the same time, some unique isoforms in exhausted T cells are related to poor prognosis, such as WARS and 
CCND3. Therefore, altering the isoform preference of specific genes in T cells may be an attractive avenue for 
improving cancer immunotherapy. Meanwhile, the association between AS and cell clusters may help infer the 
function of AS and predict novel subpopulations. For example, ARHGAP15-205 revealed a novel sub-cluster in 
T cell activation state. Further studies are needed to confirm these results by in vitro experiments, interrogate 
the underlying mechanisms, and identify other isoforms related to cell functional states.
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Figure 4.  A novel functional subpopulation in activation state identified by ARHGAP15-205. (A) Sashimi 
plots illustrating the read distribution of ARHGAP15 in  CD4+ T cells from patient P0508. ARHGAP15-205 is 
highly expressed in naïve T cells (C06_CD4.CCR7). (B) The bimodal distribution of ARHGAP15-205 shows 
the intrinsic heterogeneity in naïve T cells (C06_CD4.CCR7). Cell density is color-coded, with red denoting 
high density and yellow denoting low density. (C) Volcano plot showing DEGs between the ARHGAP15-205+ 
and ARHGAP15-205− populations. Each red dot denotes an individual gene with an adjusted p-value < 0.01 
(two-sided moderated t-test with limma) and fold change > |2|. (D) Left:  CD4+ T helper cells were ordered along 
pseudotime in a two-dimensional state-space defined by Monocle2. Cell orders are inferred from the expression 
of DEGs across  CD4+ T cell populations. Each point with different colors corresponds to individual cells in 
different clusters. The middle plot shows the order of the ARHGAP15-205+ and ARHGAP15-205− populations. 
Right: The exhaustion score calculated by the mean expression of gene sets related to naïveness status correlated 
with Monocle components. Violin plots in the top corners show the distribution of naïveness scores in various 
cell clusters. Different colors represent different clusters. p-values were calculated by Pearson correlation, and 
p < 2.2 ×  10–16 represents a p-value approaching 0.
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With the rapid development of scRNA-seq, Smart-seq3 technology has  emerged30, which is characterized by 
longer read length and faster sequencing. This would lead to a number of studies on single-cell AS, making it 
somewhat of a hot topic. However, the conditions to support single-cell AS analysis, including sequencing depth 
and coverage, have not been revealed. In addition, methods to construct AS profiles at the single-cell level are still 
lacking. Finally, combining single-cell AS and gene expression analyses has not been performed. We anticipate 
that our software will improve and enhance the study of AS.

Methods
Datasets. We downloaded the scRNA-seq raw reads of human T cells in fastq format from the EGD data-
base (EGAS00001002072). The corresponding gene expression matrix was downloaded from the GEO database 
(GSE98638). This dataset contained 5063 T cells assigned into 12  clusters1. These T cells were sampled from 
peripheral blood, tumor, and adjacent normal liver tissue. Detailed clinical information about the patients and 
information on the cell clusters is listed in Table 1. The scRNA-seq raw reads of human T cells in fastq format was 
also downloaded from the EGD database (EGAS00001002791). The corresponding gene expression matrix was 
downloaded from the GEO database (GSE108989). This dataset contained 11,138 T cells from 12 patients with 
colorectal cancer, assigned into 20  clusters3. Detailed clinical information about the patients and information 
on the cell clusters is listed in Tables 1 and 2. The human genome (version GRCH38) was used as the reference 
genome for alignment with STAR (v2.5.3)31.

Table 1.  Annotation about cell clusters in HCC datasets.

Cluster Cell number Function annotation Type

C01_CD8.LEF1 161 Naïve T cell CD8+ T cell

C02_CD8.CX3CR1 288 Effector T cell CD8+ T cell

C03_CD8.SLC4A10 363 MAIT CD8+ T cell

C04_CD8.LAYN 300 Exhausted T cell CD8+ T cell

C05_CD8.GZMK 467 T cell in mediate state CD8+ T cell

C06_CD4.CCR7 646 Naïve T cell CD4+ T cell

C07_CD4.FOXP3 261 Peripheral Treg CD4+ T cell

C08_CD4.CTLA4 582 Tumor Treg CD4+ T cell

C09_CD4.GZMA 689 T cell in mediate state CD4+ T cell

C10_CD4.CXCL13 146 Exhausted T cell CD4+ T cell

C11_CD4.GNLY 167 Effector T cell CD4+ T cell

Unknown 993 NA NA

Table 2.  Annotation about cell clusters in CRC datasets.

Cluster Cell number Function annotation Type

CD8_C01.LEF1 164 Naïve T cell CD8+ T cell

CD8_C02.GPR183 155 Central memory T cell CD8+ T cell

CD8_C03.CX3CR1 773 Effector T cell CD8+ T cell

CD8_C04.GZMK 363 Effector memory T cell CD8+ T cell

CD8_C05.CD6 431 Resident memory T cell CD8+ T cell

CD8_C06.CD160 363 Intraepithelial lymphocytes CD8+ T cell

CD8_C07.LAYN 831 Exhausted T cell CD8+ T cell

CD8_C08.SLC4A10 71 MAIT CD8+ T cell

CD4_C01.CCR7 472 Naïve T cell CD4+ T cell

CD4_C02.ANXA1 509 Central memory T cell CD4+ T cell

CD4_C03.GNLY 170 Effector T cell CD4+ T cell

CD4_C04.TCF7 331 Central memory T cell CD4+ T cell

CD4_C05.CXCR6 639 Resident memory T cell CD4+ T cell

CD4_C06.CXCR5 216 T follicular helper cell CD4+ T cell

CD4_C07.GZMK 204 TH-1 like cell CD4+ T cell

CD4_C08.IL23R 229 TH-17 like cell CD4+ T cell

CD4_C09.CXCL13 272 Exhausted T cell CD4+ T cell

CD4_C10.FOXP3 365 Peripheral Treg CD4+ T cell

CD4_C11.IL10 176 Follicular regulatory T cells CD4+ T cell

CD4_C12.CTLA4 1319 Tumor Treg CD4+ T cell
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Pipeline for creation of the junction count matrix. We used an existing pipeline to create the junction 
count matrix (Fig. S1A). We first merged all the output of the SJ.out.tab files from the STAR aligner. Next, we 
retained junctions that were detected more than  Rm reads in at least  Cellm cells  (Cellm = 10,  Rm = 4, by default). 
Following this, we only retained the junctions that are only annotated to one gene. The reference gene annota-
tion file is gencode.v27.primary_assembly.annotation.gtf. Lastly, we obtained the count matrix containing the 
junction read numbers in each cell.

Description of software to detect DESJs. The software requires four inputs: junction count matrix 
(matrix A), junction annotation file (from the pipeline we developed), the uniquely mapped read number 
of each cell, and cell clustering information (Fig. 1A; Fig. S1A). First, we extracted junctions of a single gene 
(Gene1) from matrix A and normalized it with the number of uniquely mapped reads to obtain matrix C. Then, 
we performed iteration K-means clustering for cells in matrix C to identify outliers (standard deviation [SD 
(standard deviation)] < 0.2 and mean < 1 by default; precise steps are shown in Algorithm 1). Next, we normal-
ized the remaining cells with all the junction read counts of Gene1 (matrix D). Finally, we used Limma-trend 
to detect the DESJs between groups. The software outputs a res.xls file including DESJs and junction expression 
heatmaps of each gene with DESJs. 

Algorithm 1: Filter outliers 

Input: Matrix C, maxsd, maxmean 

Output: Outlier cells list 

two_clusters � kmeans(Matrix C, centers = 2) 

cell_list � Find the cell list with minimum mean and SD comparing to the other cluster 

Matrixtmp � Matrix C[,cell_list] 

Meantmp � rowMeans(Matrixtmp) 

Sdtmp � rowSd(Matrixtmp) 

while Meantmp < maxmean  &  Sdtmp < maxsd do 

     two_cluster � kmeans(Matrixtmp, centers = 2) 

     cell_list � Find the cells with minimum mean and sd comparing to the other clusters 

     Matrixtmp � Matrix C[,cell_list] 

     Meantmp � rowMeans(Matrixtmp) 

     Sdtmp � rowSd(Matrixtmp) 

return cell_list 

Simulating scRNA‑seq data and software evaluation. We simulated scRNA-seq data using a pipe-
line based on Spanki (v0.5.0)32. First, we chose 200 genes from human GTF files. Next, we selected two isoforms 
for each gene. Subsequently, we simulated reads per kilobase (RPK) value of 400 transcripts using a Perl script. 
The RPK value of a gene was constant, either at 25, 50, 100, or 200. However, the RPK ratio of two isoforms 
belonging to the same gene was reciprocal between two cells (cell from group A and group B respectively) for 
100 genes. The cells from the same group were simulated with a similar RPK ratio of two transcripts belonging to 
the same gene. In addition, we set four levels of log2(RPK ratio) as 1, 2, 3, or 4 to represent the degree of isoform 
usage difference. In addition, we stimulated the dropout ratio as four levels: 0, 0.1, 0.2, and 0.4 by applying the 
simulator strategy of  BRIE16. Finally, fastq files were generated using  Spanki32 in error-free mode. We obtained 
200 cells for each condition. A thorough description of the simulation can be found on github (https ://githu 
b.com/lucky -Mende l/DSJ-detec tion-simul ator). We then used these data to evaluate the performance of DESJ-
detection with other software, including Outrigger, rMATS, DEXseq, and Limma-trend. The results provided 
by different tools at the level of isoforms, exons or events were aggregated to the gene level in order to compare 
the methods.

https://github.com/lucky-Mendel/DSJ-detection-simulator
https://github.com/lucky-Mendel/DSJ-detection-simulator
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Differentially expressed gene (DEG) analysis and gene set enrichment analysis. We used the 
Limma (v3.12) R package to analyze DEGs between two target clusters. Significant differences were identified by 
the following criteria: (1) false discovery rate (FDR)-adjusted p-value of F test < 0.01 and (2) the absolute value 
of log2(FC) > 2. Following this, we obtained the genes which were highly expressed in one group. We performed 
gene set enrichment  analysis33,34 using a web-based tool provided by broad institute (http://www.gsea-msigd 
b.org/gsea/msigd b/annot ate.jsp).

Survival analysis. The Cancer Genome Atlas (TCGA) liver hepatocellular carcinoma (LIHC) data were 
used to assess the relationship between patient survival and individual genes, individual isoforms, and gene 
sets from specific cell clusters. We downloaded the gene expression and isoform count data from UCSC  Xena35 
(http://xena.ucsc.edu/) and retrieved clinical data from the Genomic Data Commons Data Portal (https ://gdc-
porta l.nci.nih.gov/). Patients without immunotherapy treatment (n = 377) were included. First, the isoform read 
count data were normalized by isoform length and uniquely mapped read number of each patient. Then, to 
control for the influence of T cell level within each sample, the expression of selected genes and isoforms in the 
tumor were divided by the geometric mean expression of CD3 genes. CD3 gene expression was assigned as the 
arithmetic mean of the corresponding isoforms (CD3D, CD3E, and CD3G). Next, for each selected gene and 
isoform, we set the relative expression lower and upper threshold as the median ± 10% and the median absolute 
deviation (MAD), respectively. Samples with relative expression beyond these thresholds were retained and 
patients were divided into high and low expression groups. Statistical analyses were performed using the R pack-
age ‘‘survival’’.

Trajectory inference. We used Monocle (version 2)36 to order CD8/CD4 T cells in pseudotime. The TPM 
value was converted into normalized mRNA counts by the “relative2abs” function in Monocle, and created an 
object with the parameter “expressionFamily = negbinomial.size”. Finally, the  CD8+/CD4+ T cell differentiation 
trajectory was determined with the default parameters of Monocle.

Definition of naïveness scores. Similar to Guo et al. (2018)2, we first identified the most significant genes 
between the naive T cluster (C06_CD4.CCR7) and other T clusters using a moderated t-test in the R package 
Limma (log2(FC) >  = 4 and FDR < 0.01). Then, we defined the naiveness score for  CD8+ T cells as the average 
expression of these markers after z-score transformation (original value is log2(TPM + 1)). Finally, we calculated 
the significant level of the naiveness scores of cells from different clusters by t test.

Clustering based on gene expression. To evaluate the difference between clustering based on gene 
expression and splicing, we applied Seurat (V3)37 to cluster cells in C06_CD4.CCR7 using the TPM expression 
matrix. The top 2000 variable genes were selected for downstream analysis. The Seurat parameters for PCs and 
resolution were set at 10–30 and 0.5–1, respectively. Finally, we utilized the adjusted rand index (ARI) to evaluate 
the similarity between clustering results of gene expression and ARHGAP15.

Consent for publication. All the authors agreed to publish the work.

Data availability
RNA-seq data of human T cells in fastq format was downloaded from EGD database with accession study title 
EGAS00001002072 and EGAS00001002791. The corresponding gene expression matrix was downloaded from 
the GEO database GSE108989 and GSE98638. Analysis code of such HCC data can also be found at https ://githu 
b.com/liush ang17 /DESJ-detec tion.
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