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Identification of nodes influence 
based on global structure model 
in complex networks
Aman Ullah1, Bin Wang1, JinFang Sheng1*, Jun Long1,2, Nasrullah Khan3,4 & ZeJun Sun5

Identification of Influential nodes in complex networks is challenging due to the largely scaled data 
and network sizes, and frequently changing behaviors of the current topologies. Various application 
scenarios like disease transmission and immunization, software virus infection and disinfection, 
increased product exposure and rumor suppression, etc., are applicable domains in the corresponding 
networks where identification of influential nodes is crucial. Though a lot of approaches are proposed 
to address the challenges, most of the relevant research concentrates only on single and limited 
aspects of the problem. Therefore, we propose Global Structure Model (GSM) for influential nodes 
identification that considers self-influence as well as emphasizes on global influence of the node in the 
network. We applied GSM and utilized Susceptible Infected Recovered model to evaluate its efficiency. 
Moreover, various standard algorithms such as Betweenness Centrality, Profit Leader, H-Index, 
Closeness Centrality, Hyperlink Induced Topic Search, Improved K-shell Hybrid, Density Centrality, 
Extended Cluster Coefficient Ranking Measure, and Gravity Index Centrality are employed as baseline 
benchmarks to evaluate the performance of GSM. Similarly, we used seven real-world and two 
synthetic multi-typed complex networks along-with different well-known datasets for experiments. 
Results analysis indicates that GSM outperformed the baseline algorithms in identification of 
influential node(s).

The concepts of complex networks are abstracted from real-world system  networks1–3, like transport system net-
works, human friendship, web hyperlink and protein networks, etc. Such networks have common characteristics, 
i.e., heterogeneous topologies, that make it impossible to assign the same importance to each node in the network. 
Therefore, it is essential to identify the influential nodes via quantitative approaches to examine their properties 
and to practice their proper usage. For example, in infectious diseases network, preventing the spread of rumors 
and  viruses4,5, in criminal networks, quickly identifying a terrorist organization’s  leader6. Similarly, in the traffic 
system  network7, food chain  network8, drug  network9, and so on. There are a good number of studies have been 
proposed and deployed in the field of complex network on the identification of influential  nodes10–12,12–20 where 
identification of most important nodes from local and global perspectives is worth  mentioning21. Although 
closeness centrality (CC) and betweenness centrality (BC)22 are path-based indicators that consider the global 
structure of the network to identify the influence of nodes. However, due to their high computational complexity, 
they may not be applicable to many networks. It’s common that degree centrality (DC)23 is the simplest method 
to identify the influential nodes, but it fails to consider the global structure of networks. Kitsak et al.24 proposed 
the k-shell method for locating influential nodes, but it is too coarse to identify the required influential nodes. 
Besides these, iterative-based centralities such as eigenvector centrality (EC)25, page rank (PR)26, hypertext 
induced topic search (HITS)27, and son on are not appropriate for networks with tight connections.

Recently, some approaches have put efforts forward for the identification of influential nodes such as profit 
 leader28, inverse square  law29 and gravity index  model30. The profit leader method considers the set of important 
nodes on the basis of the profit leader concept analysis. In the paper by L.-l. Ma et al.30 proposed gravity formula-
based algorithm, which considers both neighbour’s nodes influences and path information. However, in some 
cases, it is also important to combine the global as well as local structure of nodes in the entire network. Similarly, 
the inverse square model is based on node interactions and is not suitable for large network. Furthermore, in view 
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of propagation probability, Ma et al.31 proposed hybrid degree centrality (HC), which combines local indicators 
and degree centrality measures. All in all, these approaches have their own shortcomings and limitations. Still, 
the identification of influential nodes is a challenge.

From the above discussion, to address these changeling problems, inspired from  literature10,29,30, in this study, 
we design a new mechanism called GSM that not only considers the self-influence of the node in the network but 
also concentrates on the global influence of nodes. To analyze the algorithmic performance, we employed GSM 
on different kinds of real as well as synthetic networks where we used the susceptible-infected-recovered (SIR) 
and kendall’s τ coefficient models to examine the effectiveness of GSM. In addition, we compared the experi-
mental results of the baseline algorithms and with recently proposed approaches, where simulation results on 
seven different types of real and two synthetic networks showed that GSM effectively identifies influential nodes.

The framework of the paper is organized as follows: We present preliminaries and a brief introduction of 
baseline algorithms, including BC, PL, GIC, HI, CC, ECRM, DNC, IKH and HITS in Preliminaries section. The 
proposed GSM model is presented in Proposed method. Results and discussion to illustrate the effectiveness of 
the GSM are discussed in Results and discussion section, and finally, some conclusion and future recommenda-
tions are given in Conclusion and future recommendations section.

Preliminaries
A network can be denoted by G, equated as G = (V, E), where V and E represent nodes and edges, respectively. 
Moreover, Betweenness Centrality (BC)32, Closeness Centrality (CC)33,  HITS34, H-Index (HI)35, Profit Leader 
(PL)28, Improved k-shell hybrid method (IKSh)12, Extended Cluster Coefficient Ranking Measure (ECRM)36, 
Gravity Index Centrality (GIC)30 and Density centrality (DNC)37 are introduced in this section. 

1. Betweenness Centrality (BC): BC calculates influential nodes based on global  information32. BC(i) is defined 
as: 

 where gjk indicates number of paths between nodes j and k, and gjk(i) represents the shortest paths between 
nodes j and k, that pass through node i.

2. Closeness Centrality (CC): CC also calculates influential nodes based on global information. It uses the 
shortest distance between each pair of nodes to identify the influence of each  node33. CC of node i is defined 
as: 

3. Hyperlink Induced Topic Search (HITS): This algorithm is based on two factors i-e., Authority Update, and 
Hub Update. Authority update is computed by considering the number of hub edges associated with the 
authority website, and Hub Update is computed by considering the number of authority websites linked by 
the Hub  website34.

4. H-Index (HI): This algorithm identifies the influential node’s by taking into account the node’s neighbor and 
using H-index notation. A high H-index represents that the node has more important than other connected 
 nodes35.

5. Profit Leader (PL): This algorithm is based on profit leader concept analysis and suitable for any network 
i.e., directed or  undirected28.

6. Improved K-shell Hybrid (IKH): This algorithm considers the k-shell, shortest distance between the nodes 
and parameter � (in range between 0 and 1) to identify the most influential  nodes12.

7. Gravity Index Centrality (GIC): This algorithm basis on universal gravity concept; that considers both neigh-
bor’s nodes influences and path  information30. GIC(i) is defined as: 

 where θi is the set of neighbors node i.
8. Extended Cluster Coefficient Ranking Measure (ECRM): This algorithm is working on the basis of local 

clustering coefficients and uses link similarity between adjacent  nodes36.
9. Density centrality (DNC): It is inspired by the area density formula to identify the influence of nodes in the 

spreading  dynamics37. DNC(i) is defined as: 

(1)BC(i) =
∑

j,k �=1

gjk(i)

gjk
,

(2)CC(i) =
N − 1
∑

j �=1 dij
,

(3)GIC(i) =
∑

jǫθi

kshell(i)× kshell(j)

dist2i,j
,

(4)DNC(i) =
∑

jǫξi

degreei

πd2i,j
,
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Proposed method
Several approaches based on the global structure of the network to identify the influence of nodes have been 
developed and deployed, but better utilization of self as well as global structure influence is still a challenge, needs 
to be addressed. Inspired from  literature37–39 , a Global Structure Model (GSM) was proposed, which consists 
of self and global influences.

Self-influence. In this context, we used e (natural logarithm) and take k-shell Ks(vi) , and nodes number (N) 
in the network as power parameters to minimize the overestimation of the self-influence.

where N shows the number of all nodes in the network.

Global-influence. The node influence also considers the influence of the other connected nodes to it. Nor-
mally, the node influence is increased if its neighborhoods have a high value of k-shell; however, the contact 
distance between the two nodes cannot be ignored, which is inversely proportional to the influence of the nodes.

where dij is the shortest distance between node i and node j.

Node influence. The node Vi influence is not only on its own influence but also on the nodes around it. 
Therefore, the proposed GSM simultaneously considers these two aspects, self and global influence, which can 
be defined as,

We can also express GSM of the node vi,

where Ks(vi) and Ks(vj) denote the k-shell of node i and node j,

Computation process. The proposed GSM model is divided into four parts; first, construction of corre-
sponding network; second, calculation of the network’s global influence and the k-shell of node and the distance 
between nodes. In the third step, we consider the self-influence of the network, the self influence of the node 

(5)SI(vi) = e
Ks(vi )
N

(6)GI(vi) =
∑

i �=j

Ks(vj)

dij

(7)GSM(vi) = SI(vi)× GI(vi)

(8)GSM(vi) = e
Ks(vi )
N ×

∑

i �=j

Ks(vj)

dij

Figure 1.  The flow chart of the proposed GSM.
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itself is computed. Finally, the influence of each node on the entire network is calculated. To further demonstrate 
GSM method, as shown in Fig. 1, for a specific calculation process, here we consider a simple network to clarify 
it in detail. In Fig. 2, consists of 13 nodes and 17 edges. As shown in the network, we consider GSM method by 
taking the node V4 influence as an example. First, we calculate the k-shell and the shortest distance between 
each node; we have

KS1 = 3,KS2 = 3,KS3 = 3KS4 = 3,KS5 = 2,Ks6 = 1,KS7 = 2,KS8 = 2,KS9 =

1,KS10 = 1,KS11 = 1,KS12 = 1,KS13 = 1,

 d4-1  =  1 

d4-2 = 1,d4-3 = 1, d4-5 = 2, d4-6 = 3, d4-7 = 1, d4-8 = 1, d4-9 = 2, d4-10 = 1, d4-11 = 2, d4-12 = 2, d4-13 = 2.
To calculate the self influence and global influence, here we apply Eqs. (6) and (7); we have, 

S(4) = e
3
13 = 1.25956 , and GI(4− 1) = 3

1
= 3 GI(4− 2) = 3 , GI(4− 3) = 3 , GI(4− 5) = 1 , GI(4− 6) = 0.3333 , 

GI(4− 7) = 2 ,  GI(4− 8) = 2 ,  GI(4− 9) = 0.5 ,  GI(4− 10) = 1 ,  GI(4− 11) = 0.5 ,  GI(4− 12) = 0.5 , 
GI(4− 13) = 0.5  ,  w e  h av e  a d d e d  a l l  t h e s e  v a lu e s  b a s e d  on  E q .  ( 7 ) ,  w e  h av e , 

GI(4 − 1)+ GI(4 − 2) + GI(4 − 3)+ GI(4 − 5) + GI(4 − 6) + G(4 − 7) + GI(4 − 8) +
GI(4− 9)+ GI(4− 10)+ GI(4− 11)+ GI(4− 12)+ GI(4− 13) = 17.333333

 , Finally, the influ-

ence of node V4 can be calculated, we have GSM4 = 1.25956× 17.333333 = 21.833 . Table 1 shows the ranking 
influence of each node in the given simple network.

Experiments
Experimental setup is performed on system with configuration as: CPU: Feiteng 1500A (1, 16-core, 1.5 ghz), 
Operating system: galaxy kirin server os Bios: China-made Kunlun firmware Memory: 3 GB and Hard disk: 
2 TB (Fig. 2).

Evaluation metrics. SIR model. We used the SIR model to investigate the spreading dynamic of each 
 node40,41 to quantify the performance of GSM and other benchmark centralities. In the SIR model, there are 
three states, (i) Susceptible (S), (ii) Infected (I), (iii) Recovered (R). Susceptible (S) refers to a healthy state 
and can be infected by others. Infected (I) refers infected state and can infect other individuals. Recovered (R) 
denotes a recovered state, which cannot be infected by other individuals again. For the first time, all the seed 
nodes are in a susceptible form. At each time step, the seed node can infect its nearest and next-nearest neighbor 
nodes (in the susceptible state) with a probability β , then each node (the node which was infected) enters into 
the recovered state with a probability µ . This process continued till there are no more infected nodes. Finally, 
all the recovered nodes are used to simulate the actual node impact. Here, S(t), I(t), and R(t) indicate the nodes 
numbers in susceptible, infected, and recovered states, respectively. Therefore,

Figure 2.  A network with 17 edges and 13 nodes.

Table 1.  GSM results of Figure 2.

Node 4 2 1 3 5 8 7 10 11 9 6 12 13

Influence 21.833 20.15 19.52 18.053 15.06 15.06 14.48 14.12 14.12 10.02 9.91 9.21 9.21



5

Vol.:(0123456789)

Scientific Reports |         (2021) 11:6173  | https://doi.org/10.1038/s41598-021-84684-x

www.nature.com/scientificreports/

The spreading influence Ki of the node Vi follows as

where Nite indicates iteration numbers, nI and nR are the number of infected and recovered nodes, respectively. 
Where we set Nite = 1000 independent run.

Kendall’s Tau (τ ). We used kendall’s (τ )42,43 to calculate the performance of GSM further. Let suppose, two-node 
sequences (X&Y) are correlated with similar nodes number (n), X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) . 
One pair of two annotations (xi , yi) and (xj , yj) (i  = j) are said to be concordant if the ranking of both component 
agree, i-e. if both xi > xj and yi > yj or xi < xj and yi < yj . They are said to be discordant if xi > xj and yi < yj 
or xi < xj and yi > yj or if xi = xj or yi = yj , the pair is neither concordant nor discordant. The kendall’s (τ ) is 
defined as:

where nc , and nd denote the number of concordant and discordant pairs, respectively.

Datasets description. Real‑world networks. We evaluated GSM on seven different real-world networks 
to validate its efficiency. The seven real networks are publicly available and can be obtained from (http://netwo 
rkrep osito ry.com). The datasets are, e.g., (i)  Jazz44: this is a communication network , consist of 198 nodes and 
2472 edges. (ii) H-friendship  network45: this network reflects user friendship and contains 12534 edges and 1858 
nodes. (iii) E-mail  network46: this is a communication network of the Roviraa Virgilli University of Spain, where 
nodes are e-mail user, and edges represent at least one e-mail was sent. (iv) Crime  network47: this network con-
sists of 829 nodes and 1476 edges . (v)  Dolphin48: it is a social network with 62 nodes and 159 edges. (vi) Web-
spam49: this is a famous social netwok provided by Purdue University, which consists of 4767 nodes and 37375 
edges. (vii) Astroph-e50: this network consists of 18771 nodes and 198,050 edges. The topological characteristics 
of the seven real-world multi-typed complex networks are shown in Table 2.

Synthetic networks. There is a bulk of exemplary complex networks exist in the real world and we do not know 
the details of ground realities about all of them because it’s not even possible to conceal such a large number of 
information about a matter that is so widely being exploited. Therefore in order to evaluate GSM and the baseline 
methodologies, we applied the benchmark generator  model51,52 to generate different synthetic networks for the 
process of experimentations. (i) Random network: it is an synthetic random network in which we set the number 
of nodes as V= 1000, probability 0.01, the average degree as < k >= 3 , and it consists of E = 4852 edges. (ii) BA 
network: this synthetic network consists of V = 2000 nodes and E = 7984 edges and 4 edges added are each time.

Results and discussion
To measure the influence of nodes in different real and synthetic networks and to validate the applicability and 
effectiveness of the GSM, we used two evaluation metrics i-e., SIR, and Kendall’s models. First, we used a simple 
graph containing 13 nodes and 17 edges, as shown in Fig. 2, applied GSM to find the influential nodes and, results 
are compared and analyzed with the outcomes of the rest of the benchmark algorithms such as BC, CC, HITS, 
HI, GIC, DNC, IKH, ECRM and PL.

Kendall’s (τ ) of the proposed GSM and other algorithms are shown in Fig. 3. As, it can be seen that in terms 
Kendall (τ ) , GSM achieves higher values, i.e., the values in range from 0.9 to 1 for β = 0.01− 0.1 , shows that 

(9)











ds(t)
d(t) = −βs(t)i(t),
di(t)
d(t) = βs(t)i(t)− βi(t),
dr(t)
d(t) = βi(t).

(10)Ki = F(t) =
1

Nite
(nI + nR)

(11)τ(X,Y) =
nc − nd

n(n− 1)/2

Table 2.  The topological characteristics of the seven different real networks, where E and V are the numbers 
of edges and nodes. The davg , dmax and < CC > represents the maximum degree, averages degree, and average 
cluster coefficient of each network.

Network |E| |V| davg dmax <CC>

H-friendship 12534 1858 13.49 272 0.141

Jazz 2472 198 27 100 0.6174

E-mail 5451 1133 9 71 0.2202

Crime 1476 829 3 25 0.0058

Dolphin 159 62 5 12 0.2589

Web-spam 37,375 4767 15 477 0.2859

Astroph-e 198,050 18,771 21 504 0.6306

http://networkrepository.com
http://networkrepository.com
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GSM is performance-wise better on different networks, such as Dolphin, H-friendships, Jazz, Crime, E-mail, 
Web-spam, Astroph-e, BA, and Random networks.

In order to further examine the propagation effect of GSM, we analyzed the spreading impact of the ranked 
nodes in the SIR model. To better distinguish the influential nodes, the infection probability � needed to be 
set in the range between 0.01 and 0.1. For big networks (Astroph-e, Web-spam, BA and H-friendship), we set 
� = 0.01 because, in case of bigger values, propagation will occur across the whole  network24. Where it is not 
easy to differentiate the importance of distinct nodes. For small networks (Dolphin, Jazz, Crime, Random, and 
E-mail), we set � = 0.1 , and also we set the recovery probability ǫ = 1 and the time t = 1000. First, the influence 
of each node is computed using different algorithms, and then sorted in descending order. Tables 3 and 4 shows 
the top ten ranked nodes; due to the limited space, only we present the top ten nodes of two networks Dolphin 
and Crime. We observed that most of the top-10 nodes of our algorithm are also exist in other algorithms. Hence, 
the proposed GSM validity is verified. Second, each ranked node is treated as a seed node to impacting other 
ranked nodes. Finally, we computed the infected numbers of nodes for each seed node through an average of 
over 1000 turns. Figure 4 indicates the results of the average infected number of nodes using ten algorithms. In 
general, more influential nodes can infect more nodes, so an efficient and effective method can create a curve 
that decreases from left to right. As shown in Fig. 4, our proposed GSM gets a better infection effect than other 
methods on different networks.

Moreover, we compared the top ten nodes’ effects selected by our proposed GSM and the corresponding 
baseline centrality measures for different networks. All top ten nodes are considered as seed nodes and the time 
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Figure 3.  Kendall coloration coefficient τ results are obtained by comparing the ranking results generated by 
10 algorithms and the SIR model. The infection probability β of the network is set in the range between range 
between 0.01 to 0.10, and results are calculated based on average outcome of 1000 independent runs. Where (a) 
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t in the range between 1 and 25. Figure 5 illustrates the influence of the top ten nodes in nine different networks; 
as can be seen, the proposed GSM gets the highest spreading efficiency than other centralities. In addition, It 
clearly shows that when the infection F(t) increases as time t increases and finally gets a steady value at a time t 
after consecutive time point. Since there are ten seed nodes, and most network propagation arrives in a steady 
state on time t=25, where we analyzed the spreading effects of GSM and the rest of other centralities measures.

Computational complexity of GSM
There are two main components of the proposed GSM. In the first stage, the time complexity of the node’s global 
influence is calculated. We used Dijkstra to calculate the shortest distance, and its complexity is O(n2) . In the 
second stage, the time of complexity is O(n). Therefore, the total computational complexity of GSM is O(n2) . 
Table 5 lists the computational complexity of the proposed GSM and other benchmarks, as we can see that the 
computational complexity of GSM is not very low, but its accuracy is better than other benchmarks, and also 
GSM can automatically measure nodes influence without any parameters (shown in Figs. 3, 4 and 5). In future 
work, we plan to enhance GSM as paralleling computations.

Conclusion and Future Recommendations
We studied the problem of identification of nodes influence in complex networks. Several approaches have been 
developed and deployed in this area but still, it is a big issue for scientists and researchers. In this regard, we 
proposed an algorithm called GSM to identify influential nodes, which considers both self as well as global influ-
ence of nodes in the networks. We applied the proposed GSM on different real as well as synthetic networks and 
employed two evaluation metrics (SIR and Kendall τ ) to verify its efficiency. Experimental results demonstrated 
that our algorithm performed better than the benchmarks. For further work, the proposed GSM algorithm can be 
extended to many forms for better results. For instance, adding some parameters to control the intensity among 
various nodes to yield better performance. Furthermore, we also plan to combine the profit leader algorithm 
concept with the proposed algorithm to enhance the performance.

Table 3.  Top-10 ranking nodes of the Dolphin network using ten different methods.

Rank BC CC HITS HI PL DNC IKH ECRM GIC GSM

1 37 37 15 15 15 15 15 15 15 38

2 2 41 38 17 46 38 38 38 38 15

3 41 38 46 19 38 46 46 46 46 46

4 38 21 34 21 34 34 21 21 21 21

5 8 15 51 22 52 52 34 34 41 34

6 18 2 30 25 58 21 41 30 34 51

7 21 8 52 30 21 30 37 41 37 41

8 55 29 17 34 14 41 30 52 51 30

9 52 34 41 38 30 18 52 51 30 37

10 58 9 22 41 18 58 51 39 2 52

Table 4.  Top-10 ranking nodes of the Crime network using ten different methods.

Rank BC CC HITS HI PL DNC IKH ECRM GIC GSM

1 815 815 425 95 110 815 815 2 815 815

2 2 110 110 110 95 425 2 815 110 110

3 110 2 95 39 2 110 110 425 425 425

4 56 56 715 2 425 56 425 110 56 56

5 356 425 2 10 815 220 56 56 220 404

6 425 404 56 356 56 2 220 220 404 220

7 220 46 695 404 404 356 356 356 356 356

8 39 39 59 46 220 153 404 43 39 695

9 43 43 531 51 356 43 39 39 95 95

10 14 356 43 56 715 514 43 514 514 514
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Figure 4.  Propagation influence of ranking effect using GSM and other baseline benchmarks, where F(t) 
represents the number of infected and recovered nodes at the time (t), and horizontal index line means the 
ranking order list. For big networks we set � = 0.01 such as (Astroph-e, Web-spam, BA and H-friendship) 
networks and for small networks (Dolphin, Jazz, Crime, Random, and E-mail), we set � = 0.10.
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Figure 5.  Propagation influence of top-10 ranking effect using GSM and the corresponding baseline measures, 
where F(t) represents the number of infected and recovered nodes at time (t), and horizontal index line 
represents the ranking order list. Where (a) represents E-mail, (b) Dolphin, (c) Crime, (d) BA, (e) Random (f) 
H-friendship, (g) Jazz, (h) Web-spam, (i) Astroph-e, etc.

Table 5.  Computational complexity of GSM and other benchmarks.

Methods Complexity

BC O(n2m)

CC O(nm)

HITS O(n)

HI O(nlogn)

PL O(n < k >)

DNC O(n3)

IKH O(n∗ < k >
r
)

ECRM O(|e| + |n|)

GIC O(n2)

GSM O(n2)
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Data availability
All the real networks are available publicly and can be accessed from http://netwo rkrep osito ry.com.
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