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Origin and variability of statistical 
dependencies between peak, 
volume, and duration 
of rainfall‑driven flood events
L. Rahimi, C. Deidda & C. De Michele*

Floods are among the most common and impactful natural events. The hazard of a flood event 
depends on its peak (Q), volume (V) and duration (D), which are interconnected to each other. Here, 
we used a worldwide dataset of daily discharge, two statistics (Kendall’s tau and Spearman’s rho) and 
a conceptual hydrological rainfall‑runoff model as model‑dependent realism, to investigate the factors 
controlling and the origin of the dependence between each couple of flood characteristics, with the 
focus to rainfall‑driven events. From the statistical analysis of worldwide dataset, we found that the 
catchment area is ineffective in controlling the dependence between Q and V, while the dependencies 
between Q and D, and V and D show an increasing behavior with the catchment area. From the 
modeling activity, on the U.S. subdataset, we obtained that the conceptual hydrological model is able 
to represent the observed dependencies between each couple of variables for rainfall‑driven flood 
events, and for such events, the pairwise dependence of each couple is not causal, is of spurious kind, 
coming from the “Principle of Common Cause”.

Characterizing the response of a catchment to extreme meteorological events is of considerable importance 
for evaluating the flood  risk1,2, designing flood protection  structures3, and assessing the reliability of existing 
hydraulic engineering  works4. The capability of predicting the response of a catchment to extreme meteorological 
events and/or identifying the similarity of response between catchments is an important issue for flood studies. 
In the regional context, the similarity of catchment response to precipitation input can allow transfering the 
information from gauged to ungauged catchments. For this, the concept of “catchment similarity” has gained 
increasing interest in the last two  decades5–9, even if the first studies are dated back to the end of  80s10,11. The 
flood event can be characterized through some main variables like flood peak (Q), volume (V), and duration 
(D), which are dependent each  other4,12–15. Karmakar and  Simonovic15 argued that these variables are mutually 
dependent, because they belong to the same physical phenomenon. Some studies have investigated the depend-
ence between these couples, some using model-based  approaches16,17, others using data-based  approaches18–20. 
The importance of such dependencies is fundamental to properly describe the magnitude of a flood, because 
neglecting these dependencies can lead to under- or over-estimation of flood  magnitude13,21. Other studies have 
used the pairwise dependence of peak, volume and duration to build  bivariate4,13–15,22–24 and multivariate prob-
ability  models16,25–27, mainly through the use of copula  concept28. Vezzoli et al.29 used the pairwise dependence 
in order to assess the performance of climate-hydrology models. Some studies have investigated the possible 
non-stationarity of such  dependencies30–32.

Specifically, Karmakar and  Simonovic15 analyzed the pairwise dependence between peak, volume, and dura-
tion, of flood events identified using different discharge thresholds, using the streamflow data of Red River at 
Grand Forks, North Dakota (USA). The pairwise dependence was described through the Pearson’s linear cor-
relation coefficient, as well as, non-parametric rank-based measures of dependence like the Kendall’s tau and 
Spearman’s rho, as suggested  by28. Karmakar and  Simonovic15 found that (1) the dependence of Q–D and V–D 
couples was very sensitive, and increasing with increasing the discharge threshold; (2) the Q–V dependence is 
high for all the discharge thresholds; (3) the Q–V dependence was greater than the one observed for Q–D and 
V–D couples, fact also observed  by16,25.

Serinaldi and  Kilsby18 have investigated the nature of the dependence between each pair of flood event 
variables identified using different discharge thresholds (80th, 90th, and 95th percentile) considering 80 daily 
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time series of discharge recorded in the continental United States, and bootstrap algorithms. They found that 
the pairwise dependence can be reproduced using a univariate bootstrapping of discharge without recurring to 
multivariate techniques. They concluded that the pairwise dependence can be explained as the result of summing 
independent random variables over random durations.

Gaál et al.19 have investigated the factors influencing the degree of dependence between flood peak and vol-
ume, if it is possible to relate flood types and the Q–V dependence, considering 330 catchments in Austria, having 
an area ranging from 6 to 500  km2. They made a process-based analysis, using a classification of the rainfall-runoff 
events in three different typologies: synoptic, flash and snowmelt floods,  following33. They considered the maxi-
mum annual flood discharges and the associated volumes, and the Spearman’s rho as measure of dependence. 
They found that climate-related factors (flood process types such as flash floods and snowmelt floods) are more 
important than catchment-related factors (elevation, catchment area) in controlling the Q–V dependence. In 
particular, they obtained Spearman’s coefficients in the range 0.2–0.8, with a weaker Q–V dependence in high 
alpine catchments due to the mix of flood types including long-duration snowmelt events, synoptic floods and 
flash floods, respect to lowlands where the flood durations vary less.

Szolgay et al.20 made a process-based analysis, distinguishing the different flood types, and studying the 
structure of Q–V dependence. They used the empirical copulas, and a goodness of fit test between empirical 
copulas. They addressed the following two questions: (1) How similar is the Q–V structure of dependence for 
different flood types for a given catchment? (2) How similar is the Q–V structure of dependence between catch-
ments for a given flood type? They considered 72 catchments in the North-West of Austria, and globally 25,697 
events categorized in synoptic, flash and snowmelt floods. They found that, for a given catchment, the empirical 
copula of flash flood events is more distinguishable from the empirical copula of synoptic and snowmelt events 
than the empirical copulas between these last. In addition, they found that there is an added value in dealing 
with separately flood types and in pooling events of the same type in a region when analysing the copula of 
peak-volume variables.

Grimaldi et al.17 addressed the concept of catchment compatibility, which is a little bit less general than 
the catchment similarity. In fact, the catchment compatibility relies on the possibility of transfering, from one 
catchment to another, the information on the pairwise dependence between variables like peak, volume and 
duration. They investigated via a hydrological (rainfall-runoff) model the variability of the pairwise dependence 
between peak, volume and duration with respect to the following catchment features: the concentration time Tc 
and the curve number CN, using the same climatic forcing (synthetic rainfall time series) and topography. They 
summarized the results in compatibility maps, which allow to understand which Tc-CN combinations are to be 
considered compatible in terms of pairwise dependence of flood event variables.

Thus, except  for18, no studies have investigated the origin of the pairwise statistical dependence between the 
flood event variables (if there are causal statements between the variables), as well as, no worldwide assessments, 
but only catchment-based or country-based analyses, of such statistical dependencies are available in literature, 
to our knowledge. Here we want to address the following research questions: (1) What is the variability spectrum 
of the dependencies between the flood event variables? (2) What is the origin of such dependencies? Are there 
causal statements between the flood event variables, or the dependencies are of spurious type? In order to give 
answers to these questions, we decide to move in three different directions, using both data-based and model-
based analyses: (1) calculate the pairwise statistical dependence of peak, volume, and duration of flood events 
using a worldwide database of daily discharge; (2) investigate if a crude conceptual rainfall-runoff model is able 
to reproduce the observed pairwise dependencies for rainfall-driven flood events, using the U.S. subdataset; 
(3) use the conceptual rainfall-runoff model as model-dependent realism in order to investigate the origin of 
pairwise dependencies for rainfall-driven flood events.

Results
We considered the Global Runoff Database (GRDC) of daily river discharge, including more than 4638 stations 
spanned in eighty countries, over the period 1812–2014. The time series of discharge are not contemporaneous, 
however we have tested the series against the presence of trends, or changing points, as mentioned in the next. 
The stations are characterized by a contributing area ranging between 0.07  km2 and 4,680,000  km2, however, 
since the temporal resolution is one day, we have not considered in the analysis small catchments with temporal 
dynamics within the day, roughly saying catchments with an area smaller than 500  km2. For each station, the 
flood events and flood characteristics, namely peak Q, volume V and duration D, have been selected using a 
threshold-based approach, and a criterion of temporal independence of flood events (see Materials and Methods 
section and Fig. S1). We have considered: 80th, 90th, and 95th percentile of daily discharge as threshold values. 
We selected these because we intend to consider the rainfall-driven component of flood events. Increasing the 
threshold value, we progressively leave out the processes which produce the base flow (i.e., snow and ice melting, 
subsurface or groundwater flow), considering only the catchment response to rainfall forcing.

The extracted time series of Q, V and D, have ties, inevitably present having used a daily time resolution and 
1  m3/s resolution for the discharge. We found more ties in the time series of D, respect to the time series of Q 
and V. In addition, increasing the threshold value, increases the probability of occurrence of a flood event with 
smaller duration and thus number of "ties" in the time series of D. These ties could impact in the calculation of 
pairwise dependencies, and in particular V–D, and Q–D dependencies.  Following34, we have used a randomiza-
tion technique, also known as “jittering”, to remove repeated values and provide the natural granularity of the 
observed phenomenon. In particular, we used a Uniform distribution to randomize the ties, because it is an 
“noninformative” distribution, and in order to avoid unnecessary assumptions associated to this randomization.

The extracted data, for each specific threshold level, was checked against the presence of trends, or changing 
points, respectively through Mann–Kendall test, and Pettitt test, as well as, the stochastic independence of events 
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in each station through the autocorrelation function, with a 1% significance level (details in Materials and Meth-
ods Section). Then, we focused the attention to the stations with at least 40 data, for each threshold, in order to 
have enough data to estimate the measures of dependence. Figs. S2–S4 provide the location of the stations con-
sidered, with and without at least 40 events, for the different thresholds, respectively 80th, 90th, 95th percentile.

Table 1 shows, for each threshold, the number of stations that passed all statistical tests, and those with at 
least 40 data: from 1310 to 1922 (i.e., from about 28% to 41% of the dataset) increasing the threshold from 80 to 
95th percentile, and similarly the number of stations with at least 40 data, passed from 1140 to 1411 (i.e., from 
25 to 30% of dataset). This depends on the threshold, and the fact that, at high thresholds the probability of test 
rejection and the dependence between events are less common than at low  thresholds35.

Then, we calculated the Spearman’s rho, and the Kendall’s tau for each couple of variables (Q, V), (V, D) and 
(Q, D), in each station, and for each threshold (see Supplementary material, Table S1). We have investigated the 
impact of the criterion of temporal independence of flood events on the estimation of the pairwise dependence 
(both in terms of Kendall’s tau and Spearman’s rho). In particular, for 80th, 90th, and 95th percentile, respectively 
in Figs. S5,S6,S7, we have compared the pairwise dependence considering and not considering such criterion. 
From Figs. S5–S7, it is possible to see that the criterion of temporal independence of flood events (considered in 
the next) does not affect significantly the estimation of pairwise dependence of Q, V and D.

From Table S1, the median value of the calculated statistics is quite high (say � 0.6). For (Q, V), the median 
value of the Spearman’s rho is between 0.967 and 0.969, while the Kendall’s tau is between 0.855 and 0.856, for 
the considered thresholds. Similarly, for (V, D), the median value of the Spearman’s rho is between 0.902 and 
0.941, and the Kendall’s tau is between 0.729 and 0.795. For (Q, D) the median value of the Spearman’s rho is 
between 0.795 and 0.855, while the Kendall’s tau is between 0.595 and 0.666. As a general comment, we found 
that the Q–V dependence is greater than Q–D and V–D dependence. This result is in agreement with those 
found  by15,16,25. In addition, the estimate of Spearman’s rho resulted greater than the correspondent estimate of 
Kendall’s tau, for the different pairs and different thresholds.

Figure 1 shows the box-plots of the Spearman’s rho (upper panels) and Kendall’s tau (lower panels) for the cou-
ples (Q, V) in the left panels, (V, D) in the central panels and (Q, D) in the right panels, as a function of catchment 
area, using the 90th percentile as threshold. In Fig. 1, the catchment area has been divided in four classes: small 
(500, 5000]  km2, medium (5000, 50,000]  km2, large (50,000, 500,000]  km2, and very large (500,000, 5,000,000] 
 km2. Figs. S8–S9, as supplement, show the boxplots of pairwise dependencies (respectively Spearman’s rho and 
Kendall’s tau) against the catchment area, for all the thresholds considered. From Fig. 1, as general comment, 
it is possible to say that the dependence between Q and V is practically constant with the catchment area, even 
if the boxplot correspondent to the last range of areas is wider due to its smaller sample. It seems surprisingly 
that the catchment area does not influence the dependence between Q and V. This result was also found  by19. 
From Fig. 1, it is possible to see that the dependence between Q and D and V and D is slightly increasing with 
catchment area, except for the boxplot correspondent to the last range of areas for Q–D dependence (both for 
Spearman’s rho and Kendall’s tau cases), probably due to its smaller sample.

We have also considered the impact of the threshold, chosen for the identification of flood events, on the 
estimation of the pairwise dependence, both in terms of Kendall’s tau and Spearman’s rho. In particular, we 
compared the Kendall’s taus using 80th and 90th percentiles in Fig. S10, 80th and 95th percentiles in Fig. S11, 
and 90th and 95th percentiles in Fig. S12. From Figs. S10–S12, it is possible to see that the points are scattered 
around the 1:1 line, the highest differences are observed, when we pass from 80 to 95th percentiles (as expected) 
and in terms of the dependencies involving D variable (i.e., Q–D and V–D). Less influenced is the dependence 
between Q and V variables. Similar comment applies to Figs. S13–S15 for the Spearman’s rho.

Then, we considered a crude conceptual rainfall-runoff model, and checked if it is able to reproduce the 
observed pairwise dependencies of flood event variables, in the case of rainfall-driven flood events. For this 
model-based analysis, we restricted the attention to the continental United States, and in particular to 53 catch-
ments (with a catchment area in the range 601–74,165  km2), where we have information about the precipitation 
dynamics. The catchment response is described through a linear reservoir. The storage constant k of the catch-
ment is calculated here as a function of the catchment area A, as k = 0.43A0.324 (h), where A is in  km236. The rainfall 
partitioning into infiltration and runoff components has been calculated using the SCS-CN  method37. We used 
an average CN at catchment scale (in average moisture conditions, i.e., Antecedent Soil Moisture Condition Class 
II) obtained from the world map of CN developed  in38. The CN values obtained are in the range [65, 83]. The 
precipitation dynamics is described by a Poisson Rectangular Pulses model (39, Table F.2). Estimates of intensity 
(λI, h/mm) and duration (λW,  h−1) parameters of the Poisson Rectangular Pulses model are available in 75 rain 
gauges within continental United States, given in Table F.2,39. Of this information, we considered 36 stations, 
which are representative of 53 catchments (Fig. S16). We considered each rain gauge representative of a circle 
with 150 km radius. If this area is within a catchment, or this area covered at least 70% of the catchment area, 
we considered the rain gauge as a representative gauge for the catchment. Table F.2  in39 provides the monthly 
estimates of λI and λW parameters as well as the monthly estimate of the Poissonian chronology. Assuming the 
intensity and the duration of precipitation events, independent each other, using Monte Carlo technique, we 

Table 1.  The number of stations at different thresholds, and with at least 40 flood events.

Threshold (percentile) 80th 90th 95th

N. of stations 1310 (28%) 1602 (35%) 1922 (41%)

N. of stations (with at least 40 events) 1140 (25%) 1316 (28%) 1411 (30%)
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generated 100 yrs of synthetic time series of rainfall events, using the monthly estimates of λI and λW parameters 
and a number of events for each month equal to the monthly estimate of the Poissonian chronology. In particular, 
in order to account for the seasonality of flood events in U.S.40, we have restricted the analysis to six months: Janu-
ary, February, September-December, filtering out the period of the year, where the snowmelt is principal driver 
of flood events. Then, we have calculated the synthetic hydrographs from the generated rainfall events. Since 
the linear reservoir generates response with infinite duration, we used a threshold equal to the 10th percentile 
of daily discharge in order to identify the duration and the volume of the flood event.

Figure 2 shows the comparison between observed (using the 90th percentile as threshold) and simulated 
pairwise dependencies of flood events (in the left panel for the Spearman’s rho, and in the right panel for the 
Kendall’s tau) relatively to six months of the year: January, February, September-December. For sake of clarity, in 
Figs. S17–S18, we have reported similar comparisons, but using respectively the 80th and 95th percentiles. From 
Fig. 2 (as well as Fig. S18), it is possible to see that the rainfall-runoff model, even if crude, is able to reproduce 
the observed pairwise dependencies, quite well. It is possible to see some differences in Fig. S17 for the 80th 

Figure 1.  Boxplots of the measures of dependence (Spearman’s rho in upper panels and Kendall’s tau in lower 
panels) as function of the catchment area, for each couple of flood variables (Q–V in the left column, Q–D in 
the right column, V–D in the intermediate column), using stations with at least 40 events and the 90th percentile 
of daily discharge as threshold. The catchment area is divided in four classes: small (500, 5000]  km2, medium 
(5000, 50,000]  km2, large (50,000, 500,000]  km2, and very large (500,000, 5,000,000]  km2.

Figure 2.  Comparison between observed (using 90th percentile of daily discharge as threshold) and simulated 
pairwise dependencies in terms of boxplots, for U.S subdataset. Spearman’s rho is in the left panel, and the 
Kendall’s tau in the right panel.
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percentile, suggesting probably that a threshold equal to 90th or 95th percentile of daily discharge works better 
than the 80th percentile to identify the catchment response to rainfall forcing.

Once realized that the conceptual rainfall-runoff model is able to reproduce the observed pairwise depend-
encies, of rainfall-driven flood events, we have investigated the origin of pairwise dependencies between the 
flood event variables in the conceptual model, as a proxy information of the natural flood events, rainfall-driven. 
Following the terminology used  by41, the meteorological variables, I precipitation intensity and W precipitation 
duration, which are the causes, are denominated exogenus, or independent, variables. For simplicity, we are 
assuming here I and W independent each other, even if other studies have shown a dependence between these 
 two42,43, in addition, we assumed the catchment as impervious. These assumptions will not alter the conclusions 
of the study, rather than keep simple the problem under analysis. The flood event variables Q, V, D are denomi-
nated endogenus, or dependent, variables. The functional relations, f(·), connecting each dependent variable to 
the independent ones are the following

where Ψ is the vector of parameters representing the catchment (which here are only two: the area A, and 
reservoir constant k, but in general could include more others like for example the curve number CN). c is a 
conversion factor (c = 1/3.6), being Q in  m3/s, I in mm/h, W,D,k in h, V in  m3, and A in  km2. Equation (1) is 
the particular case, for an impervious catchment, of Eq. (10) valid for a pervious catchment, and given in the 
Materials and Methods Section.  qT is the threshold used on the discharge q(t), in the second equation of Eq. (1), 
the integrand term q*(t) is q*(t) = q(t) if q(t) <  qT, otherwise q*(t) =  qT, and  t2 and  t1 are the instant times having 
q(t1) = q(t2) =  qT. Figure 3 describes graphically Eq. (1) reporting the connections between the dependent and 
independent variables.

Let’s use Eq. (1) to investigate the pairwise dependencies between the flood event variables.
Let’s consider for simplicity  qT = 0, and fix the catchment parameters (A, k). Keeping fixed W, and increasing 

(decreasing) I, it increases (decreases) linearly both Q and V, leading to a perfect positive dependence between 
Q and V, and thus to a unitary Spearman’s rho and Kendall’s tau [according to Eq. (4)]. Vice-versa, keeping fixed 
I, and increasing (decreasing) W, it increases (decreases) both Q and V. V increases (decreases) linearly, while 
Q increases(decreases) non-linearly with an exponential function, however, we have again unitary Spearman’s 
rho and Kendall’s tau [according to Eq. (5)].

In general, both W, and I vary (independently or dependently one from the other). Using in Eq. (1), the Taylor 
approximation at the first order of the term 

(

1− exp
(

−W
k

))

 of Q, i.e., 
(

1− exp
(

−W
k

))

≈ W
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again that Spearman’s rho and Kendall’s tau are both equal to 1 [according to Eq. (8)]. Note that this result is 
independent by the presence (or not) of dependence between I and W, and in addition, it is independent by the 
catchment area A, in agreement with what it is found in Fig. 1, i.e., the catchment area does not influence the 
dependence between Q and V.

Without the Taylor approximation at the first order, using generated pairs (I, W) considering I and W inde-
pendent, we found (numerically) that the values of Spearman’s rho and Kendall’s tau, are still positive, high 
(say > 0.9), but not equal to 1.

These reasonings are in agreement with the high values of Q–V dependence (both in terms of Spearman’s 
rho, and Kendall’s tau) observed in the worldwide analysis.

Considering  qT ≠ 0, and reasoning in terms of D, from Eq. (1), we can see that the link between D and W is not 
explicit. However, for W →  + ∞, D increases linearly with W. Increasing (decreasing) I, D increases (decreases) 
logarithmically with I. Thus, we can infer that also Q–D and V–D dependencies are positive. We found also that 
the strength of the dependence between two variables depends by the similarity of the functional relation they 
have with the independent variables. The Q–V dependence exhibited the highest values because Q and V have 
both linear relation with I and similarly a linear relation with W for V and approximately for Q. V–D and Q–D 
dependence values resulted smaller respect to those relative to Q–V, with values of V–D dependence greater than 
those relative to Q–D dependence, this because V and D have both asymptotically a linear relation with W but 
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Figure 3.  Path diagram between meteorological (exogenous) variables I and W, and the flood (endogenous) 
variables: Q, V, D. I and W can be dependent (represented by a curved line with arrowheads at each end) or 
independent (represented with the symbol × on the curved line) each other. The connection between each 
meteorological variable and each flood variable is filtered by the catchment descriptors (A, k, in this case) and 
represented by an arrow that goes from each cause to the effect.
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different functional relation with I, while Q and D exhibit different function with both I and W. As last note, we 
want to observe that the pairwise dependence between the flood event variables exists even if the two exogenous 
variables are independent each other. The effect of dependence between I and W can strengthen or weaken the 
pairwise dependence between the flood event variables. According to some preliminary simulations, we found 
that positive association between I and W strengthens the pairwise dependence between the flood event vari-
ables, while negative association weakens these associations.

Discussion
The analysis of a worldwide database of daily discharge and the calculation of the pairwise statistical depend-
ence, via the Kendall’s tau and Spearman’s rho, between peak, volume, and duration of flood events, selected 
with a threshold-based approach and a criterion of temporal independence of events, gave an indication of the 
variability spectrum of flood event dependencies. This analysis does not distinguish among the different flood 
generating mechanisms (rainfall-driven, snow-melt, rain-on-snow, glacier-melt floods), and thus the results 
must be considered in this respect, evenif high values of the threshold (namely, 80th, 90th, 95th percentile) could 
allow referring to the rainfall-driven component of flood events. Thus, further dependence analyses, conditioned 
by different flood generating mechanisms could permit to appreciate the differences due to the different flood 
drivers. In addition, note that, with the Kendall’s tau and Spearman’s rho, we have assessed the general depend-
ence between each pair of variables, while for extreme values purposes, one could be interested in evaluating the 
dependence in correspondence of the tails, and using the upper-tail or the lower tail dependence  coefficients28.

Then, a conceptual rainfall-runoff model has been considered to reproduce the observed pairwise dependen-
cies, relatively to the case of rainfall-driven flood events and for the subdataset of continental United States. The 
model is a crude conceptualization of rainfall-runoff processes. Specifically, we neglected the contributions to 
discharge due to snow, ice melting and groundwater flow, which will provide other elements to complicate the 
puzzle. We used such crude conceptualization deliberately, in order to keep analitically tractabale the problem, 
and understand the mechanistic connections between inputs and outputs. The comparison between simulated 
dependencies and observed ones at different thresholds indicates that a threshold equal to 90th or 95th percentile 
works better than the 80th percentile, to identify the catchment response to rainfall forcing.

We used a model-dependent realism approach and accordingly we investigated the origin of the dependencies 
between the event variables (Q, V, D), specifically for the case of rainfall-driven flood events, and for impervi-
ous catchments. For these, we realized that the origin of the dependencies between the flood event variables 
is spurious, not causal, it comes from the fact that all the three variables (Q, V, D) are caused/generated by the 
same two exogenus variables (I, W). This fact can be summarized recalling the Reichenbach’s Common Cause 
Principle, also known as “no correlation without causation”, reported  in41. It states that, if any two variables are 
dependent, then one is a cause of the other, or there is a third variable causing both. Here, we have shown that 
this is the second case, i.e., in the (Q, V) dependence, as well as in the (Q, D) and (V, D) dependencies, there are 
third variables (namely, I and W) which cause the dependence.

This result sheds light on the compound nature of flood events rainfall-driven, where the dependence between 
flood event characteristics (Q, V, D) emerges as a consequence of the relation of such characteristics to the rainfall 
input variables (I, W) that control the hydrographs. In addition, this result puts light also on the multivariate 
modeling of flood event characteristics (Q, V, D) stating that there is not a causal priority among these variables 
to be used in conditional analysis and modeling.

Note that disentangling the origin of pairwise dependence between V, Q, and D, would be difficult (if not 
impossible) without a model-dependent realism approach, and dealing only with data-based analyses.

The approach based on the model-dependent realism is quite general and could be extended in different 
directions: (1) including, in the hydrological model, other mechanisms generating flood events like snow-melt, 
rain-on-snow, glacier-melt  floods44–46, (2) considering other hydrological models, with more realistic assump-
tions (47–50, among others), and comparing these with the simplified model used here; (3) investigating other 
hydrological problems in order to study the typology of dependence between the variables, and the existence 
or not of causality.

Materials and methods
Dataset and flood events sampling. Here, we used the Global Runoff Database (GRDC) consisting in 
4638 stations collecting the daily discharge within the period 1812–2014 (available at the website:

https ://www.bafg.de/GRDC/EN/01_GRDC/13_dtbse /datab ase_node.html). The time series have a number 
of years varying in the range 25—198 years, with the  1st quartile equal to 39 years, a median of 50 years, and the 
 3rd quartile equal to 76 years, covering 80 countries in the world. 15 countries contain only one station and the 
United States with 929 stations has the utmost number of stations in the dataset. The range of the catchment area 
is between 0.07  km2 (in Finland) to 4,680,000  km2 (in Brazil, the Amazon river). Since the temporal resolution 
of data is one day, we have not considered in the analysis small catchments with temporal dynamics within the 
day, roughly saying catchments with an area smaller than 500  km2.

In literature there are several methods used to select a flood event (e.g.,51–54). Among these, here, we have 
chosen a simple method based on a discharge threshold, a fixed percentile of daily discharge, also adopted 
 in18,32,51,53,55–57. The beginning and end of a flood event are respectively the first and last value, when the discharge 
is greater or equal the threshold. The flood duration D is the time during which the discharge is greater or equal 
the threshold, the flood volume V is the volume of the above the threshold, the flood peak Q is the maximum 
value of daily discharge occurred within the event duration subtracted the threshold. Thus, each part of hydro-
graph above the threshold represents a flood event. In order to ensure that the extracted flood events are temporal 
independent, we considered a criterion of temporal independence of flood events based on the minimum time, 

https://www.bafg.de/GRDC/EN/01_GRDC/13_dtbse/database_node.html
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T*, between the end of an event and the beginning of the next one. In particular, T* was set to 5 days for catch-
ments with area < 45,000  km2; 10 days for catchments with area between 45,000 and 100,000  km2; and 20 days for 
catchments with area > 100,000  km2; slighting  modifying58, where this criterion was applied to the time between 
the peaks of the two successive events. In the case two events resulted dependent, we discharged the one associ-
ated to the minor peak. Fig. S1 gives a sketch of the flood events selection. We used a threshold-conditioned, or 
threshold-based definition of flood event, basically for two reasons: (1) flexibility: the threshold based on a fixed 
percentile of daily discharge can account for the local condition of discharge and work in different contexts and 
stations as requested here; (2) physical meaning of the threshold. It can be the bankfull  discharge57, or the value 
exceeding the embankment  crest55, so the threshold-based flood event can represent the dangerous part of hydro-
graph producing problems and damages. Here we have considered as threshold: 80th, 90th, and 95th percentile 
of daily discharge (also used  in18), thus high values of daily discharge. We made this choice because, we intend 
to consider only the catchment response to rainfall forcing, or the rainfall-driven component of flood events, 
and leave out the processes which produce the base flow (i.e., snow and ice melting, subsurface or groundwater 
flow). Figs. S2–S4 provide the location of the stations considered, with and without at least 40 flood events, for 
the different thresholds, respectively 80th, 90th, 95th percentile.

The extracted time series of Q, V and D, have the problem of ties (i.e., repeated values), due to the daily time 
resolution and 1  m3/s resolution for the discharge. Let x be the true value of the variable X under investigation 
and let Δ be the resolution adopted. x belongs to a unique interval [ΔkX, Δ(kX + 1)] for a suitable integer  kX, but 
the true value x is incorrectly stored in the database as, say, x* = ΔkX. All the occurrences falling into the interval 
are wrongly recorded as x* (ties). The percentage of ties for D is in the range [7%, 99%], for Q is in the range 
[0%, 96%], and for V is in the range [0%, 92%], depending on the site, and threshold considered. These ties 
could impact in the calculation of pairwise dependencies. For this, we have used a randomization technique, 
also known as “jittering”, to remove repeated values and provide the natural granularity of the observed phe-
nomenon,  following34. This technique consists in substituting repeated values  x* by transforming each available 
x∗i  as x̃i = x∗i +� · ui where ui’s are i.i.d. r.v.’s Uniform over [0, 1]. We used a Uniform distribution to randomize 
the ties, because it is an “noninformative” distribution, and in order to avoid unnecessary assumptions associ-
ated to this randomization.

The data of each variable, selected at each threshold, have been checked against the autocorrelation, and 
non-stationarities via three  tests59: the Pettitt test for the presence of changing points, the Mann–Kendall test 
for the presence of monotonic trends, and the test on the presence of autocorrelation in order to check the 
stochastic independence between events. For all tests, we considered a 1% significance level. For each site and 
each threshold, if all variables (Q, V and D) passed all the three tests, we considered that site for further analyses 
with respect to that threshold, otherwise we have removed it. Thus, for the 80th, 90th, and 95th percentile, we 
considered respectively 1310, 1602 and 1922 stations, corresponding respectively to about 28%, 35% and 41% 
of the dataset. Increasing the level of threshold, the probability of rejection the tests as well dependencies, is low 
respect to low-level threshold 35. Then, we focused the attention to the stations with at least 40 data, for each 
threshold, in order to have enough data to estimate the measures of dependence. Thus, for the 80th, 90th, and 
95th percentile, we considered respectively 1140, 1316 and 1411 stations, corresponding respectively to about 
25%, 28% and 30% of the dataset.

Dependence measures. Here we used two measures of association, namely the Kendall’s tau (τ) and the 
Spearman’s rho (ρ), which provide a form of dependence, known as  association28. These are two non-parametric 
rank-based measures, which always exist. Let (X, Y) a vector two continuous random variables. Let  (X1,  Y1) and 
 (X2,  Y2) be independent and identically distributed random vectors, with  X1 and  X2 having the same distribution 
of X and similarly,  Y1 and  Y2 having the same distribution of Y, and having the same joint distribution of (X, Y). 
The Kendall’s tau between X and Y is defined as

where the first term on the right side is the probability of concordance, while the second one is the probability 
of discordance.

Similarly, to the Kendall’s tau, also the Spearman’s rho is a based on the probability of concordance and the 
probability of discordance. Let  (X1,  Y1),  (X2,  Y2), and  (X3,  Y3) be three independent random vectors with a com-
mon joint distribution function, equal to the one of (X, Y). The Spearman’s rho between X and Y is defined as

i.e., the probability of concordance minus the probability of discordance for the two vectors  (X1,  Y1) and  (X2,  Y3).
Both the Kendall’s tau and the Spearman’s rho vary in the range -1 and 1. If the variables are independent 

each other, the Kendall’s tau and the Spearman’s rho are equal to 0.
Let us consider now two variables X′ and Y′ transformations of the variables X, Y and see how change the 

correspondent two measures of association, which will be both indicated with the symbol δ.
Case 1a. X′ = aX, Y′ = bX (i.e., linear transformations of a single variable), where a and b are two constants, 

the Kendall’s tau and the Spearman’s rho of X′ and Y′ are

where the sign (+ or −) is depending on the sign of the product a·b (+ or −).
Case 1b. X′ = g(X), Y′ = h(X), where g(·) and h(·) are two strictly monotone (both increasing, or both decreas-

ing) functions of the variable X. The Kendall’s tau and the Spearman’s rho of X′ and Y′ are

(2)τXY = P[(X1 − X2)(Y1 − Y2) > 0]− P[(X1 − X2)(Y1 − Y2) < 0]

(3)ρXY = 3P[(X1 − X2)(Y1 − Y3) > 0]− P[(X1 − X2)(Y1 − Y3) < 0]

(4)δX′Y′ = ±1



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5182  | https://doi.org/10.1038/s41598-021-84664-1

www.nature.com/scientificreports/

Case 2a. X′ = aX, Y′ = bY (i.e., linear transformations of two variables). The Kendall’s tau and the Spearman’s 
rho of X′ and Y′ are:

the sign (+ or −) is depending on the sign of the product a·b (+ or −).
Case 2b. X′ = g(X), Y′ = h(Y), where g(·) and h(·) are two strictly monotone (both increasing, or both decreas-

ing) functions respectively of X and Y. The Kendall’s tau and the Spearman’s rho of X′ and Y′ are invariant respect 
to those of X and Y:

Case 3a. X′ = aXY, Y′ = bXY (i.e. both X′ and Y′ are directly proportional to the product XY), where a and b 
are two constants, the Kendall’s tau and the Spearman’s rho of X′ and Y′ are

where again the sign (+ or −) is depending on the sign of the product a·b (+ or −).
Case 3b. X′ =  g2(X, Y), Y′ =  h2(X, Y), where  g2(·) and  h2(·) are two functions of both X and Y. This is the general 

case. The dependence between X′ and Y′ can be determined numerically with Montecarlo simulations.
We used Kendall’s tau, also the Spearman’s rho to evaluate the dependence between each pair of flood event 

characteristics, for each threshold level. For the estimation of the dependence measures, we considered the 
minimum sample size of 40 events. If 

(

x1y1
)(

x2y2
)

. . .
(

xnyn
)

 be a sample from the vector (X, Y). The sample 
version of the Kendall’s tau is t = c−d

c+d
28, where c is the number of concordant pairs, i.e. the couple satisfying 

the relation  (xi −  xj)(yi −  yj) > 0, while d is the number of discordand pairs, i.e. the couple satisfying the relation 
 (xi −  xj)(yi −  yj) < 0. The sample version of the Spearman’s rho is r = 1−

6
∑n

i=1 (Ri−Si)
2

n3−n
28, where  Ri = Rank(xi), 

 Si = Rank(yi), and n is the sample size.

Hydrological rainfall‑runoff model. In order to describe the response of a catchment to a rainfall event, 
we considered a linear reservoir model, characterized by a storage constant k. This last has been calculated 
as a function of the catchment area A, as k = 0.43A0.324 (h), with A in  km236. The precipitation dynamics has 
been described by a Poisson Rectangular Pulses  model39, i.e. a sequence of rectangular rainfall events, hav-
ing a Poissonian chronology (with parameter Λ), where the duration W (h) is exponential, with parameter 
λW  (h−1) and the mean rainfall intensity I (mm/h), constant over the duration of rainfall event and catchment 
area, is still exponential, with parameter λI (h/mm). Monthly estimates of the parameter λW, λI, and Λ are avail-
able in 75 stations within continental United States, given in Table F.2,39. The rainfall partitioning into infil-
tration and runoff components has been calculated using the SCS-CN  method37. We used an average CN at 
catchment scale (in average moisture conditions, i.e., Antecedent Soil Moisture Condition Class II) obtained 
from the world map of CN developed  in38. We calculated the effective rainfall intensity (or runoff)  I* from I as 
I∗ = (1/W∗)(I ·W− Ia)

2/(I ·W− Ia + S) if I ·W > Ia , otherwise  I* = 0, where  Ia (mm) is the initial abstrac-
tion, evaluated as  Ia = 0.2S, S (mm) is the maximum soil potential retention, calculated as S = 254

(

100
CN − 1

)

 , 
 W* is the effective rainfall duration, calculated as W∗ = W− Ia/I if W > Ia/I , otherwise  W* = 0. In the case of 
impervious catchments [used in Eq. (1)], CN = 100, S = 0,  W* = W and  I* = I.

The flood hydrograph q(t), in  m3/s, is described as

where c is a conversion factor (c = 1/3.6), Q is the flood peak given by Q = c · I∗ · A ·
(

1− exp
(

−W∗

k

))

 , the 
flood volume (in  m3)V = (c · 3600)I∗ · A ·W∗ , while the flood duration is infinite. Thus, a threshold  qT on the 
discharge was used in order to identify the duration and the volume of the flood event, say the 10th percentile 
of daily discharge. Consequently, the flood peak Q, volume V and duration D are respectively

where the integrand term q*(t) is q*(t) = q(t) if q(t) <  qT, otherwise q*(t) =  qT, and  t2 and  t1 are the instant times 
having q(t1) = q(t2) =  qT.
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(5)δX′Y′ = +1

(6)δX′Y′ = ±δXY

(7)δX′Y′ = δXY

(8)δX′Y′ = ±1

(9)q(t) =

{

c · I∗ · A ·
(

1− exp
(

− t
k

))

t ≤ W∗

Q · exp
(

−
(t−W∗)

k

)

t > W∗

(10)























Q = c · I∗ · A ·
�

1− exp
�

−W∗

k

��

− qT

V = (c · 3600)I∗ · A ·W∗ −
+∞

∫
0

q∗(t)dt

D = t2 − t1 = W∗ + k ·
�

ln
�

c·I∗·A−qT
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