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Evaluation of the total volatile 
basic nitrogen (TVB‑N) content 
in fish fillets using hyperspectral 
imaging coupled with deep learning 
neural network and meta‑analysis
Marzieh Moosavi‑Nasab1*, Sara Khoshnoudi‑Nia2, Zohreh Azimifar3 & Shima Kamyab3

Recently, hyperspectral‑imaging (HSI), as a rapid and non‑destructive technique, has generated much 
interest due to its unique potential to monitor food quality and safety. The specific aim of the study 
is to investigate the potential of the HSI (430–1010 nm) coupled with Linear Deep Neural Network 
(LDNN) to predict the TVB‑N content of rainbow trout fillet during 12 days storage at 4 ± 2 °C. After the 
acquisition of hyperspectral images, the TVB‑N content of fish fillets was obtained by a conventional 
method (micro‑Kjeldahl distillation). To simplify the calibration models, nine optimal wavelengths 
were selected by the successive projections algorithm. A seven layers LDNN was designed to estimate 
the TVB‑N content of samples. The LDNN model showed acceptable performance for prediction of 
TVB‑N content of fish fillet  (R2p = 0.853; RSMEP = 3.159 and RDP = 3.001). The performance of LDNN 
model was comparable with the results of previous works. Although, the results of the meta‑analysis 
did not show any significant difference between various chemometric models. However, the least‑
squares support vector machine algorithm showed better prediction results as compared to the other 
models (RMSEP: 2.63 and  R2

p = 0.897). Further studies are required to improve the prediction power of 
the deep learning model for prediction of rainbow‑trout fish quality.

Recently, hyperspectral imaging (HSI), as a rapid and non-invasive measurement ability, has generated much 
interest due to its unique potential to monitor food quality and  safety1–3. Among various food materials, fish is 
considered one of the most perishable foods. Consumption of deteriorated fish can seriously affect consumer 
health. Therefore, to evaluate and monitor the quality and safety of this valuable and at the same perishable sea-
food, the rapid and non-destructive detection of freshness is a necessary  task4,5. Hyperspectral imaging method in 
combination with different chemometric analysis has been applied to evaluate several freshness indicators, such 
as Total Volatile Basic Nitrogen (TVB-N), Trimethylamine (TMA)5–7, Thiobarbituric acid reactive substances 
(TBARS)8–10, total viable count (TVC)11–13, sensory  factors5,14,15 and, etc.

Volatile compounds such as trimethylamine, ammonia and dimethylamine are considered as total volatile 
basic nitrogen (TVB-N), produced as a result of destructive activities of microorganisms and are considered as 
one of the most important freshness indicators to monitor the quality and safety of seafood  products16. During 
storage time, the change of the TVB-N value of fish fillets caused several chemical variations that can be shown 
in the hyperspectral imaging data and be applied to measure the TVB-N value.

Although the capability of HSI for evaluating the TVB-N value of fish fillet has already been proved, attempts 
to improve the prediction power of HSI is still considered as an attractive subject. One of the most impor-
tant efforts to enhance the performance of hyperspectral imaging technique could be to focus on new chemomet-
ric methods. Many data analysis methods such as partial least squares (PLS), random forest, principal component 
analysis (PCA), support vector machine (SVM), artificial neural network (ANN) and so on have been developed 
to deal with the large volume of data.
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Deep learning, as a powerful machine learning tool, is a promising method to be used in various fields such 
as medical science, remote sensing, robotic and food safety, etc. This technique dealing with huge data sets, and 
obtaining suitable prediction power and accuracy. Deep learning is a kind of representation-learning method that 
refines multilevel representation by the deep artificial neural network composed by multiple layers of neurons. 
Because of the strong feature learning capability, deep learning method can solve many complicated problems 
in a rapid and effective  manner17. Deep learning models exhibit powerful ability in classification and regres-
sion  tasks18. There are several studies, using deep learning techniques in the recent literature, which indicates 
the superiority of this class of machine learning techniques in the food industry by analyzing RGB images and 
spectra images of food. For example, Yu et al. (2017) used visible and near-infrared hyperspectral imaging (HSI) 
technique combined with stacked auto-encoders (SAEs) algorithm to classify shrimp into fresh and stale groups 
according to their TVB-N contents. This method achieved satisfactory total classification accuracy of 96.55 (for 
the calibration set with 116 samples) and 93.97% (for the prediction set with 116 samples) freshness grade of 
 shrimp19. Al-Sarayreh et al. (2018) compared the performance of HSI data to evaluate adulteration in red-meat 
by the support vector machines and deep convolution neural networks (CNN) algorithm. Results confirmed 
that the CNN model has the best prediction power (94.4% classification accuracy)20. Moreover, Yu et al. (2019) 
used the hyperspectral imaging (HSI: 900–1700 nm) technique to predict the TVB-N value of Pacific white 
shrimp. They used Successive projections algorithm (SPA) and deep-learning-based stacked auto-encoders algo-
rithms to choose more informative wavelengths. Least-squares support vector machine (LS-SVM), partial least 
squares regression (PLSR) and multiple linear regression (MLR) were applied to predict TVB-N content. The 
results demonstrated that the SAEs-LS-SVM was the best model  (RP

2 = 0.921, RMSEP = 6.22 mg N [100  g]−1 and 
RPD = 3.58)21 for prediction of this index. Overall, in these researches, deep learning was applied to classify the 
samples or select optimal wavebands. It is sometimes necessary to evaluate the numerical output of a product’s 
freshness index for better decision making. Therefore, the use of a regression framework can be preferred over a 
classification one. To the best knowledge, no research has been reported yet on the detection of fish quality by a 
regression framework of deep learning. Moreover, systematization and meta-analysis of the data extracted from 
previous studies can help to obtain conclusive results about the best predictive model for evaluating the TVB-N 
content of fish fillets. Therefore, the discussion of results was established based on meta-analysis and systematic 
review. Therefore, the specific aim of the study is to (1) investigate the potential of visible and near-infrared 
(VIS/NIR) hyperspectral imaging technique coupled with deep learning model to predict the TVB-N content of 
rainbow trout fish, and (2) compare the performance of deep learning algorithm with PLSR and LS-SVM models 
established in current study and (3) meta-analysis of previous researches on the prediction of the TVB-N value 
in meat products using hyperspectral imaging coupled with various chemometric algorithms.

Results and discussion
TVB‑N value. Changes in TVB-N values of 210 subsamples (30 fish fillets per day) during storage were pre-
sented in Table 1. The initial TVB-N content of the rainbow trout fillets was 8.70 ± 0.86 N/100 g, which signifi-
cantly increased during storage time and finally reached to 36.79 ± 4.38 N/100 g, which this data is comparable 
with previous study results for rainbow trout fish  fillets22–25.

The threshold limit of acceptability for the TVB-N of rainbow trout, as a freshwater fish is considered 
20 N/100g26–28. Based on this critical value, the acceptable shelf-life for analyzed rainbow trout was 8 days. Fur-
thermore, as shown in Table 1. the variation range of TVB-N for calibration and prediction set were 38.8 and 
35.48 mg N/100 g, respectively. Therefore, the differences between the fresh and stale samples were highlighted 
during 12 days storage which was helpful to establish a suitable and robust calibration model for predicting the 
total volatile basic nitrogen and consequently estimating shelf-life and quality of rainbow trout fish  subsamples29.

Spectral feature analysis. The mean reflectance spectra plot (400–1000 nm) of fish fillet with different 
TVB-N values are illustrated in Fig. 1. The spectral reflectance curves of samples in various storage days fol-
lowed an almost similar trend. However, overtime, there was an increase in spectral reflectance across the whole 
investigated waveband range. The amplitude of variation of spectral reflectance was recognizable on the spectra 

Table 1.  Descriptive statistics for TVB-N content of samples, measured by the conventional methods. 
Different letters indicate significant difference between average of samples (p < 0.05).

Variable N Mean ± StDev SE Variance Minimum Maximum

0th day 30 8.70 ± 0.86G 0.156 0.73 7.31 11.16

2nd day 30 11.53 ± 1.24F 0.226 1.54 9.58 15.51

4th day 30 14.39 ± 1.39E 0.253 1.92 11.28 17.11

6th day 30 17.14 ± 1.67D 0.305 2.79 14.21 20.66

8th day 30 20.49 ± 2.07C 0.379 4.31 16.28 25.49

10th day 30 26.78 ± 3.63B 0.663 13.19 21.16 35.16

12th day 30 36.79 ± 4.38A 0.799 19.16 28.71 46.11

Calibration (set) 140 19.52 ± 9.29 0.785 86.33 7.31 46.11

Prediction (set) 70 19.17 ± 9.48 1.13 89.95 7.65 43.13

All 210 19.40 ± 9.34 0.64 87.14 7.31 46.11
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plot of samples. it was mainly related to the chemical and physical variations in fish muscle during the freshness 
 loss30,31 due to microbial and enzyme activity. Hence, the fresh samples with lower TVB-N content showed the 
curves with lower reflectance and vice versa.

Overall, the bands in the visible range, 400–700 nm can be connected to the change of fish color. The 
significant absorption regions were observed around near infrared range (700–1000 nm) may be related 
to overtones of several chemical bonds, such as N–H (760–840 nm: protein), C-H (930 nm: protein com-
pound), O–H (690–720 nm and 970 nm: water and lipid oxidation compound)and S–H (930 nm: methylene) 
 stretching8,13,14,32–34.

Optimal wavelength selection. In the current study, the SPA method was used to choose the most 
important wavebands related to the TVB-N content of fish quality from the full spectral range. Nine wavelengths 
(459, 552, 616, 629, 695, 760, 896, 956 and 986 nm) were considered as the optimal variable which covered the 
whole spectral range. Figure 2 showed the frequency of various waveband ranges selected by different methods 
in previous studies. As seen in Fig.  2 the optimal wavelengths almost covered the full spectral range. More 
than half of these wavebands (5 out of 9 wavebands) were located in the visible region of the spectrum (400–
750 nm). The changes of the chemical compounds (e.g. protein, fat, water, etc.) occurring during freshness loss 
of fish can directly reflect in fish fillet color and result in the spectral variations in visible  region35. These results 
were agreed with several previous studies (Fig. 2 and Table 3). Moreover, the results of the meta-analysis (Fig. 2) 
showed that the most frequent waveband range was located at 400–500 (25%) and 501–600 (20%) nm. However, 
in the current study, most of the selected wavebands were located at the main absorption range of 601–700 nm 
which is related to the variation of  H2S produced by microbial  activity36. The waveband of 890 nm is ascribed to 
the C–H and N–H stretching that is associated with protein, methylene group of  lipid11. Water in the fish fillet is 
the major component and finally, the selected waveband 950 nm is assigned to the second overtone O–H stretch-
ing in water and the third overtone C–H and C–H2 stretching of  fat11,37. The waveband was observed around 
1000 nm (990 nm) which are mainly related to the NH stretching of  proteins11,21.
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Figure 1.  Extracted mean reflectance spectra of rainbow trout fish fillets during cold storage.
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Figure 2.  Frequency of optimal spectral range in previous studies.
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Evaluation of TVB‑n value based on deep learning regression framework. In this work, hyper-
spectral imaging (HSI) coupled with linear deep neural network, as a chemometric algorithm, has been applied 
to evaluate the TVB-N content of rainbow-trout fish fillets. It is still very hard to obtain a big dataset for TVB-N 
value of fish samples, due to the use of manual, time consuming and destructive information acquisition tools. 
Therefore, the main characteristic of the available data is the small sample size (210 samples) which restricts the 
functionality of the machine learning tools which are used for prediction. Therefore, the use of the LDNN model 
was proposed for resolving this problem. Because by using the linear activation function, the deep learning neu-
ral network will not overfit to small sample size and the use of any number of layers was allowed for such DNN to 
be trained without the concern of overfitting to the data. The performance of this model in calibration, cross-val-
idation and prediction sets for prediction of TVB-N were presented in Table 2. The result showed that the LDNN 
model exhibited acceptable performance for the prediction of TVB-N content  (R2p = 0.853; RSMEP = 3.159 and 
RDP = 3.001). Moreover, in order to better compare the performance of LDNN algorithm, two well-known mod-
els including PLSR and LS-SVM were also established. Although, all of the chemometric models exhibited good 
performance in the prediction of the TVB-N value (0.82 <  R2

p < 0.9 and 2.5 < RDP < 3). In the calibration set, the 
PLSR and LS-SVM models showed better performance in comparison with LDNN algorithm (lower RMSC and 
higher  R2

C). However, in the prediction set, the lowest RMSEP and difference between RMSEP and RMSEC as 
well as the highest RDP obtained in LDNN model (Table 2). This can be considered as a reason for more stability 
of the LDNN model to predict TVB-N values of rainbow trout fillets. Therefore, Deep learning as a state-of-the-
art method for processing large and complicated datasets, showed a promising performance to resolve regres-
sion problems and evaluation of TVB-N value of fish fillets. In this regard, Yu et al., (2017) used HSI combined 
with a deep learning algorithm (stacked auto-encoders (SAEs)) followed by logistic regression (LR) to classify 
the fresh and stale shrimp based on TVB-N value during cold storage and reported the results showed that the 
established SAEs-LR model is satisfactory for discriminating freshness grade of the shrimp  (R2

P = 0.858 and 
RMSEP = 0.19 and RPD = 2.64)19. Yu, Wang, Wen, Yang, and Zhang (2019) also correlated the hyperspectral 
data (900–1700 nm) for determining total volatile basic nitrogen (TVB-N) content in shrimp. They compared 
Successive projections algorithm (SPA) and deep-learning-based stacked auto-encoders (SAEs) algorithm to 
select spectral features. The SAEs-LS-SVM and SPA-LS-SVM showed a suitable performance with RPD values of 
3.58 and 3.11 respectively which compared with our findings. Deep learning method can learn representational 
features from the dataset during the training process, and show stronger ability than traditional methods in the 
current study (RDP > 3).

Based on Table 3 and Fig. 3, the performance of LDNN model was comparable with the results of previous 
works established for prediction of TVB-N value of various meat and seafood products based on hyperspectral 
imaging  systems5–7,33.

Figure 3a,b showed the effect of various chemometric algorithms on the predictive power of hyperspectral 
imaging system. The results of meta-analysis indicated that although linear models averagely showed a higher  R2

P 
value, the lowest RMSEP was obtained for non-linear model  (R2

P(linear model) = 0.895 ± 0.0417 vs  R2
P(non-linear model): 

0.876 ± 0.0406;  RMSEP(linear model) = 2.945 ± 1.36 vs.  RMSEP(linear model) = 2.648 ± 1.032; P > 0.05). The result was in 
agreement with the LDNN finding. The results of the meta-analysis did not show any significant difference 
between the prediction power of various chemometric models. However, the highest  R2

P and RMSEP value was 
obtained for PLSR model. Since the LS-SVM model showed a relative high  R2

P beside a lower RMSEP value, this 
model can be considered as more stable than the PLSR one to estimate TVB-N content on fish and meat products. 
It should be noted that the performance of a chemometric model is a function of several factors: the number 
of samples and variables; the optimal waveband selection method; the type of samples and chemical structure 
of them; the hyperspectral imaging wavelength range and etc. In this regard, Cheng et al. (2016) reported that 
when the SPA method was used for optimal wavelength selection, the best method was obtained for the LS-SVM 
model, while the GA method was provided the best performance for the MLR  model33. However, Khoshnoudi-
Nia and Moosavi-Nasab et al. (2019) ranked the performance of the various chemometric models to predict 
TVB-N content of rainbow trout based on  R2

P, RMSEP and RDP as follow: LS-SVM > PLSR > MLR > BP-ANN5.
The difference between RMSEP and RMSEC of LDNN model showed that this model provided a stable 

and reliable model for prediction of TVB-N value (RMSEP-RMSEC = 0.2 mg N/100 g). Khoshnoudi-Nia and 
Moosavi-Nasab et al. (2019) also introduced the BP-ANN model (RMSEP-RMSEC = 0.326 mg N/100 g) as a 
suitable model to evaluate rainbow fish fillet freshness. Moreover, as shown in Fig. 4 LDNN model subjected 

Table 2.  Calibration, cross-validation and prediction results of the TVB-N values of rainbow-trout samples 
by hyperspectral imaging system. R2

C(adj) adjusted determination coefficient of calibration, R2
CV (adj) adjusted 

determination coefficient of cross-validation, R2
P(adj) adjusted determination coefficient of prediction, RMSEC 

root-mean-square errors estimated by calibration, RMSECV root-mean-square errors estimated by cross-
validation, RMSEP root-mean-square errors estimated by prediction, RDP residual predictive deviation.

Model n

Calibration Cross-validation Prediction

R2
C(adj) RSMEC R2

CV(adj) RSMECV R2
P(adj) RSMEP RDP

LDNN 9 0.849 3.359 0.855 3.116 0.853 3.159 3.001

LS-SVM 9 0.879 3.300 0.870 3.421 0.861 3.530 2.686

PLSR 9 0.891 3.256 0.877 3.061 0.858 3.596 2.636
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Table 3.  Prediction results of the TVB-N values of several meat products by hyperspectral imaging system. 
SR stepwise regression, PN Physarum network (PN), GA genetic algorithm (GA), RC regression coefficient, 
SPA successive projection algorithm, R2

P adjusted determination coefficient of prediction, RMSEP root-mean-
square errors estimated by prediction, MLR multi-linear regression, PLSR partial least squares regression, 
LS-SVM least squares support vector machine, BP-ANN back-propagation artificial neural network, ANN 
artificial neural network. a The results of quantifying model based on full spectral range.

Meat source Optimal wavebands (n, method) Results Algorithm N of samples Ref

Grass carp (fish)

420; 466; 523; 552; 595; 615; 717; 850; 955
(9: SPA)

R2
p: 0.91a → 0.89

RMESEP: 2.75 → 2.81 LS-SVM 120
7

420; 466; 523; 552; 595; 615; 717; 850; 955
(9: SPA)

R2
p: 0.81a → 0.90

RMESEP: 5.93 → 2.78 PLSR 120

Grass carp (fish)

432; 550; 660; 820; 965
(5: SPA)

R2
p:–a → 0.931

RMESEP:— → 1.065 LS-SVM 280

33

432; 550; 660; 820; 965
(5: SPA)

R2
p:–a → 0.921

RMESEP:— → 1.115 MLR 280

435; 565; 660; 815; 870; 970
(6: GA)

R2
p:–a → 0.922

RMESEP:— → 1.115 LS-SVM 280

435; 565; 660; 815; 870; 970
(6: GA)

R2
p:–a → 0.925

RMESEP:— → 1.098 MLR 280

Grass carp (fish)

416; 442; 445; 515; 560; 601; 660; 690; 730; 780; 
850; 971
(12: GA)

R2
p:–a → 0.917

RMESEP:— → 2.348 PLSR 140

6

416; 442; 445; 515; 560; 601; 660; 690; 730; 780; 
850; 971
(12: GA)

R2
p:–a → 0.923

RMESEP:— → 2.280 LS-SVM 140

428; 550; 601; 655; 775; 986
(6: PN-GA)

R2
p:–a → 0.956

RMESEP:— → 1.737 PLSR 140

428; 550; 601; 655; 775; 986
(6: PN-GA)

R2
p:–a → 0.947

RMESEP:— → 1.846 LS-SVM 140

Rainbow-trout (fish)

488, 542, 576, 602, 626, 706, 764, 857, 951
(9: GA)

R2
p:–a → 0.857

RMESEP:— → 3.58 PLSR 210

5

488, 542, 576, 602, 626, 706, 764, 857, 951
(9: GA)

R2
p:–a → 0.855

RMESEP:— → 3.59 MLR 210

488, 542, 576, 602, 626, 706, 764, 857, 951
(9: GA)

R2
p:–a → 0.862

RMESEP:— → 3.54 LS-SVM 210

488, 542, 576, 602, 626, 706, 764, 857, 951
(9: GA)

R2
p:–a → 0.853

RMESEP:— → 3.64 BP-ANN 210

Rainbow-trout (fish)

481, 524, 554, 595, 629, 696, 721, 768, 896, 958
(10: GA-SR)

R2
p: 0.886 a → 0.900

RMESEP: 3.086 → 3.006 PLSR 210
32

481, 524, 554, 595, 629, 696, 721, 768, 896, 958
(10: GA-SR)

R2
p: 0.881 a → 0.894

RMESEP: 3.114 → 3.12 LS-SVM 210

Cured meat (pork)

- R2
p: 0.81a → -

RMESEP: 5.93 → - LS-SVM

210 34553; 583; 643; 675; 709; 749; 908; 937
(9: RC)

R2
p: 0.85 a → 0.82

RMESEP: 4.92 → 5.38 PLSR

553; 583; 643; 675; 709; 749; 908; 937
(9: RC)

R2
p: –a → 0.86

RMESEP: – → 4.73 MLR

Pork 432; 445; 574; 587; 636; 683; 713; 867; 886
(9: RC)

R2
p: 0.915 a → 0.936

RMESEP: 2.51 → 2.93 PLSR 186 38

Salted pork meat 405; 425; 444; 472; 563; 578; 592; 632; 725; 756
(10: SPA)

R2
p: 0.887 a → 0.875

RMESEP: 2.278 → 2.42 ANN 140

39

Salted pork meat
438; 440; 441; 560; 589; 591;
690; 838
(8: GA-PLS)

R2
p: 0.887 a → 0.882

RMESEP: 2.278 → 2.31 ANN 140

Cooked meat
401, 444, 458, 498, 532, 649,
788, 844
(8: SPA)

R2
p: 0.832 a → 0.836

RMESEP: 2.70 → 2.71 ANN 140

Cooked meat
463, 464, 490, 538, 788, 917,
918, 960
(8: GA-PLS)

R2
p: 0.832 a → 0.853

RMESEP: 2.70 → 2.43 ANN 140

Salted + cooked meats
407, 422, 673, 813, 860, 896,
938, 960, 990
(9: SPA)

R2
p: 0.824 a → 0.831

RMESEP: 2.84 → 2.70 ANN 280

Salted + cooked meats
425, 426, 428, 657, 807, 959,
960, 988
(8: GA-PLS)

R2
p: 0.824 a → 0.854

RMESEP: 2.84 → 2.44 ANN 280
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to some under-fitting and overfitting in the lower and higher value of TVB-N. However, for moderate values 
(10–20 mg N/100 g) LDNN model showed great potential for TVB-N prediction.

Materials and methods
Fish fillets preparation. Forty fresh rainbow-trout (Oncorhynchus mykiss) fish (0.75–1.2 kg) were caught 
in a local aquaculture pond (Bajgah, Shiraz, Fars, Iran) in December 2016 and immediately transported to the 
Seafood-Processing Research Group laboratory (Shiraz, Iran). Total transport time was 15 min. After rigor mor-
tis, the rainbow trout fishes were filleted and washed with cold water. Fish fillets were cut into a small size and 
consequently, 210 subsamples were obtained (8.0 × 4.0 × 1.0 cm). All the subsamples were labeled, packaged by 
and stored at 4 ± 2 ◦C for 12 days. To exhibit the suitability of the model, 70% of subsamples were classified in 
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Figure 4.  Regression results of LDNN for 70 samples of prediction set.
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training (calibration) group (140 subsamples) and 30% was used to test the model (prediction set: 70 subsam-
ples)1.

Acquisition and calibration hyperspectral images. The region of 430–1010 nm was considered for 
analysis. The main components of the HSI system consisted of a mobile platform (stepper motor), hyperspectral 
imaging unit (Hyper Spectral Imaging (1000) spectrograph, Opt Co., Kashan, Iran), an illumination unit (two 
tungsten (100 W) light sources and two daylight fluorescent (36 W) lamps at two sides of the stepper motor). 
The speed of the stepper motor was adjusted on 0.6  mms-1 and exposure time of 25 ms, controlled by a computer 
system (LabVIEW 2011, National Instruments CO. Austin, USA)13,32.

Subsamples were placed on the stepper motor to scan by a line-scanning hyperspectral imaging system. The 
obtained images corrected by black and white reference images to reduce the effect of illumination and “dark” 
current of the hyperspectral imaging  units2,13,28.

Determination of TVB‑N content. Immediately after hyperspectral image collection, the samples were 
analyzed for TVB-N value by a micro Kjeldahl distillation unit (Kjeltec PDU-500,  PECO food  Co., Iran) as 
explained by Goulas & Kontominas (2005) using the following equation:40.

V1 is the titration volume for the tested sample (mL);  V2 is the titration volume of blank sample (mL); c is the 
actual concentration of HCl (mol  L−1); m is the weight of minced muscle (g)12,40.

ROI identification and extraction of spectral data. The region of interests (ROIs) of hyperspectral 
imaging were identified manually by the software of hyperspectral imaging system (LabVIEW 2011, National 
Instruments CO. Austin, USA). A mean spectrum for each fish fillet was obtained and used as input data for 
evaluation TVB-N values of the samples based on a trained deep learning algorithm. Savitzky–Golay (S–G) algo-
rithm was used to decline the noises of extracted average spectrum (by: Unscrambler 10.4; CAMO, Trondheim, 
Norway)5.

Optimal wavelength selection. Data extracted from hyperspectral images of each fish fillet sample 
comprises hundreds of contiguous wavebands. However, most of these wavelengths are poorly correlated with 
TVB-N content. Successive projections algorithm (SPA), as a forward selection method, was used to select the 
most informative wavelengths. This algorithm starts with one waveband and incorporates a new one at each 
replication until a specified number of wavebands with minimum redundancy is  obtained41. The procedure of 
SPA was conducted in Matlab 2016a software (The MathWorks Inc., Mass, USA).

Deep regressor model for TVB‑N prediction. Our objective is to predict the TVB-N value of fish fillets 
based on deep learning method. The main approaches for regression analysis include analytical methods and 
neural network (NN) based methods. The former assumes a mathematical equation and aims at finding the 
optimum parameters for this equation describing the relationship between variables, while the latter train a NN 
as a black box with the input predictor and the output outcome variables, to estimate their relationship.

Artificial neural network (ANN). An ANN is based on artificial neurons (i.e., a collection of connected units) 
which showed in Fig. 5.

Each connection can transmit a signal to other neurons. The output y will be computed  as42:

(1)TVB-N
(

mg/100 g fish muscle
)

=
(V1 − V2)× c × 14

(m× 5)
/

100
× 100

Figure 5.  Diagram of an artificial neuron as building block of a ANN. For a given artificial neuron, let there be 
m + 1 inputs with signals x0 through xm and weights wo through  wm. The output y of the neuron acts like an input 
to the neurons in the next  layer42.
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In Fig. 5, the activation functions ϕ(.) determine the type of the function which ANN approximates. If all acti-
vation functions are selected to be linear, then we will have a linear ANN (LANN), while by choosing nonlinear 
activation functions in ANN the ANN provides a nonlinear function approximator. Moreover, if the number of 
network layers proceeds from some threshold (e.g., 5) we call the NN a Deep Neural Network (DNN).

In this research, DNNs was used for regression of the TVB-N content of fish fillet by a set of existing data. 
The advantage of using NNs over analytical methods include their efficient inference step and their power in 
handling the noise in the data.

The training (learning) phase of NNs is performed considering examples, and without being programmed 
with task-specific rules.

Network structure. Because of the small sample size, training nonlinear NN models for our problem encoun-
ters overfitting to the training data. Therefore, we are restricted to linear regression, to find a line (or a more com-
plex linear function) that most closely fits the data according to a specific mathematical criterion (e.g., MSE). 
The linear models do not overfit to the data because of their simple structure. A seven layers linear Deep Neural 
Network (MLP) was designed for regression of TVB-N content of fish fillets with the structure was presented in 
Fig. 6. LDNN model was designed using Keras library and trained it using 140 samples, as the training data and 
test it using 70 samples as the test data.

PLSR and LS‑SVM models. The calibration between the spectral and TVB-N value was established by 
PLSR and LS-SVM models to compare the results of them with LDNN performance. The linear models were 
conducted in Unscrambler 10.4 × software (CAMO, Trondheim, Norway) and LS-SVM model was established 
in MATLAB R2016a (The Mathworks Inc., Natick, MA, USA).

Model evaluation. The spectral data selected by the SPA algorithm were considered as input for train-
ing (calibration set) and testing (prediction set) the deep learning models. The assessment factors include the 
adjusted determination coefficient  (R2

C(adj),  R2
CV(adj), and  R2

P(adj)), the root mean square error of them (RMSEC, 
RMSECV and RMSEP) and residual predictive deviation (RDP)43.

Generally, a suitable prediction model can be introduced based on the following principles: (i) high value of 
determination coefficient (poor model:  R2 < 0.82; good model: 0.82 ≤  R2 ≤ 0.9; and excellent model:  R2 > 0.9); 
(ii) high RPD value (RPD < 1.5: very poor model; 1.5 < RPD < 2.0: poor model; 2 < RPD < 2.5: fair model; 
2.5 < RPD < 2.5: good model; RPD > 3: very good model and R > 5: excellent model) (iii) low RMSEs values and 
(iv) a small difference between RMSEC and RMSEP  value1,44,45. The building, validation, and evaluation processes 
of LDNN model were carried out in MATLAB R2016a (The Mathworks Inc., Natick, MA, USA)5,32.

Statistical analysis. TVB-N analysis was conducted in 30 replicate and the data were reported as 
mean ± standard division (SD). Statistical analyses were carried out by one-way ANOVA. Tukey’s test was applied 
to determine the significant differences between the means (P ≤ 0.05). Statistical calculations were performed in 
Minitab Version 17 statistical software (Minitab Inc. Pennsylvania, USA).

Meta‑analysis. Meta-analysis was done based on published studies reporting the evaluation of TVB-N 
content of meat products based on HSI system (400–1000 nm). The articles with experimental study design 
(original research), searching on meat and seafood, HSI system (400–1000  nm), TVB-N content (based on 
regression) and English language were considered as eligible article to review. On the other hands the letters, 

(2)y = ϕ(

m
∑

j=1

wjxj)

Layer Type

1 Dense (7, activation = Linear)

2 Dense (6, activation = Linear)

3 Dense (5, activation = Linear)

4 Dense (4, activation = Linear)

5 Dense (3, activation = Linear)

6 Dense (2, activation = Linear)

7 Dense (1, activation = Linear)

(a) (b)

Inputs (mean spectral of 
nine selected wavebands)

Figure 6.  Network structure for first LDNN used in the experiments for regression of TVB-N feature. (a) 
Schematic diagram, (b) detailed structure.
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conference abstracts, patients and review articles as well as the researches classified the meat samples based on 
TVB-N content were excluded. Thus, eight articles (26 case studies: some articles had compared the two or more 
algorithms) were selected. A comprehensive literature search was carried out between 20 December 2019 to 20 
January 2020 on google scholar databases. The following search terms were applied as keywords and Boolean 
operator: “hyperspectral imaging” + meat, TVB-N + “hyperspectral imaging”. The search was limited to English 
language articles. The meta-analysis was carried out based on descriptive analysis (one-way ANalysis Of VAri-
ance (ANOVA)) and comparative analysis (frequency data). Statistical analysis was performed using the Minitab 
17.1.0 (Minitab Inc. PA, USA)46. The further details were provided in supplementary materials (Supplementary 
Fig S1 and Supplementary Table S1).

Statement. All experiments and methods were performed in accordance the approved guidelines of the 
Shiraz University. All experimental protocols were approved by the Ethics Committee of Shiraz University of 
Medical Sciences and all experiments were conducted in accordance with the approved guidelines of Iran Vet-
erinary Organization.

The methods were carried out in accordance with the approved guidelines of the University of Sydney Ethics 
Committee. All experimental protocols were approved by the University of Sydney Ethics Committee.

Ethical approval. This article does not contain any studies with human participants performed by any of 
the authors.

Conclusions
In several previous works, the potential of various deep learning algorithms to classify of seafood and meat prod-
ucts in two freshness grades (fresh and stale) was investigated. The results demonstrated that the hyperspectral 
imaging system coupled with the deep learning method had great potential for classifying of freshness quality 
of meat products with a total classification accuracy of more than 90%. However, sometimes the evaluation of 
freshness index based on numerical output and in a regression, framework is helpful for better decision mak-
ing and management. As a result, the present study is the first time that a deep learning algorithm was applied 
to predict a freshness indicator in regression framework. In the calibration set, the PLSR and LS-SVM models 
showed better performance than the LDNN algorithm. However, in the prediction set, the findings of this 
study demonstrate that the combination of linear deep learning neural network and the hyperspectral system 
gave reasonable accuracy for the prediction of TVB-N content in fish fillets  (R2

P = 0.853; RMSEP = 3.159 and 
RDP = 3.001). Based on the meta-analysis, the results of established prediction system were comparable with 
the hyperspectral imaging system based on the traditional chemometric analysis. In order to make the DLNN 
model with higher accuracy and ability, a large amount of data to train the system is necessary. it is the most 
important challenge for evaluating food product quality based on a deep-learning algorithm and experimental 
data. Therefore, there is still much work to be done and the results obtained by the SPA-LDNN method would 
encourage more research efforts on using deep learning as a novel chemometric method for evaluating the 
freshness quality of food products. Establishing a comprehensive database for a certain fish freshness index, the 
extraction of modeling features (e.g., optimal wavebands) based on a deep-learning method and the use of other 
deep-learning algorithms and compare their performance, are some suggested solutions to enhance the accuracy 
of a hyperspectral system coupled with deep learning algorithms.

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
on reasonable request.
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