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Bayesian network‑driven clustering 
analysis with feature selection 
for high‑dimensional multi‑modal 
molecular data
Yize Zhao1*, Changgee Chang2, Margaret Hannum3, Jasme Lee3 & Ronglai Shen3*

Multi‑modal molecular profiling data in bulk tumors or single cells are accumulating at a fast pace. 
There is a great need for developing statistical and computational methods to reveal molecular 
structures in complex data types toward biological discoveries. Here, we introduce Nebula, a novel 
Bayesian integrative clustering analysis for high dimensional multi‑modal molecular data to identify 
directly interpretable clusters and associated biomarkers in a unified and biologically plausible 
framework. To facilitate computational efficiency, a variational Bayes approach is developed to 
approximate the joint posterior distribution to achieve model inference in high‑dimensional settings. 
We describe a pan‑cancer data analysis of genomic, epigenomic, and transcriptomic alterations in 
close to 9000 tumor samples across canonical oncogenic signaling pathways, immune and stemness 
phenotype, with comparisons to state‑of‑the‑art clustering methods. We demonstrate that Nebula 
has the unique advantage of revealing patterns on the basis of shared pathway alterations, offering 
biological and clinical insights beyond tumor type and histology in the pan‑cancer analysis setting. 
We also illustrate the utility of Nebula in single cell data for immune cell decomposition in peripheral 
blood samples.

Recent technological advances have allowed the collection of high-dimensional, multiscale molecular data using 
genome-wide platforms that assayed DNA (exome sequencing, DNA methylation, and copy number profil-
ing) and RNA (mRNA and microRNA sequencing) expression in large tumor  cohorts1 as well as in single cell 
 populations2,3. There is a great need for advanced statistical and computational methods and algorithms to facili-
tate scientific discoveries from mining these accumulating data sources. In this study, we focus on cross-modality 
integration and clustering analysis with two major applications: tumor subtype stratification and deconvolution 
of single cell subpopulation.

In tumor profiling studies, integrative clustering analysis allows patient stratification into subtypes that bring 
great potential to personalize cancer diagnosis and  treatment4,5. The recent pan-cancer integrative molecular 
classification study has revealed groupings of tumor samples primarily organized by histology, tissue type, or 
anatomic  origin1. Nevertheless, recent oncology drug development landscape is dominated by efforts on target-
ing genomic alterations independent of tumor  histology6,7. Examples include PARP inhibitors targeting HR-
deficiency and immunotherapies approved for pan-cancer indication for MSI subtype. Therefore, a statistical 
and computational tool that allows discovery of subgroups of patient population on the basis of shared path-
way alterations will enrich novel designs of modern clinical trials. In single cell studies, clustering analysis has 
been developed for spatial reconstruction, cell identity classification, and clonal  decomposition8–11. With recent 
advances in multi-modality profiling of single  cells2,3,12,13, integrative clustering algorithms with the incorporation 
of network priors will allow more in-depth understanding of cell heterogeneities and interactions.

Clustering models that incorporate multiple data types have been recently developed under joint latent vari-
able  approaches14,15, kernel- or graph-based  integration16,17 and Bayesian parametric or nonparametric mixture 
 models9,18. Although most of them are capable to characterize a certain degree of concordance and heterogeneity 
across data types, there are still several main challenges. First, it is computationally imperative as well as biologi-
cally important to simultaneously identify subgroups and pinpoint the core sets of biomarkers that characterize 

OPEN

1Department of Biostatistics, Yale University, New Haven, CT, USA. 2Department of Biostatistics, Epidemiology 
and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. 3Department of 
Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA. *email: yize.zhao@
yale.edu; shenr@mskcc.org

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-84514-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5146  | https://doi.org/10.1038/s41598-021-84514-0

www.nature.com/scientificreports/

the subgroups with probabilistic model inference. Secondly, there is a need to incorporate knowledge on biologi-
cal functions (e.g. molecular pathways and regulatory networks) within and across molecular modalities for a 
more interpretable and useful classification of tumor and cell populations. It is particularly important to delineate 
molecular heterogeneity and biological understanding beyond cell of origin. Finally, scalable implementation 
is crucial for clustering analysis of modern multi-model data sets across tens of thousands of patient samples or 
single cells. To address these challenges, we aim to develop a high-dimensional clustering method that incor-
porates biological network information across different data modalities. We present Nebula (Network-based 
multi-modal clustering analysis), a novel Bayesian network-based clustering analysis for multi-modal integration 
and clustering with feature selection, and compare its performance in pan-cancer tumor profiling and single 
cell transcriptome sequencing data to state-of-the-art clustering algorithms including  iCluster14 and  Suerat8.

Results
Nebula: method overview. The main analytical objective is to jointly cluster patients based on molecular 
similarity within and across modalities, and identify associated biomarkers that capture the key characteristics 
for each subgroup. Under a Bayesian nonparametric Dirichlet process mixture (DPM) model, Nebula is capable 
to interactively learn group label and molecular signature through the guidance of biological network infor-
mation. Specifically, as shown in Fig. 1, given the collected M-modality data X1, . . . ,XM of diverse data types 
(e.g. Normal, Bernoulli), we first introduce a biomarker- and individual-specific indicator variable γ ∈ {0, 1} 
to determine whether the biomarker makes significant contribution to cluster the individual into a particular 
subtype. Given the value of γ , each observation is partitioned into a cluster-active set and a cluster-inactive 
set, with θ0 and θ1 representing the associated parameter sets in the null and alternative distributions. The null 
distributions are cluster-unrelated, and we assign noninformative Bayesian priors on θ0 to remove unwarranted 
constrain. While the alternative distributions provide information to define clusters, and we introduce cluster-
specific distribution for θ1 with additional hyper-priors. To further incorporate biological information, we sum-
marize molecular pathways, biological and regulatory networks within and between modalities into indirect 
graphs with biomarkers as nodes and their connections as edges. Based on the graph, we smooth over indicator 
set γ = {γ } using multi-modal Ising model under sparse parameters η and smooth parameters ν to induce a 
coupling effect among selection status of connected biomarkers. Eventually, the joint distribution of (γ , θ1, θ0) 
discriminates the subjects by clusters (with cluster label z) under a mixture of null and alternative distributions, 
and it follows a distribution G, which samples from a DPM with base measure G0 and concentration parameter 
α0 . The discrete nature of DPM realizes a distribution-based grouping effect, where each group is defined only 
under its specific active biomarker set across modalities denoted as (X1

1 , . . . ,X
1
M) . Under our joint modeling 

framework, the biomarker associated parameters and selection indicators for all data modalities are simultane-
ously estimated and clustered under the guidance of existing knowledge within and between data modalities, 
leading to substantially improvements on biological interpretations and statistical power. It is also worth noting 

Figure 1.  Nebula, a multimodal integrative clustering framework using a Bayesian nonparametric Dirichlet 
process mixture (DPM) model for simultaneous high-dimensional clustering and feature selection, with 
biological networks within and between data modalities incorporated as prior knowledge via graph models.
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that neither pre-specified cluster number nor high-dimensional biomarker screening is required in our model, 
which ensures the practical superiority of Nebula over existing best practices.

Intensive computation is always a challenging issue for Bayesian modeling particularly for high-dimensional 
integrative analysis. To allow feasible implementation of Nebula, besides Markov chain Monte Carlo (MCMC), 
we also develop a computationally efficient variational Bayes (VB) algorithm to approximate posterior distri-
bution. We have done extensive experiments to test the model performance under both MCMC and VB, and 
conclude that compared with MCMC, our proposed VB algorithm manages to speed-up posterior computation 
in almost a hundred-fold in the scale of our numerical experiments with minimal sacrifice in clustering and 
feature identification performance. Technical details of the model and the VB algorithm implementation can be 
found in Online Method. An open-source software implementation of Nebula is available on GitHub (https ://
githu b.com/nebul a-group /nebul a).

Scalable implementation is crucial for clustering analysis of modern multi-model data sets across tens of 
thousands of patient samples or single cells. To illustrate the computation efficiency, we conducted a simula-
tion experiment to assess the computational time for the algorithm. Specifically, we perform simulations under 
sample size 1000 or 5000. Under each sample size, we consider three different feature dimensions with p = 1000; 
10,000; 100,000 and two simulated data modalities. We assume 10% of the features to be signals which divide all 
the subjects into three groups. Under each scenario, we generated the first data type from Normal distributions 
with means −2 , 2 and 6 and standard deviation 0.1; and the second data type from Bernoulli distributions with 
probabilities 0.2, 0.5 and 0.8. For noise part, we simply generated them from a standard Normal distribution. 
Based on the simulation setting above, Nebula can fully uncover the group label for all the subjects under each 
scenario. The computational cost in seconds under R implementation, 3.4 GHz CPU, 8 GB Memory, Windows 
System are shown in Table 1. As Table 1 shows, for a dataset of 5000 samples with P = 100,000 features, the 
algorithm can finish within a few hours, which is highly feasible and competitive in computational speed for a 
Bayesian algorithm.

Nebula analysis of the TCGA pan‑cancer dataset. Data description and model fitting. Our analyses 
include 8855 solid tumor samples across 31 solid tumor types in the TCGA PanCancer Atlas collection. DNA 
alterations (point mutation, copy number alterations, DNA methylation) detected from whole-exome sequenc-
ing and 450k DNA methylation array, mRNA gene expression from mRNA-seq platforms, along with clinical 
annotation are available for each sample. We format the data into two separate gene-by-sample matrices for 
DNA alteration and mRNA expression respectively. The DNA matrix annotates individual genetic alterations 
for each gene by integrating across different data types at the DNA level as described in Sanchez-Vega19. Specifi-
cally, alterations are classified into activating events (hotspot missense mutations, copy number amplifications 
or fusions) associated with oncogenes and inactivating events (truncating mutations, deletions, promoter DNA 
methylations) associated with tumor suppressor genes. For the DNA data matrix, we focus on a total of 187 
cancer genes curated for canonical signaling pathways reported in Sanchez-Vega19 which are altered recurrently 
in tumor samples. We choose to focus on this gene set as genetic alterations beyond these genes are either rare 
or the functional impact is unclear. The gene expression data matrix includes upper quartile normalized RSEM 
 data1 from mRNA-seq for 1239 genes, the union of 1000 most variable genes from the transcriptome (capturing 
the dominant variation in the dataset which is the cell-of-origin as reported in Hoadley et al.1) plus 141 immune-
related genes and 103 stemness marker genes which will be described shortly. This dataset is assembled this way 
to reflect the fact that the molecular phenotype of a tumor is complex and influenced by a multitude of factors 
including cell-of-origin, histology (e.g., squamous vs. adenocarcinoma), tumor microenvironment (e.g., im-
mune cell infiltration), dedifferentiation states, and oncogenic pathway activation. It allows a direct comparison 
of the Nebula analysis with the existing unsupervised integrative clustering approach.

To construct the biological graph, ten canonical oncogenic pathways are considered: cell cycle, Hippo, Myc, 
Notch, oxidative stress response/Nrf2, PI-3-Kinase/Akt, receptor-tyrosine kinase/RTK-RAS, TGFβ signaling, 
p53 and β-catenin/Wnt signaling, which are frequently altered at the genetic and epigenetic level, focusing on 
pathway members likely to be cancer drivers or therapeutic  targets19. An edge is drawn between two genes if they 
belong in the same oncogenic pathway. Members of these pathways and their interactions have been captured in 
a number of pathway databases, such as Pathway  Commons20,  REACTOME21 and  KEGG22.

At the mRNA expression level, we included the immune marker set as defined in Yoshihara et al., (2013)23 
and a stemness index defined in Malta et al.24. Immune cell infiltration characterizes tumor microenviron-
ment and can be quantified by the immune pathway gene expressions using RNA-seq data. It has been shown 
as a good prognostic index in several tumor types and can inform the design of immunotherapy treatment 
 strategies25,26. The stemness index measures oncogenic dedifferentiation from the cell of origin and acquisition 
of progenitor-like, stem-cell-like features. It has been associated with distant metastasis, disease progression and 

Table 1.  Assessment of running time (shown in seconds) for Nebula using simulated datasets of varying sizes. 
N is the number of samples and P is the number of features.

P = 1000 (s) P = 10,000 (s) P = 100,000 (s)

N = 1000 4 152 9120

N = 5000 17 441 23,254

https://github.com/nebula-group/nebula
https://github.com/nebula-group/nebula
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poor prognosis. The signaling networks and pathways are converted to undirected graphs with vertices represent-
ing genes in the networks and edges corresponding to biological interactions within and between modalities.

We ran Nebula across a set of parameter settings ( α0 ∈ {10, 100, 1000} , η ∈ {10, 100, 1000} × {10, 100, 1000} ; 
ν ∈ {1, 10} × {1, 10} × {1, 10} ). From each output, we computed F-statistics for leukocyte fraction and stemness 
index measured by the transcriptomic changes, and χ2 statistics for each of the 10 oncogenic signaling pathways 
altered at genomic and epigenomic levels. We then used Fisher’s method to combine the p values for these tests 
to select the optimal Nebula solution that show maximal differences across the biological pathway activities. 
We note this model selection procedure can be extended to optimize other metrics of interest such as survival 
difference across the subgroups which we describe later in the analysis of melanoma patient stratification.

Nebula identifies cancer subtypes driven by shared pathway activities across tissue sites. Recent pan-cancer analy-
ses and single cell studies have shown that conventional unsupervised clustering applied to a large patient cohort 
is predominantly driven by major factors such as cell-of-origin or  histology1–3. Using the t-Distributed Stochastic 
Neighbor Embedding (t-SNE)27 approach to project the data onto a two-dimensional map clearly shows that tis-
sue site explains the major variation in the data (Fig. 2A), which is consistent with the TCGA pan-cancer cell-of-
origin  study1 as well as in single cell  populations2,3. Tumors from the same organ site cluster tightly around each 
other. Cancers from sites anatomically connected (e.g., GI track including esophageal (ESCA), stomach (STAD), 
colorectal (COAD, READ)), or of the same histology (e.g., squamous cell carcinomas including lung (LUSC) 
and head and neck (HNSC)) are further positioned close to each other in molecular distances (Fig. 2A). This is 
expected with unsupervised clustering performed on most variable feature which captures cell-of-origin as the 
dominant variation. Indeed, when we applied an integrative clustering analysis on the most variable features 
using the iCluster  algorithm14, we obtained clusters primarily driven by organ sites (Fig. 2B).

If identifying clusters with shared biology rather than tissue type is of interest, we show Nebula provides a 
more directed approach. In fact, the majority of Nebula clusters are highly mixed in tissue type (Supplementary 
Fig. 1A) and formed by shared oncogenic signaling and pathway activities with potential therapeutic implica-
tions (Fig. 2C, Supplementary Figs. 1 and 2). For example, cluster 19 (yellow) is driven by high stemness index 
(Fig. 3A). This cluster included a total 1,366 individual tumors across 12 tumor types including subsets of blad-
der, cervical, colorectal, head and neck, lung squamous and endometrial cancer. Most samples in this cluster are 
also enriched for TP53 and RTK-RAS pathway alterations (Fig. 3C). Cluster 7 (light blue) is characterized by 
high leukocyte fraction (immune infiltration) (Fig. 3B), with a total of 915 tumors across multiple cancer types 
including melanoma, lung adenocarcinomas, breast and kidney cancer. A few disease types remain strongly 
distinct in this analysis including gliomas (GBM and LGG) which form the tissue-type dominant clusters 9, 11, 
18 and 24, pan-kidney (cluster 16), and thyroid cancer (clusters 1 and 10) (Supplementary Fig. 1A).

Nebular incorporates a feature selection process in the Dirichlet process mixture model by using a feature and 
patient specific indicator to infer cluster-active vs cluster-inactive states with different priors (see “Methods” Sec-
tion). Biological and regulatory networks are embedded into indirect graphs with a multi-modal Ising model to 
induce coupling effect among selection status of connected genes. Supplementary Fig. 3 shows the mRNA expres-
sion features selected in the TCGA pan-cancer analysis. All of the immune and stemness markers were selected 

Figure 2.  Nebula analysis identifies cancer subtypes driven by shared pathway activities across tissue sites. 
t-SNE plot of the TCGA  9000 tumor samples across 31 tissue sites. Each dot is a tumor sample. (A) Major 
molecular variation separates organ site where the tumor arise. Circle highlight three broader category including 
GI (gastrointestinal) track, Sq (squamous cell carcinomas), and Pan-kidney; (B) Integrative clustering on most 
variable genes using the iCluster algorithm; (C) Nebula cluster membership superimposed on the t-SNE plot.
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together across all of the 24 clusters as we enforced a strong prior on these pathways, while only a small fraction 
of the most variable genes were selected reducing the effect from lineage-specific differences across cancer sites.

Nebula identifies melanoma subtypes with distinct clinical outcome. The clinical role of tumor-infiltrating lym-
phocytes has been established in several cancer  types25,26,28. Here we perform a Nebula analysis using the same 
biological graphs as used in the full pan-cancer analysis on the 363 TCGA melanoma samples and eventually 
identify 4 subtypes with distinct prognostic outcomes, Clusters 2 and 3 show higher lymphocyte fraction and 
association with good prognosis (Fig. 4A,B). Cluster 3 has higher fraction of TP53 pathway alterations (Fig. 4B) 
and higher fraction of triple-WT tumors (wild-type for BRAF, NRAS, and NF1) (Fig. 4C). The 5-year survival 
rate for Nebula identified immune-associated cluster 2 and 3 are 49% (95%CI: 39–60%) and 61% (95%CI: 
45–82%) respectively, significantly better than cluster 1 and 4 with a 5-year survival rate of 8% (95%CI: 2–29%) 
and 29% (95%CI: 21–40%). The Nebula cluster stratification in survival outcome (Fig. 4A) is also more strik-
ing than TCGA mRNA expression subtypes (Fig. 4D) derived from consensus hierarchical  clustering28, with a 
5-year survival rate of 47% (immune subtype), 32% (MITF-low) and 15% (Keratin subtype). Here we show that 
by incorporating biological knowledge as prior, Nebula can enhance patient stratification toward identifying 
clinically relevant subtypes.

Immune cell decomposition from single cell data using Nebula. Finally, we describe Nebula analy-
sis of a single-cell RNA-seq  dataset29 profiling 68k peripheral blood mononuclear cells (PBMCs) from a healthy 
donor to dissect immune cell populations. Our analyses include a total of 12,039 cells after filtering as in Cole 
et al.30 and data pre-processing as described in Lopez et al.31. To map cell subpopulations, state-of-the-art single 
cell pipelines (e.g., Seurat) typically use k-means or hierarchical clustering of the most variable  genes8,29. Nebula 
offers several advantages over deterministic algorithms through a Bayesian probabilistic inference framework 
and the selection of features that characterize each subpopulation. In addition, we incorporated prior informa-
tion in graph structures on 22 functionally defined human immune subsets across 547 genes that distinguish 
hematopoietic cell phenotypes as describe in Newman et al.32. We further restricted to marker genes with stand-
ardized reference expression value > 0.1 for constructing the graph sets as Nebula input (Fig. 5A). This will allow 
more robust mapping of immune cell subpopulations against noise and unknown variabilities and allow more 
refined discrimination of rare or related cell types. Fig. 5B shows that Nebula maps the major different immune 

Figure 3.  Highlighting Nebula clusters driven by stemness phenotype and immune marker activities, TP53 and 
RTK-RAS pathway activities.
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cell subpopulations differentiating CD4, CD8, B cells, and monocytes, as well as smaller cell subsets including 
NK cells and dendritic cells with high precision. The Nebula cell type assignment has a concordance rand index 
of 0.923 with the Seurat assignment.

Discussion
In this paper we present Nebula, a powerful clustering approach for high-dimensional multi-modal molecular 
data. The method constructs a unified framework to identify subgroups along with their associated molecular 
features under the guidance of biological networks within and across different data types. To facilitate compu-
tational efficiency. we also develop a variational Bayes algorithm to achieve scalable implementation in high-
dimensional settings. We apply the method to both pan-cancer and a single cell data. In pan-cancer, using a 
set of canonical oncogenic signaling pathways, an immune and a stemness index across point mutations, copy 
number alterations, DNA methylation and mRNA expression data we show that current clustering methods 
performed on most variable features inevitably lead to subgroups primarily driven by cell-of-origin. By contrast, 
Nebula allows targeted identification of subgroups driven by shared pathway activities of interest, and can be 
readily extended to include any number of additional pathways and genesets of interest for discovering shared 
biology across cancer types.

For the single cell data, using a scRNA data of peripheral blood mononuclear cells from a single healthy donor, 
we show as a proof-of-principal that Nebula can be readily applied to deconvolute heterogeneous cell subpopula-
tions in single cell data. In this analysis, we demonstrate that Nebula can accurately identify major immune cell 
subsets. Unsupervised clustering performs equally well in this setting, but will be considerably less effective for 
mixtures with more complicated compositions with content unrelated to immune phenotypes and noise, and 
for discriminating closely related cell types (e.g., naive vs. memory B cells). It is anticipated that Nebula has the 
potential to dissect the signals of interest with more precision. Furthermore, it can be applied to multi-modal 
single cell data to dissect heterogeneous cell populations. The Nebula method and software tool we developed 
here will speed up exciting biological discoveries potentially relevant to clinical applications with the increasing 
amount of multi-model datasets generated from patient samples in both bulk tumor and single cell settings.

Figure 4.  Integrated network-based clustering identifies four melanoma subtypes. (A) Kaplan–Meier survival 
curves for the Nebula clusters; (B) Leukocyte fraction and DNA alteration of the 10 oncogenic pathways across 
the Nebula clusters; (C) Comparison of the Nebula clusters to the TCGA mRNA expression and mutation 
subtypes; (D) Kaplan–Meier survival curves for the TCGA immune subtype.
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Methods
Nonparametric clustering embedded with feature selection. We formulate the model for gen-
eral multi-modal data structure. Suppose there are n subjects with M data modalities generated from differ-
ent sources, e.g. biological procedures including gene expression, DNA alternation, etc. We denote the overall 
observed data as X = (X(1), . . . ,X(M)) = (xT1 , . . . , x

T
n )

T with n× pm matrix X(m) = {x
(m)
ij } representing pm fea-

tures within data modality m across all the subjects, and xi summarizing observations over p =
∑

m pm features 
for subject i. The collected features are dependent with each other within and between each data modality. For 
example, the pathway membership within gene expression data, the regulation between gene expression and 
DNA alternation. Such information essentially can be transformed into undirected graphs with nodes repre-
senting features and edges indicating the existence of their relationship. Here, we use graph G(m) to capture the 
structrual information within modality m, and G(m,g) for the relationship between modalities m and g.

To study data structure and subject similarity in the presence of high dimensional data, clustering embed-
ded with feature selection should be performed to group observations with respect to the identified features 
that define each group. However, there is a lack of unified approach to achieve so. To conduct clustering while 
simultaneously distinguish the contribution of features, we introduce a dummy indicator γ (m)

ij ∈ {0, 1} to denote 
the selection status of feature j within modality m for subject i. Vector γ (m)

i = (γ
(m)
i1 , . . . , γ

(m)
ipm

)T partitions each 
observation from modality m into informative and non-informative components. Accordingly, the informative 
piece is modeled under parameter set �(m)

i1 = (θ
(m)
i11 , . . . , θ

(m)
i1pm

) , which varies by subject index to distinguish the 
definition for each cluster; and the noninformative set is associated with parameter set �(m)

0 = (θ
(m)
01 , . . . , θ

(m)
0pm

) , 
which is subject independent indicating minimal observation variation. We carry out the joint analyses under 
the following Bayesian nonparametric model

with i = 1, . . . , n . Specifically, F(·) is the conditional distribution over modalities and features for xi , which can 
be represented as a product of distribution function in each modality fm,m = 1, . . . ,M . Depending on the data 
generation process, fm varies among different distributions e.g. Normal, Bernoulli, Poisson, etc. In other words, 
each observation is generated from a two-component mixture

(1)
xi | {γ

(m)
i ,�

(m)
i1 ,�

(m)
0 }Mm=1 ∼ F({γ

(m)
i ,�

(m)
i1 ,�

(m)
0 }Mm=1),

{γ
(m)
i ,�

(m)
i1 ,�

(m)
0 }Mm=1 | G ∼ G,

G ∼ DP(G0,α0),

(2)x
(m)
ij | γ

(m)
ij , θ

(m)
i1j , θ

(m)
0j ∼ γ

(m)
ij fm(θ

(m)
i1j )+ (1− γ

(m)
ij )fm(θ

(m)
0j ),

Figure 5.  Nebula analysis of single cell RNA-seq data of peripheral blood mononuclear cells (PBMCs). (A) 
Leukocyte signature matrix of 22 functionally defined immune gene sets (column) across 547 genes (row) that 
distinguish hematopoietic cell phenotypes as described in Newman et al. The heatmap matrix indicates whether 
a gene has standardized reference expression above 0.1 (red) in the corresponding cell type as an additional 
filtering step for the immune subsets associated markers as Nebula network input. (B) t-SNE plot of the 12,039 
PBMCs with color indicating Nebula cluster assignments.
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where the joint distribution of unknown parameters follows function G and we assign G to be a nonparametric 
Dirichlet process (DP) distribution with base measure G0 and concentration parameter α0 . Here G0 provides 
prior support for the samples to center on, and α0 controls the strength of concentration. In order to conduct 
posterior inference, we rewrite model (1) by a stick-breaking representation based on weighted sums of infinite 
point masses as

where δch is the point mass at ch , with ch ∼ G0 . Function G is an infinite discrete distribution, and realizations of 
{γ

(m)
i ,�

(m)
i1 ,�

(m)
0 }Mm=1 can be obtained by sampling from random draws {ch}∞h=1 under weight {w′

h}
∞
h=1 . Eventually, 

the discrete nature of DP allows to cluster subjects with identical set of parameter values. The informative features 
defining each cluster will be captured by the selection status, and the estimated cluster specific distributions will 
be crucial for future subject classification.

Biological plausible priors. We assign priors for the unknown parameters in models (1), (3). In the TCGA 
data, as described above, we integrate gene expression and DNA alteration for each patient. Therefore, distribu-
tion (2) for x(m)

ij , i = 1, . . . , n, j = 1, . . . , pm,m = 1, 2 becomes

Based on (4), we assume the partial base measure related to the joint distribution of (µij , σ
2
ij ) to be normal-

inverse-gamma, i.e. N-IG (0, �,ασ ,βσ ) and that related to the distribution of pij as Beta(αp,βp) , to induce dis-
crimination among clusters. In terms of the parameters for the noice features, we directly set point mass 0 and 20 
as the partial base measure for µ0j and σ 2

0j to introduce a flat, noninformative prior support for the noninforma-
tive features that contribute to none of the clusters. Similarly, we set the base measure for the distribution of p0j 
to be point mass at 0.5. The prior specification in the single cell data analysis directly follows the above setting.

The underlying molecular dependency within and cross modalities is often omitted in existing clustering 
analysis, but provides crucial biological guidance to define patient subtypes. Here, based on the extract molecular 
network information, we assume the biologically graph within gene expression as G(1) , that within DNA alter-
nation as G(2) , and within two modalities as G(1,2) . We modify Ising model to accommodate different modality 
components and impose the following prior for indicator {γ (1), γ (2)}

where j ∼G k indicates features j and k are adjacent in graph G . Model (5) induces a coupling effect over bio-
logical networks with η1 and η2 adjusting the sparsity of informative gene and DNA biomarkers, ν1 , ν2 and ν′ 
controlling the smoothness over network in each modality and between them. By incorporating prior (5) into 
our joint clustering framework, we can enhance both grouping and feature identification under guidance from 
underlying biologically networks, which may provide more meaningful biologically interpretation compared 
with existing alternatives.

Variational Inference. We develop posterior inference algorithms to estimate model parameters for Neb-
ula. To estimate posterior distributions, we develop the Markov Chain Monte Carlo (MCMC) algorithm via 
Gibbs sampler by drawing from the conditional probability distribution of each parameter. However, due to the 
high dimensional feature space, MCMC algorithms are computationally intensive and difficult to scale up in real 
practice. Therefore, we develop a variational Bayes (VB)  inference33 algorithm, which approximates the posterior 
distribution by a simpler distribution, called the variational distribution. We have done extensive numerical 
studies to test the performance of both algorithms, and observed the VB algorithm reduces computational cost 
for around 100 folds compared to the MCMC approach. We describe below the construction details for the VB 
algorithm.

To fix the ideas, note that the model parameters are now � = (z,w, γ ,µ, σ 2, P) where z is an n-dimensional 
vector, w is an ∞-dimensional vector, γ is a p×∞ matrix, µ and σ 2 are p1 ×∞ matrices, and P is an p2 ×∞ 
matrices. For notational convenience, we keep µ , σ 2 , and P as p×∞ matrices where the lower p2 rows of µ , 
σ 2 and the upper p1 rows of P are unused. The posterior loglikelihood deduced from the model is given in Sup-
plementary Note.

(3)

G =

∞
∑

h=1

w′
hδch ;

w′
h = wh

h−1
∏

l=1

(1− wl); wl ∼ Beta(1,α0); h = 1, . . . ,∞,

(4)
x
(1)
ij | zi , γ

(1)
ij ,µij ,µ0j , σ

2
ij , σ

2
0j ∼ γ

(1)
zi j

N (µzi j , σ
2
zi j
)+ (1− γ

(1)
zi j

) N (µ0j , σ
2
0j);

x
(2)
ij | zi , γ

(2)
ij , pij , p0j ∼ γ

(2)
zi j

Bern (pzij)+ (1− γ
(2)
zi j

) Bern (p0j).

(5)
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(1)
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i ) ∝ exp
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In variational inference, the variational distribution is often assigned a product (independent) measure of 
the individual model parameters, as it facilitates computation and leads to scalability. Thus, we take a product 
measure on z , w , γ , (µ, σ 2) , and P for the variational measure q(�) as follows.

where under q,

where expit(c) = 1/(1+ e−c) . Note that the variational distribution restricts the number of clusters H by setting 
wH = 1 with probability 1 for some H, although our model does not restrict the number of clusters.

Algorithm. We approximate the posterior distribution by maximizing the evidence lower bound (ELBO), 
which is defined as

It is straightforward to see that

where the RHS refers to the Kullback–Leibler divergence between the posterior distribution and the variational 
measure, which is always nonnegative. This implies (1) maximizing ELBO is equivalent to minimizing the Kull-
back–Leibler divergence and therefore it is fair to say that the posterior distribution is approximated by the 
variational measure and (2) ELBO being maximized gets close to the evidence logπ(X).

The formula of ELBO is analytically available and we optimize ELBO by the (blockwise) coordinate descent 
algorithm. The complete algorithm for the Nebula under VB is presented in online Appendix. It is worth noting 
the time complexity of the algorithm is O(npH + eH) per iteration where e is the number of edges in the graphs 
G(1) , G(2) , and G(1,2) , which is extremely efficient for any practical use.

Model selection and evaluation. To implement the Nebula, we will need to pre-specify hyper-parameter 
values for α0 , η = (η1, η2) and ν = (ν1, ν2, ν

′) . Of note, compared with parametric clustering methods, the Neb-
ula does not require to pre-determine the number of clusters. During the model implementation, we can always 
choose a conservative value for H to make it much larger than the cluster number.

In the analyses, our goal is to achieve clustering with biological variability across the pathways we are inter-
ested in. To find the most desirable solution, We run the Nebula under a range of parameter values including 
α0 ∈ {10, 100, 1000} , η ∈ {10, 100, 1000} × {10, 100, 1000} , and ν ∈ {1, 10} × {1, 10} × {1, 10} . From each output, 
we compute the F-statistics for the immune and stemness index measured by the transcriptomic changes in the 
TCGA pan-cancer analysis, and the χ2 statistics for each of the 10 oncogenic signaling pathways alter at genomic 
and epigenomic levels. We then use the Fisher’s method to combine the p values for these tests to select the 
optimal solution that explains maximal differences across the biological pathway activities. In the single cell data 
analysis, we used a similar strategy to compute an integrated F statistic across the  CIBERSORT32 immune marker 
subsets. In a homogeneous cohort setting, other calculations may be appropriate to refine parameter selection 
and evaluate results. For example, calculating log-rank statistic to maximize survival differences between groups.

Data availability
The two data sets used in this study are publicly available. The TCGA data set is available at https ://porta l.gdc.
cance r.gov/. The single cell RNAseq data set is available from Zheng et al.29.

Code availability
A software implementation of Nebula is available in the public domain at https ://githu b.com/nebul a-group /nebul 
a. Instruction on installation and a tutorial on running Nebula analysis is also provided.
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