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Genetic and phenotypic 
diversity of methicillin‑resistant 
Staphylococcus aureus 
among Japanese inpatients 
in the early 1980s
Hui Zuo1, Yuki Uehara1,2,3,4*, Yujie Lu4, Takashi Sasaki4,5 & Keiichi Hiramatsu1,4

To trace the linkage between Japanese healthcare-associated methicillin-resistant Staphylococcus 
aureus (HA-MRSA) strains in the early 1980s and the 2000s onward, we performed molecular 
characterizations using mainly whole-genome sequencing. Among the 194 S. aureus strains isolated, 
20 mecA-positive MRSA (10.3%), 8 mecA-negative MRSA (4.1%) and 3 mecA-positive methicillin-
susceptible S. aureus (MSSA) (1.5%) strains were identified. The most frequent sequence type (ST) 
was ST30 (n = 11), followed by ST5 (n = 8), ST81 (n = 4), and ST247 (n = 3). Rates of staphylococcal 
cassette chromosome mec (SCCmec) types I, II, and IV composed 65.2%, 13.0%, and 17.4% of isolates, 
respectively. Notably, 73.3% of SCCmec type I strains were susceptible to imipenem unlike SCCmec 
type II strains (0%). ST30-SCCmec I (n = 7) and ST5-SCCmec I (n = 5) predominated, whereas only two 
strains exhibited imipenem-resistance and were tst-positive ST5-SCCmec II, which is the current 
Japanese HA-MRSA genotype. All ST30 strains shared the common ancestor strain 55/2053, which 
caused the global pandemic of Panton-Valentine leukocidin-positive MSSA in Europe and the United 
States in the 1950s. Conspicuously more heterogeneous, the population of HA-MRSA clones observed 
in the 1980s, including the ST30-SCCmec I clone, has shifted to the current homogeneous population 
of imipenem-resistant ST5-SCCmec II clones, probably due to the introduction of new antimicrobials.

Staphylococcus aureus (S. aureus) is a major opportunistic pathogen that can cause various life-threatening 
infections, and approximately 20% of healthy human individuals are persistent carriers of this bacterial species1. 
The first case of methicillin-resistant S. aureus (MRSA) was identified in the United Kingdom in 1961, only 
one year after the introduction of methicillin2,3. Since then, MRSA has remained a major clinical concern with 
both hospital-associated and community-associated MRSA (HA-MRSA and CA-MRSA, respectively) infections 
worldwide4–6. The number of deaths related to MRSA infection remains high, and rivals HIV/AIDS infections 
in its public health impact7.

MRSA is generated when methicillin-susceptible S. aureus (MSSA) acquires the exogenous mecA gene encod-
ing the penicillin-binding protein 2′ (PBP2′), which is carried on a mobile genetic element designated staphylo-
coccal cassette chromosome mec (SCCmec)8. According to the International Working Group on the Classification 
of Staphylococcal Cassette Chromosome Elements, strains can be classified by SCCmec types (I–XIV) based on 
their combination of mec and ccr gene complexes6,9–11. Each MRSA clone has been categorized by the combina-
tion of the chromosomal genotype of the recipient MSSA strain and the genotype of the integrated SCCmec. 
Therefore, multilocus sequence typing (MLST) and SCCmec typing by PCR and/or sequencing methods have 
been widely used as the gold standard methods in molecular epidemiological studies of MRSA4,12–15. In addition, 
whole-genome sequencing (WGS) of bacterial isolates by next-generation sequencing (NGS) technologies has 
recently become a promising tool for molecular typing, which together with advancing data processing systems, 
ever-larger NGS datasets and decreased costs has allowed remarkable advances for microbiologists16. During the 
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1970s and 1980s the MRSA epidemic was occurring not only in Japan, but throughout the world17,18. However, 
the molecular typing tools for MRSA isolates were not established until the 2000s. Thus, there have been few 
reports on molecular epidemiology of MRSA isolates collected before then.

Epidemiological tracking of drug-resistant bacteria using molecular typing tools over time can provide crucial 
insights into infection control and appropriate use of antimicrobials in clinical practice19. Therefore, the aims of 
this study were to retrospectively review the population structure of Japanese HA-MRSA strains isolated in the 
early 1980s using MLST, SCCmec typing and phylogenetic analysis based on whole-genome single nucleotide 
polymorphisms (SNPs), and to compare the population structure with that of strains isolated in recent years. 
Our data shows that in the 1980s, the population structure of Japanese HA-MRSA was remarkably polyclonal, 
including representative clones that are now rarely found.

Results
Prevalence and antimicrobial susceptibilities of MRSA and MSSA isolates in Japanese hospi‑
tals during the early 1980s.  In total, 194 isolates were identified as S. aureus. One hundred and seventy-
four patients yielded one strain per patient, whereas ten patients yielded two strains. According to phenotypic 
and genotypic determination of methicillin-resistance, we identified 20 mecA-positive MRSA (10.3%), 8 mecA-
negative MRSA (4.1%), 3 mecA-positive MSSA (1.5%) and 163 mecA-negative MSSA (84.0%) strains. Conse-
quently, the phenotypic methicillin-resistant rate of the strains described in this study was 14.4% (28 of 194 
strains).

As shown in Table 1, all MRSA strains described in this study were susceptible to levofloxacin, which had 
not yet entered clinical use in Japan in the 1980s. None of the S. aureus strains was resistant to the anti-MRSA 
agents vancomycin, teicoplanin, linezolid, or arbekacin, irrespective of methicillin resistance. Moreover, 32.1% 
of MRSA strains (9 of 28 strains) showed resistance to imipenem, which was unavailable in Japan during the 
period under study, whereas all MSSA strains were susceptible to imipenem.

Detailed genetic characterizations of MRSA and mecA‑positive MSSA strains.  The results of 
MLST, SCCmec typing, spa-typing, toxin profiling, and acquired antimicrobial resistance gene profiling are 
shown in Table 2.

Among the 31 strains that included phenotypically-identified MRSA and mecA-positive MSSA, the most fre-
quent sequence type (ST) was ST30 (n = 11, 35.5%), followed by ST5 (n = 8, 25.8%), ST81 (n = 4, 12.9%) and ST247 
(n = 3, 9.7%). SCCmec types I, II, and IV were found in 15, 3, and 4 of 23 mecA-positive strains, respectively. 
ST30-SCCmec I (n = 7) was the most predominant genotype, followed by ST5-SCCmec I (n = 5), ST30-SCCmec 
IV (n = 3), ST247-SCCmec I (n = 3), and ST5-SCCmec II (n = 2). The current predominant HA-MRSA genotype, 

Table 1.   Minimum inhibitory concentrations (MICs) of antimicrobial agents against methicillin-resistant and 
methicillin-susceptible Staphylococcus aureus strains. a MIC50/MIC90, MIC required to inhibit the growth of 
50% or 90% of the strains, respectively. b MICs of oxacillin and cefoxitin were determined by the agar dilution 
method; all other MICs were determined by the broth microdilution method. c For arbekacin, CLSI breakpoint 
of gentamicin was used as a substitute; For flomoxef and fosfomycin, no breakpoints were determined by CLSI.

Antimicrobial agentsb

MICs (mg/L)

MRSA (n = 28) MSSA (n = 166)

Range MICa
50 MICa

90

No. of susceptible strains 
(%) Range MIC50 MIC90 No. of susceptible strains (%)

Oxacillin 4 to 256 32 128 0 (0.0)  ≤ 0.12 to 2 0.25 1 166 (100)

Cefoxitin 4 to 256 16 64 4 (14.3)  ≤ 4 to 4  ≤ 4  ≤ 4 166 (100)

Ampicillin 0.25 to  > 16  > 16  > 16 1 (3.6)  ≤ 0.12 to  > 16 4 16 68 (41.0)

Cefazolin  ≤ 0.5 to  > 16  > 16  > 16 9 (32.1)  ≤ 0.5 to 2  ≤ 0.5 1 166 (100)

Cefmetazole  ≤ 1 to  > 32 16 32 19 (67.9)  ≤ 1 to 4  ≤ 1 2 166 (100)

Flomoxefc  ≤ 0.5 to  > 16 4  > 16 –  ≤ 0.5 to 2  ≤ 0.5  ≤ 0.5 –

Imipenem  ≤ 0.25 to  > 8 2  > 8 18 (64.3)  ≤ 0.25  ≤ 0.25  ≤ 0.25 166 (100)

Gentamicin  ≤ 0.25 to  > 8  > 8  > 8 12 (42.9)  ≤ 0.25 to  > 8  ≤ 0.25 1 153 (92.2)

Arbekacinc  ≤ 0.25 to 8 1 4 27 (96.4)  ≤ 0.25 to 8 0.5 1 165 (99.4)

Minocycline  ≤ 2 to  > 8  ≤ 2 8 24 (85.7)  ≤ 2  ≤ 2  ≤ 2 166 (100)

Erythromycin  ≤ 0.12 to  > 4  > 4  > 4 11 (39.3)  ≤ 0.12 to  > 4 0.5  > 4 145 (87.3)

Clindamycin  ≤ 0.06 to  > 2 0.12  > 2 16 (57.1)  ≤ 0.06 to  > 2 0.12 0.25 161 (97.0)

Levofloxacin  ≤ 0.25 to 1 0.5 0.5 28 (100)  ≤ 0.25 to 2 0.5 0.5 165 (99.4)

Vancomycin  ≤ 0.5 to 2 1 1 28 (100)  ≤ 0.5 to 2 1 1 166 (100)

Teicoplanin  ≤ 0.5 to 2  ≤ 0.5 1 28 (100)  ≤ 0.5 to 2  ≤ 0.5 1 166 (100)

Linezolid 0.5 to 2 1 2 28 (100) 0.5 to 4 2 2 166 (100)

Fosfomycinc  ≤ 32 to  > 128  ≤ 32  > 128 –  ≤ 32 to  > 128  ≤ 32  ≤ 32 –

Sulfamethoxazole/ trimetho-
prim  ≤ 9.5/0.5  ≤ 9.5/0.5  ≤ 9.5/0.5 28 (100)  ≤ 9.5/0.5 to  > 38/2  ≤ 9.5/0.5  ≤ 9.5/0.5 164 (98.8)
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Figure 1.   Phylogenetic tree based on whole-genome SNPs in strains in the present study and 125 reference 
strains. mecA-positive MRSA, mecA-negative MRSA, mecA-positive MSSA isolated in this study and reference 
strains were indicated in red, blue, green and black letters, respectively. NJ tree was constructed by alignment 
of 41,910 SNP sites. S. argenteus MSHR1132 was used as the outgroup. CC clonal complex, MRSA methicillin-
resistant Staphylococcus aureus, MSSA methicillin-susceptible Staphylococcus aureus, NJ neighbor-joining, SNPs 
single nucleotide polymorphisms, ST sequence type.
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tst-positive ST5-SCCmec II, was identified in only two strains, N106 and N315. Eight PVL-positive strains were 
identified, all of which were ST30.

Among the acquired antimicrobial resistance genes detected in this study, mecA was the most frequent 
(n = 23), followed by blaZ (n = 22), ermA (n = 19), ant(9)-Ia (n = 19), and aac(6′)-aph(2′’) (n = 18). All mecA-
positive strains had aminoglycoside resistance genes, and multiple strains carried genes related to resistance to 
macrolide (82.6%), tetracycline (39.1%), and phenicol (13.0%).

Overall, a diversity of MRSA isolates representing separate clones were found to be present during the early 
1980s, and diverse genotypes were detected even among MRSA strains exhibiting the same ST.

Antimicrobial susceptibilities of the strains across SCCmec types.  In order to consider the mecha-
nisms for the shift in population structure of HA-MRSA strains from polyclonal to monoclonal in recent years, 
we compared the antimicrobial susceptibilities of MRSA strains across SCCmec types (Table 3).

Strains that carried SCCmec types I and II were highly resistant to β-lactams including oxacillin, but those that 
carried SCCmec type IV were more susceptible to β-lactams despite being mecA-positive. Among the 15 strains 
carrying SCCmec type I, the rate of erythromycin resistance was the highest (80.0%), followed by resistance to 
gentamicin (66.7%), clindamycin (40.0%), and minocycline (26.7%), which were commonly used antimicrobials 

Figure 2.   The phylogenetic inter-strain relationships within the same clonal complex based on pairwise SNP 
differences. (a) Phylogenetic tree based on whole-genome SNPs in CC30 strains. Staphylococcus aureus strain 
SJTUF_J27 was used as the outgroup. NJ tree was constructed based on the alignment of 2353 SNP sites. (b) 
Phylogenetic tree based on whole-genome SNPs in CC5 strains. S. aureus strain ED98 was used as the outgroup. 
NJ tree was constructed based on the alignment of 3684 SNP sites. mecA-positive MRSA, mecA-negative MRSA, 
mecA-positive MSSA isolated in this study and reference strains were indicated in red, blue, green and black 
letters, respectively. The numbers of inter-strain SNP differences were visualized in a red-yellow-green gradient 
with red indicating the top score (> 600) and green indicating the bottom score (0). CC clonal complex, MRSA 
methicillin-resistant Staphylococcus aureus, MSSA methicillin-susceptible Staphylococcus aureus, NJ neighbor-
joining, SNPs single nucleotide polymorphisms.
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at that time. The imipenem susceptibility rate in SCCmec type I strains was 73.3% (11 of 15 strains) as compared 
with 0% in SCCmec type II strains (0 of 3 strains) (p = 0.043).

The mecA-negative MRSA strains (n = 8) were more susceptible to β-lactams, and notably, all strains were 
susceptible to imipenem except the isolate N89. Also, these strains showed lower MICs for aminoglycosides, 
minocycline, erythromycin and clindamycin, when compared with mecA-positive strains.

Population structure of MRSA and mecA‑positive MSSA strains in Japan during the early 
1980s.  The result of phylogenetic analysis based on whole-genome SNPs of 20 mecA-positive MRSA, 8 
mecA-negative MRSA, 3 mecA-positive MSSA, and 125 reference S. aureus strains, is shown in Fig. 1.

A neighbor-joining (NJ) tree was constructed by the alignment of 41,910 SNP sites. The percentage of the 
reference genome (S. argenteus MSHR1132) covered by all isolates was 62.95% (1,739,038 of 2,762,785 posi-
tions). Strains belonging to the CC30 cluster were most abundant (n = 11), followed by clonal complexes (CC) 5 
(n = 9), CC1 (n = 4), and CC8 (n = 4), indicating that the population structure of MRSA strains during the early 
1980s was composed of diverse clones.

Whole‑genome SNP analysis of CC30 and CC5 strains.  Detailed pairwise SNPs analysis of 11 ST30 
strains described in this study and 6 CC30 reference strains was performed (Fig. 2a). The percentage of the ref-
erence genome (SJTUF_J27, ST433) covered by all strains was 89.16% (2,500,756 of 2,804,761 positions) in the 
SNPs analysis. SNP differences ranged from 28 to 1008. All CC30 strains described in this study clustered into a 
single clade and were most closely related to the MSSA strain 55/2053 isolated in the United Kingdom in 195520. 
Strains N83 and N86, which were isolated in Kumamoto in the same year and exhibited the same spa-type t1504, 
showed 28 SNP differences, suggesting a direct horizontal spread within the hospital. However, the SCCmec type 
and antimicrobial resistance gene profiles differed between these two strains, suggesting that these strains were 
independently acquired by each inpatient from different infectious sources. Similarly, the ST30 strains isolated 
in this study could be recognized as branches of a clone endemic to Japan, with only small numbers of SNPs 
ranging from 28 to 16421,22.

Next, we performed SNP analysis among 9 CC5 MRSA strains in this study and 32 reference strains (Fig. 2b). 
The percentage of the reference genome (ED98) covered by all strains was 89.13% (2,517,393 of 2,824,404 posi-
tions) in the SNP analysis. SNP differences ranged from 0 to 621. ST5 MRSA strains described in this study 
clustered into five different clades. Strains N366, N98, N345, N279, and N283 harboring SCCmec type I belonged 
to a single cluster, with the number of SNP differences within the cluster ranging from 30 to 84. Strains N279 
and N283, which were isolated in Miyagi in the same year, showed only 30 SNP differences and similar profiles 
regarding spa type, toxin and antimicrobial resistance genes, suggesting transmission events within a short 
period. Although strains N366 and N98 strains exhibited only 41 SNP differences, these strains were isolated in 
locations separated by over 750 km of mostly ocean, Okinawa and Nagasaki (Table 2). According to these results, 
strains exhibiting ST5-SCCmec I belonging to this clade could be recognized as part of another endemic clone 
in Japan, as contrasted with strains 16,125, 18,412, 18,341, 10,388, 15,532, 18,583, 16,035, and 10,497, all ST228 
and all isolated at a hospital during the outbreaks in Switzerland23, and distinguished from each other pairwise 
by only 0 to 7 SNPs (Fig. 2b). In contrast, only the strains N315 and N106 exhibiting ST5-SCCmec II belong to 
the same clade with Mu3 and Mu50, which were isolated as HA-MRSA in the 1990s24.

These results suggest that MRSA clones exhibiting ST30- and ST5-SCCmec I may have already spread as 
major endemic clones throughout Japan by the early 1980s, whereas ST5-SCCmec II had achieved only a minor 
presence at that time.

Discussion
Our results suggest that the population structure of Japanese HA-MRSA strains during the early 1980s was nota-
bly different from that in recent years. The early 1980s polyclonal structure included ST5- and ST30-SCCmec 
I clones, both of which have become uncommon recently. The recent monoclonal population structure of HA-
MRSA strains in Japan, which is composed of imipenem-resistant ST5-SCCmec II clone, likely formed over the 
past several decades, possibly in response to the release of various new antimicrobial agents including imipenem 
and changes in MRSA treatment strategies from the 1980s onward.

PVL-positive ST30-SCCmec I was the most frequent genotype among Japanese HA-MRSA strains in the early 
1980s. According to a previous report, nosocomial outbreaks of MRSA exhibiting PVL-positive ST30-SCCmec 
IV occurred frequently in the late 1980s and early 1990s in Japanese hospitals25, whereas this genotype comprised 
only a minor population in the early 1980s as represented in this study. Our results suggest that the population 
structure of Japanese HA-MRSA strains underwent dynamic replacement through the 1980s. This replacement, 
largely due to ST30 MRSA clones, has probably resulted from high genetic and phenotypic diversity among ST30 
MRSA strains. Indeed, in addition to mecA-positive MRSA, ST30 strains rarely isolated today such as mecA-
negative MRSA and mecA-positive MSSA, were also found among the ST30 strains analyzed here. Differences 
in observed SCCmec types and the presence or absence of PVL genes were also noted among these strains.

As previously reported, the CC30 S. aureus lineage can be divided into three clusters: Clade 1 (prototype 
strain 55/2053; PVL-positive and penicillin-resistant MSSA), Clade 2 (prototype strain TCH60; PVL-positive 
CA-MRSA harboring SCCmec type IV), and Clade 3 (prototype strain MRSA252/EMRSA-16; PVL-negative 
HA-MRSA harboring SCCmec type II or IV)20. Clade 1 strains cause severe infections and were the epidemic 
strain type in Europe, the United States, and Australia in the 1950s26–30. The percent of S. aureus infections 
caused by Clade 1 strains had dramatically decreased by the mid-1960s, due to methicillin use for the treatment 
of penicillin-resistant strains31. However, according to our results, this clone had re-emerged as HA-MRSA in 
Japanese hospitals in the early 1980s. Our phylogenetic analysis based on whole-genome SNPs demonstrated 
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that all Japanese ST30 isolates clustered into a single clade including strain 55/2053, suggesting that a Clade 1 
strain imported from overseas had acquired SCCmec type I, SCCmec type IV, or unknown genetic factors and 
had already undergone diversification in Japanese hospitals by the early 1980s. Consequently, the ST30 strains 
had likely spread throughout Japan as a nosocomial clone causing a regional outbreak at that time.

This study shows that ST5-SCCmec I was the second-most frequent genotype among Japanese HA-MRSA 
strains in the early 1980s. This genotype is shared by EMRSA-3, which was the most common MRSA clone in 
the United Kingdom in 1987–1988 along with EMRSA-15 (ST22-SCCmec IV) and EMRSA-16 (ST36-SCCmec 
II)4. Studies conducted in South America in the late 1990s have identified the Cordobes/Chilean clone, which 
is genetically related to EMRSA-3 but presents differences in its pulsed-field gel electrophoresis (PFGE) pattern 
and spa type32–34. This MRSA clone was also detected at a high rate in hospitals in South Brazil in 2008, suggest-
ing the potential for re-dissemination in Brazil35,36. Although this MRSA clone exhibiting ST5-SCCmec I has 
remained uncommon in regions outside of South America in recent years, continuous monitoring is needed to 
prevent future outbreaks.

Surprisingly, the clones of MRSA resistant to imipenem, such as strain N315, existed before imipenem entered 
clinical use. We previously reported strain N315, which was imipenem-resistant, tst-positive ST5-SCCmec II, as a 
representative strain of the New York/Japan HA-MRSA clone37. We reported that strains harboring SCCmec type 
II accounted for a large portion of MRSA in Japanese hospitals in the late 1990s12,38. In this study, our results show 
that a Japanese HA-MRSA lineage exhibiting the same genotype as strain N315 was already circulating as one 
of the diverse clones in the early 1980s. The phenotypic characteristics of strain N315 was multidrug-resistant, 
especially to imipenem. In the 1980s, multiple broad-spectrum antimicrobials entered clinical use in Japan, 
while imipenem/cilastatin was launched in 1987 and was being used as an anti-MRSA agent before the clinical 
introduction of vancomycin in 1991 in Japan. By contrast with SCCmec II strains, strains harboring SCCmec 
type I, which was the predominant genotype in this study and some countries including the United Kingdom in 
the early 1980s12,39, displayed a high rate of imipenem-susceptibility. It was also reported that in vitro exposure 
to imipenem can select for conversions of heterogeneous-to-homogeneous and Eagle type-to-homogeneous 
methicillin resistance in S. aureus strains via mutations to such chromosomal genes as vraSR and rpoB6,13,24,40–43. 
Thus, the frequent use of imipenem to treat MRSA infections may have contributed to the selective pressure for 
imipenem-resistant ST5-SCCmec II MRSA between 1980 and 2000, and caused the dynamic population shift 
in Japanese hospitals from diverse imipenem-susceptible MRSA clones to the monoclonal imipenem-resistant 
ST5-SCCmec II MRSA. The reason why imipenem-resistant clones other than ST5-SCCmec II MRSA disap-
peared in the 1990s is unclear, but some not-yet-understood factors may exist that boost the survival rate of 
ST5-SCCmec II MRSA.

Our results show that the heterogeneous population of diverse clones observed in the 1980s shifted to the 
homogeneous population of ST5-SCCmec II clones from the 2000s onward among Japanese HA-MRSA isolates. 
However, entering the 2010s, further changes have been occurring in the population structural. It was reported 
that the population of Japanese HA-MRSA was shifting again in the 2010s from N315-like CC5-SCCmec II to 
CC8- SCCmec IV and CC1- SCCmec IV, both of which had higher susceptibility to cefotaxime, levofloxacin, 
clarithromycin and clindamycin44. The recovery of antimicrobial susceptibilities, and the history of clonal evolu-
tion of HA-MRSA strains from the 1980s to the 2010s, seems to reflect improved recent awareness of appropriate 
antimicrobial usage.

In this study, multiple MRSA strains exhibiting ST247-SCCmec I were isolated in the northeast area of Japan. 
This genotype is known as the Iberian clone, which was one of the major pandemic MRSA clones until the 
2000s45–48. Our results show the local existence of the Iberian clone in Japan during the early 1980s. Interestingly, 
all ST247-SCCmec I strains in this study were resistant to imipenem. During the early clinical use of imipenem 
around the world, the Iberian clone may have undergone spread from the 1990s to the early 2000s. However, the 
Iberian clone has already been supplanted by the current major epidemic clones49.

Intriguingly, multiple mecA-negative MRSA and mecA-positive MSSA strains, though rarely observed today, 
were identified in this study, suggesting that methicillin-resistance in S. aureus strains of that time had both 
genetic and phenotypic diversity. These atypical S. aureus strains are known as oxacillin-susceptible MRSA 
(OS-MRSA) or borderline oxacillin-resistant S. aureus (BORSA) with oxacillin MICs typically equal to 1–8 μg/
mL, which have been reported from various geographic locations for over a decade50,51. Although the clinical 
instances are not frequent compared with typical MRSA, OS-MRSA could have been underestimated because of 
the discrepancy between the phenotypes and genotypes in clinical laboratories50. BORSA can appear as commu-
nity-acquired infections related to previous antimicrobial drug usage52. Our results suggest that OS-MRSA and 
BORSA strains were already circulating in the early 1980s. All OS-MRSA strains in the present study were ST30 
strains isolated in geographically separated regions, and accounted for 30.0% (3 of 10) of mecA-positive ST30 
strains. Even though S. aureus strains with intermediate methicillin-resistance such as OS-MRSA and BORSA 
were frequently isolated from hospital inpatients in the early 1980s, enhanced selective pressures due to new 
drug developments may have eliminated them from hospital environments over the past several decades. The 
intrinsic mechanisms of methicillin-resistance vary from isolate to isolate. The presence or hyper-production 
of beta-lactamase53–55, or the quantity of native PBP proteins and their β-lactam binding affinities54–62, or muta-
tions in several chromosomal genes (e.g., femA, femB, gdpP, yjbH, and acrB) have been presumed to mediate 
β-lactam resistance58–62. Further systematic characterization of these atypical phenotypes will be indispensable 
in identifying undiscovered genetic traits of methicillin resistance.

In conclusion, this study reveals the alteration in population structure of HA-MRSA strains from the early 
1980s onward, probably due to the survival of highly drug-resistant clones that may have arisen in response to 
new drugs introduced over the past several decades. Our findings clarify the role of diagnostic microbiology 
for tracking the epidemiology of MRSA, giving important evidence for a close correlation between spread of 
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drug-resistance and appropriate/inappropriate use of antimicrobials. These findings will aid efforts to prevent 
escalating antimicrobial resistance.

Methods
Bacterial strains collection.  This study examined a collection of 194 S. aureus strains (designated as “N” 
strains) that were isolated from 184 Japanese inpatients in 22 prefectures between January 1982 and December 
1983. A subset of these N strains was previously reported63. The isolates were mainly from Fukushima (19, 9.8%), 
Miyagi (18, 9.3%), Okinawa (18, 9.3%), and Osaka (18, 9.3%) prefectures. Specimen types were as follows: pus 
(88, 45%), sputum (43, 22%), blood (20, 10%), urine (15, 8%), pharynx (10, 5%), other (7, 4%), and unknown 
(12, 6%), suggesting that skin and soft tissue infection and respiratory tract infection were major infectious 
diseases in the study population.

The originally stored isolates were inoculated on BBL Trypticase Soy Agar (TSA) (Beckton Dickinson Japan, 
Co., Ltd., Tokyo, Japan) and incubated at 37 °C for 24 h. Catalase-positive, Gram-positive cocci that were pre-
sumptively identified as staphylococci by colony morphology, were subcultured on TSA. Tube coagulase tests 
with rabbit plasma (Denka Seiken Co., Ltd., Tokyo, Japan) were performed, and only coagulase-positive staphy-
lococcal strains were selected for further investigation. S. aureus was confirmed by a PCR method targeting the 
thermonuclease (nuc) gene after DNA extraction64. The S. aureus isolates were stored again in sterilized 10% 
skim milk (Difco Skim Milk, Becton, Dickinson and Co., Franklin Lakes, NJ, USA) at − 80 °C.

DNA extraction.  Chromosomal DNA was extracted from bacterial cultures after single colony isolation 
on TSA, using the QIAamp DNA Mini Kit (QIAGEN, Hilden, Germany). Purified genomic DNA was used for 
PCRs and sequencing-based methods.

Determination of methicillin resistance.  We determined phenotypic methicillin resistance in all S. 
aureus strains by evaluating oxacillin and cefoxitin susceptibilities according to Clinical and Laboratory Stand-
ards Institute (CLSI) M100-S22 performance standards. In addition, all strains were genetically assessed by two 
different PCRs for the presence of the mecA gene65,66. We also confirmed the presence or absence of the mecA 
gene by whole-genome sequencing for phenotypically-identified MRSA strains.

Antimicrobial susceptibility testing.  Minimum inhibitory concentration (MIC) tests for other antimi-
crobial agents were performed by the broth microdilution method by BBL Mueller–Hinton II Broth (Cation-
Adjusted) (CAMHB) (Beckton Dickinson Japan, Co., Ltd., Tokyo, Japan) using the Dry Plate “Eiken” DP32 
(Eiken Chemical Co., Tokyo, Japan), containing oxacillin, cefoxitin, ampicillin, cefazolin, cefmetazole, flomoxef, 
imipenem, gentamicin, arbekacin, minocycline, erythromycin, clindamycin, levofloxacin, vancomycin, teico-
planin, linezolid, fosfomycin and trimethoprim-sulfamethoxazole. For oxacillin and cefoxitin, agar dilution 
method was also performed using BBL Mueller Hinton II Agar (Beckton Dickinson Japan, Co., Ltd., Tokyo, 
Japan), with 2% NaCl for oxacillin, in order to measure the detailed MIC values. MICs were examined by visual 
observation and interpreted according to CLSI M100-S22 performance standards.

The differences in the rates of imipenem susceptibility by SCCmec types were evaluated using Fisher’s exact 
test utilizing the fisher. test function in R version 3.5.1 (R Development Core Team). Differences with p val-
ues < 0.05 were considered significant.

Molecular typing of MRSA strains.  spa-typing and multilocus sequence typing (MLST) were carried 
out as previously reported67–69. Direct sequencing of PCR products was performed for spa typing and MLST 
for the S. aureus strains. Sequencing reactions were performed using a Big Dye Terminator (version 3.1) Cycle 
Sequencing Kit with an ABI Prism 3100 genetic analyzer (Applied Biosystems, Thermo Fisher Scientific Inc., 
Waltham, MA, USA). After assembling both forward and reverse consensus sequences, the spa type and MLST 
were assigned using the RIDOM web server (http://spase​rver.ridom​.de/) and the PubMLST (https​://pubml​
st.org/organ​isms/staph​yloco​ccus-aureu​s), respectively.

SCCmec typing (I–V) was performed by a multiplex PCR method reported previously14. Thirteen exotoxin 
genes, encoding staphylococcal enterotoxins SEA (sea), SEB (seb), SEC (sec), SED (sed), SEE (see), SEG (seg), 
SEH (seh), SEI (sei), SEJ (sej); exfoliative toxin A, B (ETA; eta, ETB; etb, respectively); toxic shock syndrome 
toxin (TSST-1; tst); and Panton-Valentine leukocidin (PVL; lukS and lukF) were detected by PCRs as reported 
previously70–72. Using 5 μL of PCR sample, DNA fragments were analyzed by electrophoresis on a 1% agarose 
gel stained with ethidium bromide.

WGS and additional molecular phylogenetic analysis.  The Nextera XT DNA sample preparation kit 
(Illumina Inc., San Diego, CA, USA) was used for sample preparation for WGS. The DNA libraries were then 
purified using AMPure beads (Beckman Coulter, Inc., CA), according to the manufacturer’s protocol. Sequenc-
ing was performed using a paired-end 2 × 250 or 300-bp cycle runs on the Illumina MiSeq sequencing system 
using MiSeq reagent kit v2 or v3 (Illumina Inc.).

After sequencing, the obtained reads were filtered and trimmed by removing bases with quality value scores 
of 20 or less, de novo assembly was performed using the CLC Genomics Workbench version 9 (Qiagen N.V., 
Venlo, The Netherlands) with the default parameters.

Assembled contigs were submitted to spaTyper 1.0 for spa-typing, ResFinder 3.0 for detection of acquired 
drug-resistant genes, and MLST 1.8 for MLST, which are all housed at the Center for Genomic Epidemiology 
(CGE) website (http://www.genom​icepi​demio​logy.org//)16,73–75.

http://spaserver.ridom.de/
https://pubmlst.org/organisms/staphylococcus-aureus
https://pubmlst.org/organisms/staphylococcus-aureus
http://www.genomicepidemiology.org//
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To infer the phylogenetic relationship based on whole-genome SNPs among strains in this study and 125 
reference strains, assembled contigs were also submitted to CSI phylogeny 1.4 on the CGE website76. The complete 
sequences of the reference strains were accessed from the National Center for Biochemistry Information (NCBI) 
database. In addition, pairwise SNP analyses were performed focusing on CC5 and CC30 strains in order to 
elucidate relatedness with and preservation among the recent MRSA strains. Using a Newick file output from 
SNP analysis by CSI phylogeny, a neighbor-joining (NJ) tree was visualized using Figtree v1.4.3 (http://tree.bio.
ed.ac.uk/softw​are/figtr​ee/). The numbers of inter-strain SNP differences were constructed in a red-yellow-green 
gradient with red indicating the top score (> 600) and green indicating the bottom score (0).

Data availability
The read data for whole-genome sequencing analysis of strains in this study have been deposited in GenBank 
under accession number DRA010146.
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