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Preparation and application 
of a thidiazuron·diuron 
ultra‑low‑volume spray suitable 
for plant protection unmanned 
aerial vehicles
Qin Liu1,3, Kun Wei2,3, Liyun Yang1, Weiming Xu1* & Wei Xue1*

Spraying of defoliant can promote centralized defoliation of cotton and advance maturity to facilitate 
harvesting. Modern pesticide application equipment includes plant protection unmanned aerial 
vehicles (UAVs), which are used widely for spraying defoliants. However, commonly used defoliant 
formulations are mainly suspension concentrates and water‑dispersible granules, which need to be 
diluted with water when used. These are not suitable for plant protection UAVs with limited load 
capacity, especially in arid areas such as Xinjiang, China. Therefore, we prepared a thidiazuron·diuron 
ultra‑low‑volume (ULV) spray, which can be used directly without dilution in water. We found that ULV 
sprays had better wettability than the commercially available suspension concentrate, could quickly 
wet cotton leaves and spread fully. The volatilization rate was lower. ULV sprays also showed better 
atomization performance and more uniform droplet distribution than the commercially available 
suspension concentrate. At a dosage of 4.50–9.00 L/ha, the coverage rate on cotton leaves was 
0.85–4.15% and droplet deposition densities were 15.63–42.57 pcs/cm2; defoliation rate and spitting 
rate were also greater than those of the reference product. This study could be contributed to the 
development of special pesticide formulations suitable for UAVs.

Cotton is an important economic crop. As the main raw material of the textile industry, it plays a crucial role in 
China’s national  economy1–3. Xinjiang is a prominent planting base for cotton in China. For a long time, farmers 
relied on manual harvesting of cotton; however, the huge labor expenditure seriously reduced the income of the 
cotton  farmers4. Therefore, machine-picking has become an inevitable choice for cotton harvesting because it 
reduces labor and planting  costs5. However, application and popularization of mechanical picking in China is far 
from sufficient. The main problem is that cotton bolls do not open uniformly at harvest time, and the leaves do 
not fall off completely, leading to a high content of impurities in mechanically picked cotton. Therefore, spraying 
defoliant to make leaves fall off and promote earlier and uniform opening of cotton bolls is an important step in 
accelerating the process of mechanized cotton picking and improving the quality of cotton  seeds6–8.

Thidiazuron is a urea plant growth regulator that promotes the production of ethylene and abscisic acid in 
cotton and inhibits the transport of auxin. A separation layer forms between the leaf and the petiole to promote 
leaf  shedding9,10. Combined use of thidiazuron and diuron produces better defoliation effects than thidiazuron 
alone, with diuron enhancing defoliation activity especially in low-temperature  environments11. Ethylene is a 
gaseous hormone that promotes fruit ripening and shedding of old leaves and other  organs12,13. Defoliation of 
cotton plants is closely related to the ripening and opening of cotton bolls, and a combination of defoliant and 
ethephon improves the effect of defoliation. Ethephon is a type of ethylene precursor; after being absorbed by 
cotton, it promotes the biosynthesis of ethylene, resulting in ripening and cracking of cotton  bolls14. Therefore, 
chemical defoliation and ripening are essential for machine picking of cotton. Defoliation stimulates cotton bolls 
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to open relatively early and uniformly, reduces impurities in seed cotton, avoids pollution of cotton wool with 
dead leaf debris, and improves the quality and yield of cotton, thereby increasing the planting efficiency of cotton.

The method used for spraying defoliants plays an important role in the efficiency of cotton defoliation. 
Defoliants are generally used during the boll-opening  stage15–17. Improving the coverage of defoliants on cotton 
plants is key to improving the efficacy of defoliants. Currently, cotton growers in China’s Xinjiang region mainly 
use boom-type sprayers to spray pesticides. Compared with knapsack sprayers, these have wide spray width, 
large capacity, and high efficiency, leading to savings in labor costs and time. However, the terrain can restrict 
boom-type sprayers, which can damage plants, spraying can be uneven, and their efficacy is not  excellent18. In 
addition, given the large application volumes, the effective utilization rate of pesticides is low, potentially caus-
ing  pollution19.

Therefore, in recent years, cotton growers in China’s Xinjiang region have begun to spray defoliants using plant 
protection unmanned aerial vehicles (UAVs)20. Compared with traditional mechanical and artificial pesticide 
application, use of UAVs is labor and time-saving, with the same significant effect on defoliation and ripening 
of cotton, but no significant effect on yield and  quality21. With the introduction of UAVs, cotton cultivation has 
become more mechanized and technological. Pesticides sprayed by plant protection UAVs show high levels of 
safety and cause little harm to the human body. The UAVs produce a low-altitude and low-volume flight spray. 
The airflow generated by the propeller causes the pesticide mist to flow through the cotton plant from top to 
bottom with strong penetration, less drift, and uniform  spray22–24. Therefore, the coverage rate of pesticide 
formulations is higher and more efficient than that using more traditional  methods25. At the same time, UAVs 
can reduce land pollution caused by pesticides and improve pesticide utilization rates. The spray efficiency and 
effectiveness of plant protection UAVs are significantly better than those of boom-type sprayers, but there are 
few pesticide formulations suitable for plant protection UAVs. The low-altitude, small-volume spray produced 
by plant protection UAVs imposes stricter requirements on pesticide  formulations26–29. Defoliants currently 
registered in China are mainly suspension concentrates, water-dispersible granules and wettable powders, which 
are not suitable for spraying using plant protection UAVs. This lack of pesticide formulations suitable for UAVs 
is the biggest obstacle in the development of UAV application. Ultra-low-volume pesticide sprays, with high-
boiling-point oil solvent as carrier, have low volatility and strong adhesion. Compared with conventional pesticide 
formulations, they provide special advantages, such as high levels of coverage and better efficacy, making them 
ideal for plant protection  UAVs30.

In this study, we prepared a thidiazuron·diuron ultra-low-volume spray suitable for use with plant protection 
UAVs. The wettability, atomization, and deposition performance of the ultra-low-volume spray on cotton leaves 
and its defoliation and ripening effects were studied.

Experimental
Materials. Unless otherwise noted, all chemicals were purchased from commercial suppliers and were used 
without further purification: Thidiazuron (95%), diuron (97%), chlorinated paraffin, and methyl oleate (Alad-
din BioChem Technology Co., Ltd, China); Anionic adjuvant and nonionic adjuvant (BASF SE, Germany, 99%); 
Thidiazuron and diuron suspension concentrate (540 g/L) (Jiangsu Changqing agrochemical Co., Ltd., China).

Screening of solvents. Different organic solvents were added to 0.2 g thidiazuron and 0.1 g diuron. After 
shaking uniformly, samples were heated in a water bath and subjected to ultrasonic oscillation to dissolve them. 
Since heating increases the volatilization of organic solvents, the temperature of the water bath did not exceed 
35 °C, and the time of ultrasonic oscillation did not exceed 20 min. After this time, the dissolution state of the 
original pesticide was observed and the dissolution effects of different solvent combinations were compared.

Screening of adjuvant. Adjuvants in the ultra-low-volume spray can improve the physical and chemical 
properties of the formulation and enhance its wetting and spreading  properties31. Based on solvent screen-
ing, anionic and nonionic adjuvants were selected to build a stable pesticide loading system. The ultra-low-
volume spray used a high-boiling-point oily solvent as a low-volatility carrier to facilitate the deposition of small 
 droplets32. Methyl oleate is a methylated vegetable oil adjuvant with good biodegradability and low toxicity, 
and this was added as the oily solvent. Characteristics of an ultra-low-volume spray are low dosage and high 
 concentration33. Droplets produced by spraying are extremely fine and easily drift, causing phytotoxicity to non-
target organisms. It is necessary to add fillers to increase the viscosity and density of the formulation, reducing 
the risk of drift and phytotoxicity. Therefore, chlorinated paraffin was used as the filler at a proportion of 25%.

Preparation of the ultra‑low‑volume spray oil concentrate. Thidiazuron and diuron were placed 
into a 250 mL beaker, then different organic solvents were added and stirred at 200 rpm for 20 min. After dis-
solving completely, the anionic adjuvant was added and stirred until the system was clear. Next, the nonionic 
adjuvant was added and stirred. After mixing to uniformity, chlorinated paraffin and methyl oleate were added 
sequentially, followed by stirring at 250 rpm for 25 min. The resulting pale yellow, single transparent, homogene-
ous liquid containing thidiazuron and diuron was used as an ultra-low-volume spray.

Wettability measurement. The surface tension of each sample was measured using a SFZL-A1 surface 
tensiometer using the platinum plate  method34,35. The contact angle of each sample on cotton leaves was meas-
ured using a JC2000D contact angle  meter36,37. The viscosity of the ultra-low-volume sprays was measured using 
a NDJ-5S rotary viscometer. The reference product was 540  g/L thidiazuron·diuron suspension concentrate, 
which was recorded as 6. One gram of the reference product was diluted to 540 mL with water for subsequent 
experiments.
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Volatilization rate measurement. The volatilization rate of samples was determined using the filter 
paper suspension  method38,39. The filter paper was weighed and recorded as  m1. Approximately 1.0 mL of each 
sample was distributed evenly onto separate filter paper circles, and the weight was recorded as  m2. Subsequently, 
the filter paper was suspended in a drying oven at 25 °C for 20 min. The filter paper was reweighed and recorded 
as  m3. The volatilization rate was calculated according to Eq. (1):

Atomization performance measurement. An indoor spraying device was used to simulate field appli-
cation using the plant protection UAV. A spray particle size analyzer was used to test the atomization perfor-
mance of the thidiazuron·diuron ultra-low-volume (ULV) spray and to analyze the effect of viscosity on droplet 
size and particle size distribution.

The indoor spraying device consisted of a DC voltage stabilized power supply, a peristaltic pump, and a 
rotary atomizer. The current of the DC voltage stabilized power supply was set to 1.00 A, and the voltage was 
adjusted to the range of 12–24 V. A laser tachometer was used to test the rotation speed of the rotary atomizer 
at various voltages. To analyze the stability of the rotary atomizer, a linear fitting of voltage and rotation speed 
was performed. The discharge of the peristaltic pump was set to 100 mL/min, and water was used as a spray. A 
spray particle size analyzer was used to test the size and distribution of the droplets ejected by the rotary atomizer 
at high-speed rotation. By analyzing the relationship between droplet size and the rotation speed of the rotary 
atomizer, the conditions for producing uniformly distributed droplets were found. Samples were sprayed accord-
ing to the optimized conditions. Cumulative volume diameter and distribution information were collected to 
analyze the effect of formulation viscosity on atomization performance. The droplet size distribution (Rs) was 
calculated according to Eq. (2):

Efficacy trial. In September 2017, an efficacy trial of the thidiazuron·diuron ultra-low-volume spray was 
carried out at the cotton planting base of Xinjiang Agricultural University in Shawan County (44° 19′ 31.92″ E, 
85°37′ 0.88″ N), Xinjiang Uygur Autonomous Region, China. The deposition effect of the droplets, defoliation 
rate, and cotton boll opening rate were tested under different application dosages. The height of cotton plants was 
approximately 1 m. On the day of the test, the temperature was 13–27 °C and the wind force was ≤ 3.

The application equipment used in the efficacy trial was a XAG P-20 plant protection UAV (XPLANT Co., 
Ltd., China). Five treatments were set up. Treatments 1–4 were nebulized thidiazuron·diuron ultra-low-volume 
spray prepared in this study, corresponding application dosages were 4.50, 6.00, 7.50, and 9.00 L/ha. Treatment 
5 was 54% thidiazuron·diuron suspension concentrate. The area of each trial was 9 × 100  m2.

Deposition measurement. A droplet test card (oil-sensitive paper/water-sensitive paper, 2.6 cm × 7.6 cm) 
was used to test the effect of droplet deposition in the field when the formulation was sprayed by the plant pro-
tection UAV. The width of each measurement area was 9 m, which was suitable for the UAV to fly across three 
times. Three points were randomly selected from each of the three flight paths, and nine sampling points were 
investigated. A test card was fixed using a paper clip to the cotton plant canopy at each sampling point to col-
lect droplets. At the end of the experiment, the droplet test cards were scanned using a scanner. Image-pro Plus 
software was used to analyze droplet size, droplet coverage and droplet deposition density on the test cards, and 
droplet distribution uniformity was calculated.

Defoliation rate and boll opening rate measurement. The effect of different treatments was tested by 
investigating the defoliation rate and boll opening rate of cotton plants in each treatment plot. For each plot, five 
sampling points in the shape of an "X" were randomly selected; at each point, five cotton plants were randomly 
selected as survey points. The total number of leaves, bolls, and opening bolls of cotton plants were counted 
before and 15 days after spraying the pesticide. The defoliation rate and boll opening rate were calculated accord-
ing to Eqs. (3) and (4):

M1 and M2 are the number of cotton leaves before and after application; N1 is the total number of bolls of 
cotton plants, N2 is the number of opening bolls.

Ethics approval. Ethics approval is not required for this paper.

(1)Volatilization rate (%) =

m2 −m3

m2 −m1
× 100% .

(2)Rs =
D90 − D10

D50
.

(3)Defoliation rate =

M1 −M2

M1
× 100% ,

(4)Boll opening rate =

N2

N1
× 100% .
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Results and discussions
Screening of solvent and adjuvant. The results of solvent screening are shown in Table 1. The original 
pesticide could not be completely dissolved using a single solvent. However, 5% N-methyl-2-pyrrolidone + 10% 
cyclohexanone could completely dissolve the original pesticide. There was no solid precipitation at room tem-
perature, so the formulation could be used for the subsequent experiment. According to Table 2, a mixture of 
sulfonate adjuvants (70b) and fatty alcohol polyoxyethylene ether adjuvants (AEO-4, -5, -7, -9, 992) could sta-
bilize the system in a single, transparent, homogeneous phase. Therefore, sulfonate adjuvant (70b) was selected 
and mixed with five adjuvants of the AEO series to prepare thidiazuron·diuron ultra-low-volume sprays, num-
bered 1–5 (as shown in Table 3).

Surface tension measurement. The critical surface tension of cotton leaves is 63.30–71.81 mN/m. Fig-
ure 1 shows that the surface tension of each sample was 31.67–33.37 mN/m, which was much lower than the 
critical surface tension of the leaf, indicating the agent was able to completely wet the leaf and be fully distributed 

Table 1.  Selection of solvent type and dosage (%: mass fraction). −, original pesticide hardly dissolved; +, 
original pesticide partially dissolved; ++, original pesticide mostly dissolved, or a solid precipitate 
formed after completely dissolving at room temperature; +++, original pesticide completely dissolved, 
and no solid precipitated at room temperature. NMP, N-Methyl-2-pyrrolidone; AN, acetonitrile; THN, 
tetrahydronaphthalene; CYC, cyclohexanone.

Sample CYC (%) NMP (%) DMF (%) AN (%) THN (%) Phenomenon

1 10 −

2 10 5 1 1 ++

3 10 1 −

4 5 1 −

5 5 1 −

6 1 1 −

7 1 1 −

8 10 5 1 +

9 10 5 1 ++

10 10 5 1 +

11 10 5 +++

12 10 1 −

13 10 2 1 +

14 5 1 −

Table 2.  Selection of adjuvants type and dosage (%: mass fraction).

Anionic adjuvant Nonionic adjuvant

StateType Dosage (%) Type Dosage (%)

Sulfate

8 Fatty alcohol polyoxyethylene ether 9 Stratification

8 Fatty acid ester ether 7 Emulsification

8 Isomeric alcohol ethers 8 Stratification

8 Polyether-block polyether 8 Emulsification

Sulfonate

5 Fatty alcohol polyoxyethylene ether 7 Transparent homogeneous

5 Fatty acid ester ether 9 Emulsification

5 Isomeric alcohol ethers 8 Stratification

5 Polyether-block polyether 8 Solid precipitation

Phosphate

9 Fatty alcohol polyoxyethylene ether 9 Stratification

9 Fatty acid ester ether 7 Solid precipitation

9 Isomeric alcohol ethers 8 Stratification

9 Polyether-block polyether 8 Emulsification

Carboxylate

5 Fatty alcohol polyoxyethylene ether 9 Stratification

5 Fatty acid ester ether 7 Emulsification

5 Isomeric alcohol ethers 8 Solid precipitation

5 Polyether-block polyether 8 Emulsification
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on the leaf surface. The maximum surface tension of the reference product was 38.90 mN/m. Under the same 
dosage of adjuvant, sample 5 with adjuvant 992 had the smallest surface tension of 31.67 mN/m.

Contact angle measurement. According to Young’s equation, the smaller the surface tension, the smaller 
the contact  angle40,41. Figure 2 shows the contact angle of different samples on cotton leaves and the change in 
contact angle over time. The contact angles of oil agents containing the adjuvant 992, AEO-7 and AEO-9 were 
smaller than that of the reference product, and the spreading effect was superior to that of the reference product. 
In the surface tension test, sample 5 had the smallest surface tension of 31.67 mN/m; this sample showed the 
minimum initial contact angle (39°) and a static contact angle (22°). The surface tension of the reference product 
was 38.90 mN/m., with the maximum initial contact angle (65.5°). Therefore, the relationship between surface 
tension and contact angle conformed to Young’s equation.

Volatilization rate measurement. As shown in Fig. 3, the volatilization rate of the oil agent was much 
lower than that of the reference product. The volatilization rate of the five treatments was 5.80–8.74%, while the 
volatilization rate of the reference product was 22.97%. The volatilization rate of the oil agent met the quality 
requirements of an ultra-low-volume spray (≤ 30%). A low volatilization rate helps with spraying defoliants in 
hot and dry areas such as Xinjiang, effectively preventing evaporation of the droplets and increasing deposition.

Viscosity measurement. Viscosity is an important factor affecting the atomization performance of a 
 formulation42. Figure 4 shows that the viscosity of the five oil agents ranged from 12.9 to 18.3 mPa s, meeting 
the quality requirements of an ultra-low-volume spray (< 2 Pa s). The addition of chlorinated paraffin effectively 
increased the viscosity, facilitating analysis of the relationship between deposition and the viscosity of droplets in 
the subsequent experiment. This part of the work is described below under atomization performance.

Screening for the best working conditions for the centrifugal spray atomizer. As shown in 
Fig. 5, the linear equation fitted to voltage and rotation speed was y = 79.2418x + 400.2857, and the correlation 
coefficient was 0.9998. This indicated a good linear relationship and that the working state of the rotary atomizer 
was stable, and met the requirements of the next experiment.

Table 3.  Ultra-low-volume formulations used in this study.

Sample
Organic 
solvent Anionic adjuvant Nonionic adjuvant Oily solvent Filler

1 NMP CYC 70b AEO-4 Methyl oleate Chlorinated paraffin

2 NMP CYC 70b AEO-5 Methyl oleate Chlorinated paraffin

3 NMP CYC 70b AEO-7 Methyl oleate Chlorinated paraffin

4 NMP CYC 70b AEO-9 Methyl oleate Chlorinated paraffin

5 NMP CYC 70b 992 Methyl oleate Chlorinated paraffin

Figure 1.  Surface tensions of different samples. Different letters (a–d) indicate significant differences between 
means. Means followed by the same letter are not significant at the 5% significance level by the LSD test 
(LSD = 0.05). Vertical bars indicate a standard deviation of the mean. The detailed data of the histogram is 
shown in Supplementary Table S1.
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The relationship between droplet size and the rotation speed of the rotary atomizer are shown in Fig. 6. The 
rotation speed of the rotary atomizer and the cumulative volume diameter had a binomial distribution. The equa-
tion fitted to  D10 was y = 1E−05x2 − 0.2496x + 1440.4, with a correlation coefficient of 0.9947; the equation fitted 
to  D50 was y = 8E−06x2 – 0.1672x + 934.73, with a correlation coefficient of 0.9791; the equation fitted to  D90 was 
y = 5E−06x2 – 0.0983x + 539.55, with a correlation coefficient of 0.9005. The correlation between the cumulative 
volume diameter and the rotation speed was very high, and the cumulative volume diameter became smaller as 
the rotation speed increased. When the rotation speed exceeded 9600 rpm (voltage 20 V), the cumulative volume 
diameter hardly changed. As shown in Fig. 7, when the rotation speed was 6400–7600 rpm (voltage 10–15 V), 
the spectral width of droplets increased with increasing rotation speed, and the distribution of droplets became 
more uneven. When the rotation speed was 7600–9600 rpm (voltage 15–20 V), the spectral width of droplets 
decreased with increasing rotation speed, and the distribution of droplets became more uniform. The minimum 
droplet size distribution appeared at 9600 rpm (voltage 15–20 V). When the rotation speed surpassed 9600 rpm 
(voltage > 20 V), the droplet size distribution tended to be stable. This coincided with data shown in Fig. 6, where 
the inflection point appeared when rotation speed was 9600 rpm (voltage = 20 V).

Figure 2.  Contact angles of different samples on cotton leaves in 0–10 s. The detailed data of drawing the 
contact Angle curve is shown in Supplementary Table S2.

Figure 3.  Volatilization of different samples on filter paper. Different letters (a–e) indicate significant 
differences between means. Means followed by the same letter are not significant at the 5% significance level 
by the LSD test (LSD = 0.05). Vertical bars indicate a standard deviation of the mean. The detailed data of the 
histogram is shown in Supplementary Table S3.
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Therefore, we determined that the optimal working conditions for the rotary atomizer were achieved by 
setting the DC voltage stabilized power supply current to 1.00 A and voltage to 20 V, which were used for sub-
sequent experiments.

Atomization performance. The relationship between viscosity and droplet spectrum are shown in Table 4 
and Fig. 8. The cumulative volume diameter for the five treatments was less than 150 μm meeting the require-
ments of the ULV  spray32. The cumulative volume diameter for the five treatments was larger than that for 
the reference product, the width of the droplet spectrum was narrower, and the droplet distribution was more 
uniform. Droplet size affects the drift of  droplets43. The  D10 of the reference product was 25.62 μm under these 
working conditions. This droplet size was highly susceptible to drift and deposition on non-target organisms. 
Water suspension was not suitable for this application at low dosage.

As presented in Table 4, droplet size increased with increasing viscosity, which influenced the droplet spec-
trum. The results in Fig. 8 show that the span of droplet size decreased with the increase of viscosity, indicating 
that droplets with more uniform distribution could be obtained by increasing the viscosity of the  formulation41.

Droplet deposition effect. We tested the efficacy of the ULV spray formulation by spraying cotton plants 
using an UAV. The test results in Table 5 indicate that increasing the dosage of application would increase droplet 

Figure 4.  Viscosity of each sample. Different letters (a–f) indicate significant differences between means. Means 
followed by the same letter are not significant at the 5% significance level by the LSD test (LSD = 0.05). Vertical 
bars indicate a standard deviation of the mean. The detailed data of the histogram is shown in Supplementary 
Table S4.

Figure 5.  Relationship between voltage and rotation speed of the centrifugal spray atomizer. The detailed data 
of drawing the curve is shown in Supplementary Table S5.
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Figure 6.  Relationship between the rotation speed of the centrifugal spray atomizer and droplet size.  D10: 10% 
cumulative volume diameter,  D50: 50% cumulative volume diameter,  D90: 90% cumulative volume diameter. The 
detailed data of drawing the curve is shown in Supplementary Table S6.

Figure 7.  Relationship between the rotation speed of the centrifugal spray atomizer and the fog droplet 
spectrum. The detailed data of drawing the curve is shown in Supplementary Table S6.

Table 4.  Droplet size and droplet size distribution of different sample sprays. D10: 10% cumulative volume 
diameter,  D50: 50% cumulative volume diameter,  D90: 90% cumulative volume diameter, Rs: the droplet 
size distribution. Different letters (a, b, c, d, e, and f) indicate significant differences between means. Means 
followed by the same letter are not significant at the 5% significance level by the LSD test (LSD = 0.05). A 
number that follows the ± sign is a standard deviation (s.d.)

Sample

Droplet size (μm)

Rs Viscosity (mPa s)D10 D50 D90

1 48.99 82.74 134.11 1.03 12.90 ± 0.10e

2 53.32 86.34 142.31 1.03 16.40 ± 0.10c

3 51.09 83.92 138.33 1.04 14.70 ± 0.10d

4 53.63 86.93 144.90 1.05 16.73 ± 0.06b

5 55.25 91.98 148.87 1.02 18.33 ± 0.06a

6 25.62 56.19 107.85 1.46 1.05 ± 0.15f
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size, coverage, and deposition density. At the same application dosage, the droplet size of the ultra-low-volume 
spray was slightly larger than that of the reference product, and the coverage and deposition density were greater 
than those of the reference product. The droplet spectral width (Rs) of the five treatments was less than 1, and the 
coefficient of variation was less than 7%, indicating that the droplet distribution was relatively uniform. Among 
treatments, T2 had the narrowest Rs and coefficient of variation (CV), where the droplet size distribution was 
the most uniform. For the ultra-low-volume spray, at the application dosage of 4.5–9.0 L/ha, the droplet cover-
age gradually increased from 0.85 to 4.15%; the droplet deposition densities were 15.63, 17.24, 28.45, and 42.57 
pcs/cm2, which were larger than requirements suggested in the literature. The droplet coverage of the reference 
product (T5) was 0.73%, and the deposition density was only 11.32 pcs/cm2.

Efficacy trials. The efficacy of cotton defoliant is reflected in the defoliation rate and boll opening rate of 
cotton after application. Therefore, we surveyed the defoliation rate and boll opening rate of cotton in the test 
area 3–15 days after application. The results are shown in Figs. 9 and 10.

Figure 9 indicates that the defoliation rates of the five treatments 15 days after the pesticide treatment were 
59.82%, 63.96%, 71.40%, 77.84%, and 54.58%, respectively. The defoliation rates of T1, T2, and T5 were less 
than 70%.

Application of the ultra-low-volume spray at 4.50 L/ha or 6.00 L/ha and the reference product at 6.00 L/ha 
had a poor defoliation effect. T4 (9.00 L/ha) was superior to the others, and the defoliation rate reached 77.84% 
15 days after application. As shown in Fig. 10, the boll opening rates of the five treatments were 58.54%, 67.74%, 
95.35%, 100%, and 44.68% 15 days after application. Similarly, the boll opening rates of T1, T2, and T5 were 
poor, with the boll opening rate of the control T5 only 44.68%. We analyzed significant differences between the 
defoliation rates and boll opening rates of the five treatments. The results showed that the defoliation rate and boll 
opening rate associated with the thidiazuron·diuron ultra-low-volume spray on cotton plants were significantly 
different from those of the reference product.

Overall, the defoliation rate and boll opening rate produced by the ultra-low-volume spray were superior 
to those produced by the reference product. This result was consistent with data shown in Table 5. The higher 
the droplet coverage rate, the higher the droplet deposition density and the higher the defoliation rate and boll 

Figure 8.  Relationship between formulation viscosity and droplet spectrum. The detailed data of drawing the 
figure is shown in Supplementary Table S7.

Table 5.  Droplet size, coverage, deposition density, spectral width and variation coefficient for each treatment. 
Different letters (a, b, c, and d) indicate significant differences between means. Means followed by the same 
letter are not significant at the 5% significance level by the LSD test (LSD = 0.05). A number that follows 
the ± sign is a standard deviation (s.d.)

Treatment
Application amount 
(L/ha)

Droplet size (μm)

Coverage (%)
Deposition density 
(pcs/cm2) Rs

Variation coefficient 
(%)D10 D50 D90

T1 4.50 92 134 202 0.85 ± 0.09c 15.63 ± 1.60c 0.82 5.73

T2 6.00 98 159 211 0.91 ± 0.11c 17.24 ± 1.08c 0.71 3.46

T3 7.50 105 172 235 1.87 ± 0.34b 28.45 ± 2.55b 0.75 3.58

T4 9.00 114 201 276 4.15 ± 0.39a 42.57 ± 2.31a 0.81 6.72

T5 6.00 86 124 193 0.73 ± 0.11c 11.32 ± 1.94d 0.86 5.74
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opening rate. T1, T2 and T5 had poor deposition effect on cotton plants, and the effective pesticide utilization 
rate was low, resulting in dissatisfactory defoliation rates and boll opening rates. Both the droplet coverage 
rate and the droplet deposition density of T3 and T4 were large. Therefore, droplets of pesticide solution could 
deposit more easily and uniformly on cotton leaves, allowing the plants to defoliate and open their bolls easily.

Conclusions
We prepared a thidiazuron·diuron ultra-low-volume spray that met the quality requirements of an ultra-low-
volume spray. We evaluated the application of thidiazuron·diuron ultra-low-volume spray compared with the 
reference product, 54% tidiazuron·diuron suspension concentrate. The surface tension of the oil agent was lower, 
the initial contact angle and the static contact angle on cotton leaves were smaller, and the spreading speed was 
faster than those of the reference product, indicating that the oil agent had good wetting and spreading per-
formance. At the same time, the volatilization rate of ultra-low-volume sprays was much lower than that of the 
reference product, which was beneficial to use in hot and dry areas such as Xinjiang.

We determined the optimal working conditions of the rotary atomizer and tested the atomization perfor-
mance of the formulations using an indoor spraying device. The cumulative volume particle size of the ultra-low-
volume spray was larger than that of the reference product, and the droplet size distribution was more uniform. 
In addition, droplet size increased with increase in viscosity while droplet size spectrum decreased with increase 

Figure 9.  Defoliation rate 3–15 days after treatment. The detailed data of drawing the curve is shown in 
Supplementary Table S8.

Figure 10.  Boll opening rate 3–15 days after treatment. The detailed data of drawing the curve is shown in 
Supplementary Table S9.
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in viscosity, indicating that droplets with more uniform distribution can be obtained by increasing the viscosity 
of the formulation.

We examined the deposition effect of the formulation, as well as the defoliation rate and boll opening rate of 
cotton, in an efficacy trial. Droplet size, coverage rate, and deposition density increased with increased dosage. 
Under the same dosage, the droplet size of the ultra-low-volume spray was slightly larger than that of the refer-
ence product, and the coverage rate and deposition density were greater than those of the reference product. 
The ultra-low-volume spray at 9.00 L/ha showed the best defoliation effect at 15 days after application, with 
a defoliation rate of 77.84% and boll opening rate of 100%. The defoliation rate of the reference product was 
54.58%, and the boll opening rate was only 44.68%. Therefore, ultra-low-volume spray could be considered as 
an ideal pesticide formulation suitable for plant protection UAV. It had the characteristics of low dosage, high 
efficiency and environmentally friendly.

Data availability
Data is contained within the article or Supplementary Information.
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