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The role of vascular complexity 
on optimal junction exponents
Jonathan Keelan & James P. Hague*

We examine the role of complexity on arterial tree structures, determining globally optimal vessel 
arrangements using the Simulated AnneaLing Vascular Optimization algorithm, a computational 
method which we have previously used to reproduce features of cardiac and cerebral vasculatures. 
In order to progress computational methods for growing arterial networks, deeper understanding of 
the stability of computational arterial growth algorithms to complexity, variations in physiological 
parameters (such as metabolic costs for maintaining and pumping blood), and underlying assumptions 
regarding the value of junction exponents is needed. We determine the globally optimal structure of 
two-dimensional arterial trees; analysing how physiological parameters affect tree morphology and 
optimal bifurcation exponent. We find that considering the full complexity of arterial trees is essential 
for determining the fundamental properties of vasculatures. We conclude that optimisation-based 
arterial growth algorithms are stable against uncertainties in physiological parameters, while optimal 
bifurcation exponents (a key parameter for many arterial growth algorithms) are affected by the 
complexity of vascular networks and the boundary conditions dictated by organs.

Vascular systems connect large numbers of tiny capillaries to small numbers of arteries and are therefore highly 
complex. This complexity and scale range is described schematically in Fig. 1. Capillaries in humans can have 
diameters as small as ∼ 5µm1, whereas the aorta is 2–3 cm  wide2, so the radii of vessels in the vascular network 
of the human body cover almost four orders of  magnitude2. Within a typical organ, vascular trees connect 
major arteries of ∼ 1− 10mm diameter to huge numbers of tiny arterioles with width of ∼ 10− 100µm which 
themselves connect to capillaries of � 10µm (see e.g. Ref.2). Networks of arteries and arterioles typically have a 
tree like structure, which branches or  bifurcates3. At each bifurcation vessels get proportionally smaller, and the 
result is that vessel size diminishes exponentially until reaching the capillaries. Capillaries have a distinct mesh 
like structure and are optimised for transfer of oxygen and other nutrients to tissue. There is no hard boundary 
between the length scales of arteries and arterioles, since the vessel structure is very similar. However broadly 
speaking, arteries supply blood to organs, arterioles distribute blood within organs, and capillaries distribute 
blood to tissues.

Vascular networks within organs are primarily constructed from  bifurcations3, which can be characterised 
by defining a bifurcation exponent, γ , which is also known as the radius exponent or junction exponent (see e.g. 
Ref.4). A bifurcation consists of a single input vessel that branches into two child vessels, which we shall label A 
and B. The radii of the two output vessels, rout,A and rout,B , are related to the radius of the input vessel, rin , via,

The goal of this paper is to carry out a theoretical and numerical analysis to determine the optimal bifurcation 
exponent for the efficient supply of blood through large and complex arterial trees. Evolution makes compromises 
between different physical and physiological costs on many length scales when optimising arterial networks. Key 
costs are due to pumping blood (which is a viscous fluid) and the metabolic requirements of blood  manufacture5. 
The physics of pumping blood through large vessels is often dominated by pulsatile flows and turbulence, while 
small vessels are  microfluidic6, which may lead to additional costs.

The simplest analysis of the competition between the cost of blood flow and metabolic costs of blood mainte-
nance in single cylindrical vessels, predicts an optimal junction exponent of, γopt = 35. In the classic analysis of 
Ref.5, two competing contributions to the metabolic demand of vessels are examined: the power dissipated during 
flow through the cylinder, and the metabolic cost of maintaining a volume of blood. The former is minimised 
for wide vessels and the latter for narrow vessels, so the actual radius is a compromise. This analysis leads to the 
conclusion that flow is proportional to the cube of vessel radius, and is known as Murray’s law. When combined 
with conservation of flow, Murray’s law leads to the prediction that γ = 3 in Eq. (1). More detail on Murray’s 
law can be found in the "Power cost" and "Murray’s law" sections of this paper.
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In living organisms, the bifurcation exponent associated with arteries and arterioles is often measured to 
deviate from  three6, which is not fully understood, although several factors are known to lead to γopt  = 3 in 
single-vessel analyses.  Reference6 reviews a range of studies that measure γ in various organs and species, with 
γ ranging from ∼ 2.1 to ∼ 3.5 in systemic arterial trees (with a greater range in the pulmonary vasculature). 
There are two key lines of argument to explain why γ < 3 . The effects of pulsatile flow, elastic wall vessels, and 
turbulence all contribute to additional power dissipation in an arterial segment, leading to a reduction in the 
optimal junction exponent to γopt = 2.336. Alternatively, it has been argued that cross-sectional area is conserved 
at bifurcations, i.e. γopt = 27. Curiously, in some organs, γ is measured to be slightly greater than  three6,8. To our 
knowledge, no explanation of this effect is available, since corrections to flow in single artery analyses to include 
turbulence, pulsatile flow, and elastic wall vessels, lead to γopt < 3 . This suggests that single vessel analysis may 
be insufficient to explain γopt > 3 and thus that complex networks representing large numbers of arteries may 
be needed to properly analyse vascular trees.

We propose that, in order to fully understand the optimal branching exponents in vascular trees, it is essential 
to take into account the complex structure of the entire arterial network in an organ, and the boundary condi-
tions imposed by the organism on the arteries that enter organs (particularly on the flow and artery radius). A 
single vessel is part of a much larger arterial tree for an organ, that is in turn part of an organism, and the role 
of this additional complexity on optimal supply networks is poorly understood. Two factors define boundary 
conditions for arterial growth algorithms: (1) The metabolic demand of the organ determines the blood flow to 
the organ. (2) The radius of the primary artery supplying that organ is determined by a compromise between 
the whole organism and the organ.

There are a huge number of possible ways to connect arterioles to arteries, yet not all are optimal. Our goal 
is to examine the complex multiscale structures of vascular networks that emerge from optimisation considera-
tions both computationally and analytically. The process of optimisation in complex trees can be difficult to 
reproduce computationally. When optimising, the space of possible connections between the capillaries and 
the arteries needs to be explored. The number of possible combinations of vessels associated with these connec-
tions is enormous, and all vessels contribute to metabolic and pumping costs. It is not possible to search through 
every combination for all but the smallest trees. Moreover, deterministic minimisation methods (e.g. steepest 
descent) run the risk of finding local rather than global minima. Thus, stochastic optimisation algorithms (such 
as simulated annealing) are  needed9.

Stochastic optimisation algorithms are highly advanced optimisation approaches that use random variables 
to quickly search through the configuration space of a problem to find (near) globally optimal  solutions10. 
In particular, simulated annealing is guaranteed to approach the global optimum as computational times are 
 increased11. We previously introduced the Simulated AnneaLing Vascular Optimisation (SALVO) algorithm to 
find the globally optimal structure of arteries using simulated annealing to overcome these  problems8,9. The power 
of the numerical SALVO algorithm is that the generated trees are globally optimised and therefore represent the 
lowest possible total power cost associated with the whole vasculature. While the globally optimised solution 
represents an idealised evolutionary endpoint, insight into the compromise associated with optimising the com-
peting costs of the different metabolic requirements associated with complicated vasculatures can be gained by 
this analysis. A summary of SALVO can be found in the "SALVO" section, with a detailed introduction in Ref.8.

Our work goes beyond previous  analyses5,6,12–15, by optimising entire trees, rather than a single arterial bifurca-
tion. The constraints on flow and radius of root vessels in real organs are also taken into account. Further to this 
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Figure 1.  (a) Schematic showing the relative sizes and structures of arteries, arterioles and capillaries. The 
scale of the features diminishes logarithmically from left to right. Arteries supply organs and typically have 
sizes greater than approximately 1 mm (with the aorta the largest artery with a 2–3 cm diameter). Arterioles are 
typically less than 100 µ m in diameter and distribute blood within organs via a branching structure. We note 
that the boundary between scales of arteries and arterioles is blurred. Capillaries have a mesh like structure and 
control the distribution of nutrients, particularly oxygen, to tissue. After leaving the capillaries, blood enters 
the venous system before returning to the heart. (b) Schematic showing how the vessels and bifurcations of an 
arterial tree can be represented as segments and nodes. Segments are shown as lines and nodes as circles.
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analysis, we use the SALVO  algorithm8,9 to determine the globally optimal bifurcation exponent, which allows 
us to check any analytical expressions that we have calculated against numerically exact values.

This paper is organised as follows: In the "Methods" section we introduce the methodology used in this 
paper. The "Analytical results" section presents analytical expressions for the properties of large vasculatures. 
The "Numerical results" section presents results from the SALVO algorithm applied to two-dimensional planes. 
Finally we present a "Discussion and conclusions" section.

Methods
In this section, we discuss some of the basic formalism related to the calculation of optimal γ , and its relation 
to the SALVO algorithm.

Power cost. In order to make it possible to calculate the properties of large and complex arterial trees, the 
arterial tree is divided into straight segments and bifurcations, such that segments join bifurcations. Thus each 
bifurcation becomes a node within a tree network. In the following, we shall interchangably use the terms node 
and bifurcation. The largest vessel from which blood arrives shall be referred to as the root node. The smallest 
vessels at the end of the tree shall be identified as leaf nodes. A schematic of the terminology associated with the 
arterial network can be found in Fig. 1b.

Poiseuille flow is assumed within each segment. It is also assumed that maintaining blood has a metabolic 
cost proportional to its volume. With these assumptions, the power cost for pumping blood through a single 
arterial tree segment  is5,

where j denotes a segment, rj the segment radius, lj its length, fj its volumetric flow, mb the metabolic power cost 
to maintain a volume of blood, and µ the dynamic viscosity of blood. The first term in this expression represents 
the metabolic cost to maintain a volume of blood, and has units of energy expended per unit time (power). The 
second term represents the power required to pump blood through the segment. The power cost associated with 
bifurcations is neglected.

The total cost, W , of an arterial tree is the sum of these individual segment costs,

Equation 3 will be referred to as the cost function.

Murray’s law. Murray’s law ( f ∝ r3 ) is derived by optimising total power expenditure for pumping blood 
through a single segment, as given by Eq. (2)5. By differentiating Eq. (2) with respect to rj,

When ∂Wj/∂rj = 0 , the optimal relation between fj and rj can be found. This leads to Murray’s law,

In the following analysis, we will assume that l = lrootr
α/rαroot , where lroot and rroot are the length and radius 

of the root segment respectively, and α is the length–radius  exponent6. This slightly modifies the preceding 
argument, so that,

where froot is the flow through the root segment.

SALVO. The (SALVO) algorithm developed in earlier papers for three dimensional arterial  trees8,9 can also 
be used to generate arterial trees in two-dimensional planes. In this section, an outline of this algorithm is given. 
The algorithm is similar to the approach for growing cardiac and cerebral  vasculature8,9, with some differences 
relating to the use of fixed nodes to supply tissue. A detailed description of the SALVO algorithm can be found 
in Ref.8.

In a key difference to previous work, we study an idealised two-dimensional (2D) piece of ‘tissue’, with fixed 
leaf-node positions. The root node of the tree is fixed to the corner of a square region of side a(= 10mm) . A 
Poisson disc process is used to place leaf  nodes16. The whole 2D region is accessible by nodes, with only meta-
bolic- and flow-related penalties in the cost function, Eq. (3). Since the leaf nodes are evenly distributed by the 
Poisson disc process, and do not move during the update process, a penalty for under- and over-supply (see Ref.9) 
is not required. Also, no penalties are required to stop penetration of large vessels into the tissue (as in Ref.8) or 

(2)Wj = mbπr
2
j lj +

8µf 2j lj

πr4j

(3)W =
∑

j∈{segments}
Wj .

(4)
∂Wj

∂rj
= 2mbπ f

2
j lj −

32µf 2j lj

πr5j
.

(5)fj =
m

1/2
b π

4µ1/2
r3j

(6)fj =
m

1/2
b π

2(2µ)1/2
r3j

√

2+ α

4− α
=

froot

r3root
r3j ,



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5408  | https://doi.org/10.1038/s41598-021-84432-1

www.nature.com/scientificreports/

cavities within the tissue (such as the ventricles of the heart in Ref.9) since all vessels lie within a continuous 2D 
tissue. Overall this decreases the complexity of the algorithm.

On each iteration, modifications to the binary tree are attempted by either (1) selecting a node at random 
and then moving it or (2) selecting two nodes at random and then changing the tree structure by swapping the 
parents of those nodes. These updates are sufficient to ensure ergodicity. Updates are summarised in Fig. 2 and 
relevant parameters are summarised in Table 1. The root node is never updated. An example of moving a node is 
shown in Fig. 2a. In the update, the initial configuration at the top of the figure changes to the final configuration 
at the bottom of the figure, by moving the location of the node labelled a. The distance moved is short (0.05 mm) 
in 30% of updates, and long (0.5 mm) in 20% of updates. In the version of the algorithm used in this paper, leaf 
nodes are never moved. An example of swapping the parents of a node is shown in Fig. 2b. In this case, it is the 
parents of nodes labelled b and d that are swapped. In the initial configuration, node c is the parent of node d, 
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Figure 2.  Schematic of the algorithm, showing the two types of update and a flow diagram of the SALVO 
process. (a) and (b): Two types of update are required for ergodicity, that (a) move node coordinates and (b) 
swap the parent segments of nodes. The figure shows a summary of these updates. In panel (a) node a is moved. 
In panel (b) parents of two nodes (nodes b and d) are swapped. The parent of node b is node a, and the parent 
of node d is node c. After the swap, the parent of node b is node c and the parent of node d is node a. (c) Flow 
diagram showing the initialisation and iterative processes associated with SALVO.

Table 1.  Simulation parameters and their ranges.

Name Symbol Range

Bifurcation exponent γ 1.0–5.0

Metabolic ratio � 0.1–10

Number of leaf nodes N 100–5000

Blood viscosity µ 3.6× 10
−3 Pa s

Tissue size a 1 cm

SA steps ν 10
8 ( 109 for checks)

SA initial ‘temperature’ T0 1 Js−1

SA final ‘temperature’ Tν 10
−12 Js−1

Short move distance dmove 0.05 mm

Long move distance dmove 0.5 mm

Short move node weight 0.3

Long move update weight 0.2

Swap update weight 0.5
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and node a is the parent of node b. After the update, node a is the parent of node d and node c is the parent of 
node b. The swapping of parent nodes is attempted on 50% of iterations.

We use simulated annealing to optimise the cost  function17. Within this framework, acceptance of the updates 
is determined according to the Metropolis condition,

where �W
(θ ,θ+1) = W

(θ+1) −W
(θ) is the change in cost associated with modifying the tree from the configura-

tion in iteration (θ) to the configuration proposed for iteration (θ + 1) , and W as defined in Equation 3 is the cost 
function at the core of the SALVO algorithm. In practice, a uniform random variate r ∈ [0, 1) is calculated and if 
P > r the proposed configuration is accepted. If the proposed configuration is rejected, then the configuration 
of iteration θ is carried forward to iteration θ + 1 . Tθ is the annealing temperature, which is slowly reduced using 
the common exponential schedule, Tθ+1 = ǫTθ where θ is the iteration number, ǫ = exp(lnT0 − lnTν)/ν , ν the 
total number of iterations, and T0 ( Tν ) are the initial (final) temperatures. Updates are iteratively applied until 
the final temperature is reached. The algorithm is summarised in the flow diagram of Fig. 2c.

As we have discussed  elsewhere8, limitation of the method to a few thousand nodes is related to the combina-
torial (factorial) growth of the number of possible tree configurations. 5000 nodes trees are already quite detailed, 
and determination of γopt for such trees already offers a substantial computational challenge: The required 108 
updates take approximately 11 hours on a single thread of a Threadripper 2990WX processor, and we have to 
distribute the optimisation of large numbers of similar trees with different γ across the full 64 threads of the 
processor to find a single value of γopt (and are then calculating for many different physiological parameters). 
To make these calculations with much larger numbers of nodes, very significant advances in computational 
power would be needed. The primary issue is that the number of updates needed to optimise the tree grows with 
the number of possible combinations. Therefore, the optimisation of larger trees is not just a matter of greater 
computational power, since the required computational power grows so rapidly. A possibility is application of 
alternative optimisation algorithms, e.g. genetic algorithms, ant-trail optimisation etc, although these are much 
harder to implement for this problem. Unfortunately, even if certain optimisation algorithms are faster, all will 
eventually be limited by the combinatorial growth of possible tree configurations. In the context of this paper, we 
need to identify the global minimum, so approximate strategies such as multiscale  algorithms18 or constrained 
constructive optimisation (CCO)19 are not appropriate.

Analytical results
In this section, we discuss analytic approximations to the total power of large and complex vascular trees. This 
provides initial insight into the deviations in γopt caused by tree complexity. We start by discussing a formalism 
for simplifying the total power calculation of large and complex arterial trees.

Formalism and simplifications. Arteries can be grouped together, so that each group comprises arter-
ies with identical properties (e.g length, diameter, flow). In a real arterial system, this would not be exact, but it 
would still be possible to group arteries with similar lengths, radii, and flows together. By using this grouping, 
the total power can be rewritten as,

where N(rj , lj , fj) is the number of arterial segments with identical radii, lengths and flows.
Under the restriction that the flow in all leaf nodes is identical and equal to fleaf  , the flow in each segment is,

where n is an integer and represents the total number of leaf nodes downstream of the segment.
Comparing Eq. (1) with flow conservation, a radius–flow relation is identified:

Thus, by substituting Eq. (9) into Eq. (10), the radius can be rewritten in terms of n and γ:

Experimental data suggest that the length of an arterial segment is proportional to a power of the radius,

where the value of the exponent α is typically close to 1.06,20.
By substituting Eqs. (11) and (12) into Eq. (2), the power required to maintain blood flow through a segment 

is found to depend only on the flow fn,

(7)Pθ ,θ+1 = min

{

exp(
−�W

(θ ,θ+1)

Tθ

), 1

}

(8)W =
∑

j∈{r,l,q}
N(rj , lj , fj)

(

mbπr
2
j lj +

8µf 2j lj

πr4j

)

,

(9)fn = nfleaf

(10)fn = fleaf (rn/rleaf )
γ .

(11)rn = rleaf
(

fn/fleaf
)1/γ = rleafn

1/γ .

(12)ln = lleaf (rn/rleaf )
α = lleaf

(

fn/fleaf
)α/γ

,



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5408  | https://doi.org/10.1038/s41598-021-84432-1

www.nature.com/scientificreports/

Thus, the dimensionless metabolic ratio, defined as � = mbπ
2r6leaf /8µf

2
leaf  , the bifurcation exponent, and the 

number of nodes, N, define the parameter space. The power associated with a segment is then,

where C = 8µf 2leaf lleaf /πr
4
leaf  . Both C and � are defined in terms of the leaf node properties. A similar ratio for 

the root node, �root = mbπ
2r6root/8µf

2
root can be defined for convenient contact with experiment. The values 

rroot and froot are often known from experiment, e.g. Doppler ultrasound, and N can be estimated. This ratio can 
be related to � via �root = N6/γ−2�.

The total power required to supply the whole vascular tree is,

Nn is the number of segments with flow nfleaf  , and simplifies the function N(ri , li , fi) . For any tree structure, 
N is always the number of leaf nodes, so N1 = N . There is always a single root node with total flow Nfleaf  , so 
NN = 1 . No node has flow greater than Nfleaf , so Nn>N = 0 . The remaining Nn are dependent on the structure 
of the tree. At each bifurcation, flow conservation requires that nin = nout,1 + nout,2 , so n is an integer.

Total power is linear in length scale, so the location of any minima in the power with respect to γ is inde-
pendent of a. It is the global minimum with respect to γ that sets the structure of the tree, and when locating 
the minimum, ∂W/∂γ = 0 , so the factor of lleaf  in C simply cancels, thus making the solution independent of 
a. Changes in rleaf  can be absorbed into the ratio mb/µ and thus are similar to changing the metabolic require-
ments of the  organ9.

There are two special tree structures: the fully symmetric and fully asymmetric trees. In the first case, identi-
fied as a fully symmetric tree, the flow is split evenly at each bifurcation. For the case which we shall identify as 
fully asymmetric, a single leaf node emerges at each bifurcation and the rest of the flow passes down the other 
bifurcation. We will explore these special cases in the following two sections.

Fully symmetric vascular tree. In a fully symmetric tree, all of the segments with flow n exist at the same 
bifurcation layer. Each layer, denoted by the integer m, has 2m segments, where m is the number of bifurcations 
upstream of that layer ( m = 0 at the root segment). Within a layer, all segments have the same flow, and thus 
the same radius and length. The tree has a total of M layers, so 0 ≤ m ≤ M . Therefore Nn = 2m if n = 2M−m , 
Nn = 0 otherwise, and the total power cost in Eq. (16) becomes,

By summing this geometric series, the total power cost for a fully symmetric tree is found to be,

Fully asymmetric tree. The total power cost of the fully asymmetric tree may be calculated by noting that 
each discrete flow is represented once for all n, so Nn = 1 , for n < N . The exception being that there are N leaf 
nodes so N1 = N.

Substitution into Eq. (16) gives,

So the total power cost for an asymmetric tree is

where H(r)
n  is the generalized harmonic function, 

∑n
k=1 1/k

r.

Optimal bifurcation exponent. The optimal value of γ is obtained by numerically solving ∂W/∂γ = 0 
for Eqs. (18) and (20) . Results are shown in Fig. 3 for symmetric and asymmetric trees, for various �,α and N.

The optimal bifurcation exponent is strongly dependent on the metabolic ratio, � , which can change due 
to physiological boundary conditions on flow and radius at the input vessels. These constraints may be due to 
limits in the size of the largest vessel in the tree imposed by the physiology of the whole organism and the flow 
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demands of the organ. Figure 3a shows the optimal value of γ . When � = 1 and α = 1 the result of Murray’s 
law ( γopt = 3 ) is recovered.

γopt is qualitatively unchanged by the structure of the tree. Results for asymmetric and symmetric trees with 
N = 2.047× 103 follow essentially the same functional forms. The optimal bifurcation exponent for the asym-
metric tree is closer to γ = 3 than the symmetric tree. Also shown in Fig. 3a are numerical values from SALVO, 
which will be discussed later.

The optimal bifurcation exponent is modified away from γ = 3 by changes in the length exponent, α (Fig. 3b). 
This structural effect potentially has implications for the value of γopt in organs, since α can vary with organ type, 
with estimates ranging from 0.89–1.15. In practice, changes in γopt for this variation in α are far smaller than the 
error for measurements of γ and changes in α can essentially be neglected.

Deviations from Murray’s law are largest for small trees and strongly dependent on changes in the metabolic 
ratio. The larger the tree, the closer to Murray’s law γopt becomes. Fig. 4 shows variation of γopt with N for fully 
symmetric trees. For vascular tree sizes of between 103 and 106 segments, which are typical in organs, γopt ranges 
between 2 and 4.

Numerical results
The generation of globally optimal trees using a numerical algorithm helps to test analytic expressions, and pro-
vides additional morphological measures that can be used to understand arterial networks. In this section, we use 
SALVO to investigate the role of vascular complexity and physiological boundary conditions on the properties 
of globally optimal trees. Several properties of the numerically generated trees are investigated. We determine 
the dependence of globally optimal tree structures on � and γ . Through examination of W , we compute γopt 
for complex trees. For each value of γ and � investigated, arterial trees with up to 5000 nodes were generated. 
Table 1 summarises the parameters used for the numerical calculations. We note that we carried out checks on 
convergence with a subset of trees by using an anneal schedule with a larger number of steps ( ν = 109 ), finding 
no major changes to the tree structure.

Tree morphology. There are three regions of the parameter space with qualitatively different tree struc-
tures, examples of which can be seen in Fig. 5. In the figure, the vessel widths are normalised to the root radius 
to improve visibility. Trees are generated for N = 100 and various � and γ:
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Figure 3.  (a) Deviations from Murray’s law ( γopt = 3 ) depend strongly on the metabolic ratio, � , but are 
essentially independent of the structure of the tree. The figure shows a comparison of γopt vs � for fully 
symmetric, asymmetric and numerical trees. (b) Optimal bifurcation exponent does not depend strongly on α.
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• Star regions ( γ � 2,� > 1 and γ � 4,� < 1 ): long and narrow leaf segments originate from the vicinity of 
the root node.

• Asymmetric regions ( γ � 2,� < 1 and γ � 4,� > 1 ): asymmetric and tortuous branches dominate.
• Physiological region ( 2 � γ � 4 ): trees have a branching structure similar to the kinds of vasculature seen 

in living tissue.

In the star regions ( γ � 2,� ≫ 1 and γ � 4,� ≪ 1 ), long leaf segments connect root and leaf nodes (see 
top right panels in Fig. 5). This is due to the domination of the n3/γ−1 term (that represents metabolic mainte-
nance of blood) for low γ , and the n3/γ ′−1 Poiseuille term for large γ . Thus, terms with small n (i.e. leaf nodes) 
are favoured. Trees in both star regions are very similar, which is not a coincidence, and can be explained by 
examining the structure of Eq. (15). When α ≈ 1 , the power in a segment is Wn = Cn(�n3/γ−1 + n1−3/γ ) . For 
γ > 3 , the exponents (which involve 3/γ − 1 ) have opposite sign to those for γ < 3 . So after the substitutions 
� = 1/�′ , γ = 3γ ′/(2γ ′ − 3),C′ = �C , Wn = C′n(�′n3/γ

′−1 + n1−3/γ ′
) , and the sum has an equivalent struc-

ture. The substitution is determined by identifying where 1− 3/γ = 3/γ ′ − 1 . Since the prefactor C′ scales the 
entire sum, then the minima of W and thus the results for γ ,� and γ ′,�′ are identical. This symmetry is only 
approximate if α  = 1.

Trees in the asymmetric regions ( γ � 2,� ≪ 1 and γ � 4,� ≫ 1 ), have a highly asymmetric structure, with 
long trunks snaking through leaf node sites (see top left panels in Fig. 5). This is due to the domination of the 
n1−3/γ term due to Poiseuille flow for low γ , and the n1−3/γ ′ metabolic cost term for large γ . Thus terms with 
large n (i.e. thick trunks) are favoured. A similar argument to that given for the star regions explains why the 
trees in both asymmetric regions have very similar structures.

Figure 5.  The structure of the globally optimal vasculature varies with γ and � . Trees have size N = 100 . Radii 
are normalised by the root radius for easier visualisation.
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In the physiologically relevent region ( 2 < γ < 4 ), trees have a more symmetric structure. No single term in 
W dominates. There is surprisingly little variation between the tree structures for different γ and � within this 
region. The vascular structures are reminiscent of those in the  retina21, although we postpone analysis of the 
vasculature of the curved retina for future work.

To quantify the effect of varying γ and � on the network structure, we have examined average segment length, 
path length, radius asymmetry and Hausdorff dimension (Fig. 6). Average length is defined as l =

∑

lj/N . The 
average summed path length from root to leaf node is L = �

∑

path lj� . Radius asymmetry is measured using 
�rc>/(rc< + rc>)� (where at each bifurcation the larger and smaller of the radii of child vessels are labelled rc> 
and rc< , such that rc> ≥ rc< ). The Hausdorff dimension is calculated using a box counting method.

In the physiological region, the dominant factor controlling morphological properties is γ . Within that range, 
morphological properties do not depend strongly on � . Average segment length is short and path length is long 
in this region, consistent with the branching structures seen for intermediate γ in Fig. 5. Bifurcation symmetry 
is in the range 0.58–0.62, so bifurcations are moderately symmetric. Although � leads to minor changes in tree 
morphology in this regime, we note it can affect γopt and thus the tree morphology via γ as a secondary effect.

In the star and asymmetric regions, � is responsible for large variations in the tree morphology, and γ can 
also produce large variations in the various morphological and structural properties of the tree. Path length 
drops outside this region to approximately a/

√
2 consistent with a large number of straight paths from the root 

node to leaf nodes. The radius asymmetry is increased in the asymmetric region relative to the physiological 
region, and is decreased in the star region. For all other regions of the parameter space, the asymmetry drops.
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Figure 6.  The tree morphology is dependent on the bifurcation exponent, but essentially independent of 
variation in � within the region of physiological interest between γ = 2 and γ = 4 . Morphology is strongly 
dependent on � outside this range. There is only minor dependence on tree size at any values of γ and �.
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Morphological measurements are not strongly dependent on changes in N, consistent with additional seg-
ments adding more detail to the tree, but not qualitatively changing the tree structure. Panels on the left of Fig. 6 
show results for N = 2163 and panels to the right for N = 3968.

The Hausdorff dimension, dHaus , is also calculated (lowest panels of Fig. 6). This sits in the range between 
d = 1 and d = 2 . The dimension of the trees with the physiological range 2 < γ < 4 are lower than the spidery 
trees found outside this range.

A power law, l = Arα , is found to relate the median segment length calculated using SALVO to the segment 
radius. Figure 7a shows data gathered from trees with 5000 > N > 2000 , 2.75 < γ < 3.25 , � = 0.9 . Since there 
are many segments in the tree, and many trees in the analysis (to improve statistics), there is a distribution of 
segment lengths corresponding to each radius, just as found in  experiments6. To indicate the spread of this 
distribution, we shade the range of lengths that sit between the 25th and 75th percentiles of the length distribu-
tion in light blue. To determine the parameter, α , we fit l = Arα to the median value, finding the exponent to be 
α = 0.887± 0.088 , consistent with experimental  values6.

The length–radius exponent, α , is consistent with experimental values for trees grown with 2.5 < γ < 3.5 , 
but can become effectively negative when long leaf segments start to dominate outside this region (Fig. 7b). To 
calculate the length–radius relation, segments are binned from trees with N > 2000 and specific γ and � values 
before fitting a power law. Where exponents are negative, the relation only poorly follows a power law, and errors 
on α are large. The power law relation is well followed within the region 2.5 < γ < 3.5 , and this leads to smaller 
error bars. Overall, errors on α determined from fitting the power law are relatively large.

Optimal bifurcation exponent. The optimal bifurcation exponent γopt can be determined without ambi-
guity from the minimum in W . Figure 8a shows how the total power cost varies with γ . There is a clearly defined 
global minimum for all values of � shown. γopt can be found by fitting a quadratic form to the bottom of the 
minimum.

The variation of γopt with � and N, numerically determined using SALVO, is qualitatively similar to the 
results from analytic expressions. Numerical values of γopt for various values of � vs N are shown in Fig. 8b, and 
compare favourably to Fig. 4. Several numerical values are compared with the analytic results in Fig. 3a, also 
showing good agreement for both symmetric and asymmetric trees.

We note that the location of the minimum in the cost function is very stable to changes in the random number 
seed, which determines the random number sequence used both in the Poisson disc process that initialises the 
leaf nodes, and as part of the Monte Carlo algorithm at the heart of simulated annealing. In practice a different 
seed was used for each point in Fig. 8a with no discernible fluctuation in the curves.

Sensitivity to uncertainty in physiological parameters. Uncertainty in physiological parame-
ters. There are two free physiological parameters that act as input to SALVO, � and γ . In this section we discuss 
the uncertainty in these values.

Large uncertainties on the value of � = mbπ
2r6leaf /8µf

2
leaf  , dominate errors in γ . Experimentally measured 

values for γ in systemic arterial trees (collated in Ref.6) range from γ ∼ 2.1 to ∼ 3.4 . Fractional errors on these 
values are typically of order 15% for vessels of size > 1 mm and (significantly) less than 7% for vessels of size < 1
mm. The uncertainty in � is itself dominated by uncertainty in the value of mb . Estimates of the parameter mb 
can vary by up to a factor ∼ 222 (corresponding to ∼ 40% fractional error). We expect radius and flow measure-
ments to be significantly more reliable than the mb estimate. Thus we estimate � to also vary by a factor 2 due to 
experimental uncertainty (or ��/� ∼

√
2− 1 ∼ 0.41).
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Figure 7.  (a) A power law relationship is found for the median segment length in terms of segment radius 
calculated using SALVO. The figure shows median values of l/rroot vs r/rroot , a power law fit (dashed line), and 
the 25th and 75th percentiles (light blue shading). To calculate the length–radius relation, segments are binned 
from trees with N > 2000 , 2.75 < γ < 3.25 , � = 0.9 . (b) The length–radius exponent, α , is close to one for 
trees grown with 2.5 < γ < 3.5 . To calculate the length–radius relation, segments are binned from trees with 
N > 2000 and specific γ and � values and fits similar to Panel (a) are made. Error bars represent uncertainty in 
the fit.
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Uncertainty in tree morphology. Morphological properties depend on only two parameters, � and γ . 
The uncertainties in morphological parameters can be related to variations in γ and � in the usual way as, 
�O/O ∼

√

|dO/dγ |2(�γ/γ )2 + |dO/d�|2(��/�)2 , where O represents one of the four calculated morpho-
logical properties. However, since the fractional uncertainties in measured γ values are much smaller than those 
in � , we calculate the sensitivity based on

Figure 9 shows the sensitivity of morphological properties to uncertainty in � , for � ∼ 1 . To estimate 
|dO/d�| we used the difference between morphological measures using values of � = 0.9 and � = 1.1 to esti-
mate �O/�� , and display the average of these two measures in the figure with error bars representing the 
uncertainty in O due to � . None of the morphological properties are very sensitive to the uncertainty in � . There 
is little uncertainty within the physiological range 2 < γ < 4 . The largest uncertainties are found outside that 
range, but they do not lead to the possibility of qualitative changes to conclusions.
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Figure 8.  (a) A well defined global minimum in total power cost means that the optimal bifurcation exponent 
γopt can be determined without ambiguity. The figure shows the total power cost as a function of bifurcation 
exponent, γ , for several values of � . (b) The relationship of γopt to N and � , numerically determined using 
SALVO, is qualitatively similar to the relationship determined from analytic expressions. The figure shows γopt 
vs N for several � . Error bars represent uncertainty in the fit to the bottom of the minimum.
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Uncertainty in optimal bifurcation exponent. The key result of this paper is the optimal bifurcation exponent. 
This is only dependent on � , so we estimate that the uncertainty of γopt is,

We estimate uncertainties of γopt due to uncertainties in � to be � 10% . Figure 10 shows the sensitivity of γopt 
to the uncertainty in � . For tree sizes of N = 5000 , uncertainty in γopt is approximately 6%, rising to ∼ 10% for 
the smallest trees of ∼ 100 segments. Thus the results are robust against the difficulties of estimating metabolic 
constants.

Discussion and conclusions
In this paper we determined analytic expressions, and carried out numerical calculations, for the properties and 
structures of globally optimal vascular trees, with the aim of understanding how overall complexity and physi-
ological boundary conditions contribute to the optimal junction exponent and other properties of arterial trees. 
Analytic expressions were derived for the special cases of maximally symmetric and asymmetric arterial trees. 
The parameter space of the arterial trees was explored further by making numerical calculations with SALVO, 
enabling globally optimal vasculatures to be found for arbitrary tree morphology. The dependencies of tree 
structures, morphological properties, and optimal bifurcation (junction) exponent on physiological parameters 
are calculated.

The analytic expressions derived here are consistent with numerical calculations, and predict that γopt does 
not vary strongly with tree symmetry, so we propose that the analytic expressions derived here are applicable to a 
wide range of vasculatures. Analytic expressions can be used for much larger trees than numerical optimisations, 
and would, therefore, be useful for predicting the properties of vasculatures within a range of organs where the 
number of vessel segments and overall complexity exceed the capabilities of current computers. We expect that 
it will be possible to extend the analytic expressions to include pulsatile flow and turbulence, and will investigate 
this possibility in future studies.

We predict that tree complexity is a significant contributor to the bifurcation exponents measured in living 
organisms. The deviations originating from tree complexity are of similar size to those predicted by including 
turbulence and pulsatile flow in previous analyses. These deviations are particularly significant if physiological 
boundary conditions lead to �  = 1 . This may occur since all organs, with their dramatically varying demands, 
are connected to the same major vasculature: so flow and radius associated with the arteries supplying organs 
may reflect compromise within an organism. We expect that large variations of γopt with increasing complexity 
will also occur if a more detailed analysis including pulsatile flow and turbulence is carried out.

We predict that arterial tree complexity can lead to optimal bifurcation exponents, γopt > 3 , a situation which 
can be found in experiment, and is of interest since inclusion of turbulence and pulsatile flow in single artery 
analyses leads to γopt < 3 . Large values of γ are measured in e.g. the brain vasculature ( γ = 3.2)8, retina ( γ = 3.1
23, γ = 3.9± 0.1224) and other mammalian vasculatures where γ can range as high as  46. Such large γ are not 
predicted by single segment analyses including effects related to pulsatile flow, elastic vessel walls and turbulence 
( γ = 2.3)6. Tree complexity and organism imposed boundary conditions provide an additional contribution that 
can account for larger values of γopt.
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We predict that tree structures within the physiological regime, 2 < γ < 4 , are weakly dependent on all 
parameters except γ ; outside the physiological regime structures also depend strongly on � ; and for all regimes 
tree structures are independent of N. Changes in N do not qualitatively change the morphology of the tree, but 
add more detail. Outside the regime 2 < γ < 4 , structure can change dramatically with �.

For 2.5 < γ < 3.5 , we find length exponents in our computational trees that are consistent with the value 
α ∼ 1 obtained experimentally. Experimental values range from 0.85 < α < 1.216. We find a similar range of 
values in our numerical calculations, and with improved description of the flow, the accuracy of the predictions 
could be improved. Values of α could be useful as input to other calculations.

Accurate values of γopt are particularly relevant to computational techniques used for growing very large 
arterial trees in-silico, such as constrained constructive optimization (CCO). Such algorithms rely upon a fixed 
bifurcation exponent to set the radii in the generated  trees19,25,26. Similarly, allometric scaling arguments require 
knowledge of γ7, and variations of γopt could modify such approaches. γopt is quite hard to measure experimen-
tally, and we consider the calculation of such values to be a useful application of our technique.

Future work to include additional physics, such as pulsatile flow, turbulence and vessel elasticity, would lead 
to a computational model with enhanced predictive power. These improvements to the treatment of flow through 
vessels could be incorporated into both the analytic expressions derived in this paper, and into the cost function 
of SALVO without having to change the core algorithm. Once analytical expressions are modified to include 
this additional physics, we suggest that parameters such as mb could be determined from empirical results. The 
significant structural changes visible at γ ∼ 2 and γ ∼ 4 would also be interesting areas for further study, since 
the rapid changes in the tree morphology are reminiscent of a phase transition. These changes are on the edge 
of the physiologically relevant regime. Confirmation of a phase transition would require the identification of an 
order parameter and the signatures of critical behaviour.

Finally, we hypothesise that evolutionary compromises may favour closer adherence to the predictions of 
single segment analyses in organs with large flow demands to the detriment of less flow-hungry organs. Addi-
tional studies could be carried out to test this hypothesis. Overall, the computational and analytical approaches 
introduced here lead to a range of predictions regarding the structures of vascular trees, that provide interesting 
links to experimental and theoretical approaches.

Fundamental biophysical understanding of complex vascular structure has applications to modelling of car-
diovascular systems and diseases. Computational techniques and analytic expressions for describing complex 
and multiscale networks have potential applications in computer modelling of  physiology8,9,18, medical  imaging18 
and diagnosis of cardiovascular  disease27. Beyond the desire to understand the fundamental biological properties 
of vascular networks, deviations from optimal flow conditions could be a sign of underlying  disease27. Another 
application of arterial growth algorithms is the correction of gaps in computed tomography and magnetic reso-
nance angiography on small length  scales18.
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