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Anisotropic ferroelectric distortion 
effects on the RKKY interaction 
in topological crystalline insulators
Hosein Cheraghchi1,2 & Mohsen Yarmohammadi3,4*

Manipulation of electronic and magnetic properties of topological materials is a topic of much interest 
in spintronic and valleytronic applications. Perturbation tuning of multiple Dirac cones on the (001) 
surface of topological crystalline insulators (TCIs) is also a related topic of growing interest. Here 
we show the numerical evidence for the ferroelectric structural distortion effects on the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction between two magnetic impurity moments on the SnTe (001) 
and related alloys. The mirror symmetry breaking between Dirac cones induced by the ferroelectric 
distortion could be divided into various possible configurations including the isotropically gapped, 
coexistence of gapless and gapped, and anisotropically gapped phases. Based on the retarded 
perturbed Green’s functions of the generalized gapped Dirac model, we numerically find the RKKY 
response for each phase. The distortion-induced symmetry breaking constitutes complex and 
interesting magnetic responses between magnetic moments compared to the pristine TCIs. In the 
specific case of coexisted gapless and gapped phases, a nontrivial behavior of the RKKY interaction is 
observed, which has not been seen in other Dirac materials up until now. For two impurities resided 
on the same sublattices, depending on the distortion strength, magnetic orders above of a critical 
impurity separation exhibit irregular ferromagnetic ⇔ antiferromagnetic phase transitions. However, 
independent of the impurity separation and distortion strength, no phase transition emerges for two 
impurities resided on different sublattices. This essential study sheds light on magnetic properties 
of Dirac materials with anisotropic mass terms and also makes TCIs applications relatively easy to 
understand.

Exploring and discovering topological materials have become intriguing due to their exotic transport properties1,2. 
In three-dimensional topological insulators (TIs), topology is protected by the time-reversal invariant surface 
state which crosses the Fermi level, residing in the bulk band gap3,4. All strong TIs are robust against all crystal 
terminations, possessing an odd number of the Dirac cones in their surface Brillouin zone (SBZ)2,5. Though crys-
talline symmetries are less robust against crystal deformations, their variety and abundance could lead to copious 
new kinds of surface Dirac cones. In 2011, Liang Fu found that the time-reversal symmetries can be replaced 
with the crystal symmetries to support nontrivial topological phases and to protect gapless surface electronic 
states6. This perspective has been confirmed by the discovery of topological crystalline insulators (TCIs) with 
the topology protected by symmorphic7,8 and nonsymmorphic9,10 crystal symmetries. The first experimentally 
realization of TCIs belong to the (001) surface of lead thin salt family in IV-VI semiconductors, namely SnTe, 
Pb1−xSnxSe (x > 0.2 ) and Pb1−xSnxTe (x > 0.4)7,8,11, in which two interacting coaxial Dirac cones dubbed a 
double surface Dirac cone.

It is worthwhile noting that in addition to TCIs comprising of multiple surface Dirac cones, there are many 
topological materials introducing such states, for instance, LaBi as a compound of the family of rare-earth mono-
pnictides with a strongest spin–orbit coupling is identified as a time-reversal invariant TI associated with three 
Dirac cones in its surface band structure, two coexist at the corners and one at the center of the Brillouin zone12. 
Moreover, multiple Dirac cones hidden in Bismuth high-Tc superconductors introducing candidates for both 
electron- and hole-doped topological insulators have theoretically been reported employing the first-principle 
calculations13. In another work, multiple Dirac cones have been found in honeycomb-monolayer transition 
metal trichalcogenides using the ab initio calculations to show the nontrivial topological magnetism in these 
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systems14, which can be tuned by tensile strain. Very recently, three Dirac cones at the Brillouin zone center 
of MnBi4Te7 and MnBi6Te10 have been found both theoretically and experimentally15. On the Dirac nature of 
charge carriers in graphene, heterostructutre of graphene layers which are separated by 2D polar insulating sys-
tems, can be treated as an effectively spinless and intrinsically magnetic TCI possessing multiple Dirac surface 
states16. In addition to these works, one may find many works from various research groups in this regard. All 
these works highlight that the physical properties of topological materials possessing multiple surface Dirac 
cones are remarkable and fascinating.

Semiconductor and metallic spintronics have been attracted great attention in the last decades, using the 
spin states of the electron as a (quantum) bit of information to encode the data17,18. However, the spin-spin 
exchange interaction is of importance couplings in quantum physics, tuning the magnetic order of the mate-
rial. The perturbative interaction between two localized magnetic impurities well-known in condensed-matter 
physics is described by the Ruderman-Kittel-Kasuya-Yosida (RKKY) theory19–21, which is tightly connected to 
the spin-spin correlation function. Recently, various magnetic ordering originating from different mechanisms 
has been reported in topological materials. Ferromagnetic ordering has been investigated in magnetically doped 
semiconductors through the mechanism of van Vleck paramagnetism22,23. Furthermore, the magnetic texture 
effects on the spin susceptibilities in Weyl and Dirac semimetals have been studied24–26. It has been found that 
the spin-momentum locking and the internode process in Weyl semimetals play a significant role in spin sus-
ceptibility components27,28. The effect of Rashba splitting on the spin susceptibility of the undoped and doped 
TI thin films have been addressed29. Overall, the RKKY interaction in topological and Dirac systems is of most 
importance phenomenon due to showcasing tunable long-range spin-spin couplings30–34.

Tunability of topological surface states due to the presence of four valleys on the (001) surface of IV-VI semi-
conductors make TCIs good candidates for spintronic and valleytronic applications8,11,35–37, inducing interesting 
physics. To some extent, tuning the spin and valley degrees of freedom improves the performance of materials, 
for example, for non-dissipative and low-energy devices. This, in turn, leads to a topic of much interest; the 
manipulation of the RKKY interaction with the aid of valley tuning. This manipulation can be done using differ-
ent methods. Among the extensive body of theoretical studies, physical perturbations are of the straight ways to 
manipulate the valleys and eventually the RKKY interaction in TCIs. Particularly, the rich interplay between the 
crystal symmetry and the electronic structure in TCIs can be affected in the presence of perturbations, resulting 
in the symmetry breaking and the band gap opening in the Dirac cones7,38–40.

For this purpose, we will focus on the ferroelectric structural distortion, which historically has provided an 
interesting anisotropic symmetry breaking and gapped Dirac cones7,40. The band gap opening on the (001) sur-
face of TCIs allows us to tune the spin-spin correlation function when two separated magnetic moments reside 
on the surface. Regarding the presence of the four Dirac cones on TCI’s surface, by the ferroelectric structural 
distortion, it is easily achievable to provide the coexistence of the gapless and gapped Dirac cones or iso- and 
aniso-tropically gapped phases. So, the question is how the RKKY interaction, which is closely coupled to the 
energy dispersion relation, can be influenced by this symmetry breaking, especially at the above-mentioned 
phases. Owing to the presence of such interesting symmetry breaking, the RKKY interaction in gapped TCIs is 
expected to present different behaviors compared to the pristine TCIs.

The aforementioned distortion is time-reversal invariant but breaks rotational symmetry, leading to a ferro-
electric phase and eventually to the anisotropic Dirac mass terms7. Thereby, the metallic surface states acquire a 
direction-dependent band gap. On the other hand, due to the direct relation between the gapped and/or gapless 
states and RKKY coupling, it is worth exploring the new physics happening in the presence of these anisotropi-
cally gapped states. Regarding the anisotropy in the gaps, we believe that this work explains different physics 
compared to the pristine TCI. Pristine TCI possesses an isotropic band spectrum in which the interference terms 
mostly control RKKY couplings. However, in the present work, employing imaginary frequency representation, 
we investigate the interplay between anisotropy in gaps and interference terms to determine RKKY response. 
Moreover, the topology of the band spectrum might be changed during the variation in the sign and size of 
the four gaps leading to a trace for topological phase transitions in RKKY coupling. Our results, especially on 
the coexistence of the effects of the gapless and gapped phases on the spin-spin correlation function between 
magnetic impurities on the TCI’s surface have not been reported to date and we claim that such a unique feature 
may increase interests in TCIs for further electrical and magnetical properties. It is expected that RKKY coupling 
decreases with the gap value, however, in the case of coexisted gapless and gapped phases, quite different results 
are expected to be observed, since on the one hand, massless Dirac fermions are responsible for the charge car-
riers and on the other hand, massive ones play a role, introducing a new quasi-fermion in the entire system. 
These, in turn, manifest themselves in the RKKY responses, as presented in the paper.

In this case, analytical derivation of the RKKY interaction is very difficult, hence, to calculate the perturbed 
RKKY coupling, firstly, we have implemented the analytical retarded Green’s function obtained from the per-
turbed low-energy Hamiltonian of TCIs and secondly, the RKKY interaction has numerically been calculated. 
We find that the resulting RKKY coupling reflects the surface isotropic/anisotropic band gap opening, leading 
to the magnetic phase transition when two magnetic moments reside on the same sublattices. However, for the 
magnetic moments on different sublattices, the RKKY interaction cannot show a different magnetic ordering. 
The resultant physics can provide useful insights to tailor magnetic ordering in TCIs. What would be the advance 
of this work on RKKY in Dirac materials is the presence of multiple gapped Dirac cones in TCI distributed on 
four points in SBZ. Here RKKY interaction is calculated in some interesting topological phases with different 
gap sizes and signs. Moreover, the anisotropy of the band spectrum results in non-trivial behaviors in RKKY 
interaction. One of them is the enhancement of RKKY interaction with the gap size during passing a critical 
impurity separation which is not trivial. We would state that the presence of mirror symmetry concerning the 
(110) plane in SnTe and related alloys have been experimentally confirmed in the angle-resolved photoemission 
spectroscopy (ARPES) experiments8,11,35 and we believe that on the experimental side, the predicted results for 
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the surface states of SnTe in the presence of anisotropic ferroelectric distortion in the present work can be readily 
detected in ARPES and tunneling spectroscopy experiments.

The rest of the paper is organized as follows. In "Theoretical background" section, we first introduce the 
theoretical background of pristine TCIs. Then we present the electronic features of TCIs in the presence of fer-
roelectric distortion. In "Low-energy RKKY coupling in TCIs in the presence of ferroelectric distortion" section, 
we calculate the RKKY interaction in gapped TCIs and show the numerical results when two magnetic impurities 
are on the same and different sublattices. Finally, the paper ends in "Summary" section with a summary of the 
remarkable findings.

Theoretical background
Electronic features in unperturbed TCIs: from four‑band to two‑band model.  We begin by repre-
senting the reported angle-resolved-photoemission-spectroscopy experiments8,11,35 of the surface states in (001) 
plane of SnTe and related alloys such as Pb1−xSnx Te and Pb1−xSnxSe. The “unperturbed” effective Hamiltonians 
of four Dirac cones at { �x and �′

x } near the X1 point and { �y and �′
y } near the X2 point of SBZ forming surface 

states in TCIs are given by [we set � = 1 for simplicity throughout the present work] 

where the three terms describe respectively two copies of Dirac cones, the term which shifts the energy of these 
two Dirac cones to form two new high-energy Dirac cones with opposite energies and the term which shifts two 
copies of Dirac cones to have opposite chiralities. The Pauli matrices �σ = (σ0, σx , σy , σz) and �τ = (τ0, τx , τy , τz) 
respectively act in the spin and space. Researches were first dealt only with the first term, while the atomically 
sharp interface between the system and the vacuum results in two additional term, so-called intervalley scattering 
terms39. Although extra momentum k = (kx , ky)-dependent terms have been added to these models later, they 
do not affect the experimentally observed physics of TCIs significantly41,42. The used parameters in this paper 
η1 = 3.53 eV.Å , η2 = 1.91 eV.Å , n = 0.055 eV, and δ = 0.04 eV are taken from Refs.38,40.

TCI (001) plane of SnTe or related alloys possesses C4 rotation symmetries along the x and y directions, 
implying that one may focus on X1 only and use the relation X2 = C4X1C

−1
4  to capture the physics around the 

X2 point. Of other symmetries, C2 is important as well between Dirac cones themselves so that �′
x = C2�xC

−1
2  

and �′
y = C2�yC

−1
2  . Of course, we also allow to conclude �y = C4�xC

−1
4  and �′

y = C4�
′
xC

−1
4

38–40. Figure 1 
captures the configurations of four Dirac cones in the SBZ of (001) plane in TCIs. The symmetry breaking per-
turbations do not enter Eq.(1) and will be introduced at the level of low-energy two-band model.

Focusing the above points, the energy spectrum of surface states in the vicinity of X1 point from Eq. (1a) is 
given by

where N2 = n2 + δ2 , µ = +(−) refers to the conduction (valence) band and +(−) inside the square root stands 
for the upper (lower) conduction and lower (upper) valence band. We print the band structure along the lines 
Ŵ − X1 and X1 −M in the SBZ [see Fig. 1] in Fig.2a. The system is gapless at Dirac point �′

x = (−N/η1, 0) , 
while the gap opens at saddle point S1 = (0,+n/η2) . We stress that using the rotational symmetries C2 and C4 , 
one simply obtains other Dirac and saddle points.

A physical quantity particularly useful for such dense systems is the density of states (DOS) in which the 
electronic correlations between charge carriers is translated to the Green’s functions using the identity

where o+ = 5 meV is a very small real number. This Green’s function is related to the DOS via

(1a)HX1(k) =
[
η1kxσy − η2kyσx

]
⊗ τ0 + nτx + δσyτy ,

(1b)HX2(k) =
[
η2kxσy − η1kyσx

]
⊗ τ0 + nτx + δσxτy ,

(2)E
µ

X1
(k) = µ

√

N2 + η21k
2
x + η22k

2
y ± 2

√

N2η21k
2
x + n2η22k

2
y ,

(3)G0(k,E ) = 1

E + io+ −HX1(k)
,

Figure 1.   Surface Brillouin zone of pristine SnTe (001) plane. Four Dirac cones at { �x and �′
x } near the X1 

point and { �y and �′
y } near the X2 point of SBZ form the surface states in TCIs.
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The specific nature of Green’s function elements will be the subject of the RKKY interaction of perturbed TCIs 
in "Low-energy RKKY coupling in TCIs in the presence of ferroelectric distortion" section. Having the diagonal 
elements of the Green’s function matrix, one obtains DOS, as shown in Fig. 2b. From Eq. (3), DOS diverges at 
singularities of the numerator, occurring at energies ±δ corresponding to the saddle points, leading to emerged 
van Hove singularities. These singularities remind a Lifshitz transition [a deformation of the Fermi surface]38,40. 
This procedure will be altered when the system is perturbed.

Here we adopt one simplification with a view for applying and/or calculating the ferroelectric distortion-
induced RKKY coupling in TCIs. We immediately turn to the two-band model by linearizing the Hamiltonian 
near the Dirac cones by starting with the �x point, since the gapless phase of surface states originates from the 
Dirac cones. Thus, we leave the saddle points here since it is gapped naturally. We achieve the following low-
energy Hamiltonian43

To this end, px = kx −�x measuring from the �x point, py = ky , η̃1 = (2N/n)η1 and η̃2 = (2δ/n)η2 are 
required to be produced. Eventually, the energy spectrum is given by

describing the linear dispersion energy of massless fermions along the line Ŵ − X1 in the (001) plane of 
TCIs [see left side of Fig. 2b]. We adopt one more simplification here with the aid of definitions vF =

√

η̃1η̃2 , 
Kx =

√

η̃1/η̃2 px and Ky =
√

η̃2/η̃1 py . Hence, we have 

 We will follow Eq. (7a) hereafter as the effective low-energy Hamiltonian, describing the basic physics of gapless 
surface states. Using the transformations {σi �→ −σi and Ki  → −Ki}  [i ∈ {x, y} ] for two-fold C2 and 
{σy �→ −σx , σx �→ σy ,Ky �→ −Kx ,Kx �→ Ky} for four-fold C4 rotational symmetries for the pristine TCIs, 
one may list the Hamiltonian of other Dirac cones in the SBZ as H0

�′
x
= H0

�x
 , H0

�y
= vF

(

K̃xσy − K̃yσx

)

 and 
H0

�′
y
= H0

�y
 , with the definitions of K̃x = (η̃2/η̃1)Kx and K̃y = (η̃1/η̃2)Ky.

Let us apply the ferroelectric structural distortion which acts as a perturbation in the system.

Electronic features in TCIs in the presence of ferroelectric distortion.  In this part, we first express 
the two-band Hamiltonian for TCI (001) surface states in the presence of ferroelectric distortion. Because the 
most essential physics of susceptibility is linked to the DOS, we apply our analysis to establish the ferroelectric 
distortion-induced electronic features in TCIs.

Two-band Hamiltonian of ferroelectric distortion effects is simply given by a mass term originating from 
the atomic displacements. This displacement may be produced by strain or electric field, resulting in crystal 

(4)D 0(E ) = − 1

π

∑

k∈SBZ
Im

[
Tr G0(k,E )

]
,

(5)H0
�x

= η̃1pxσy − η̃2pyσx ,

(6)E
0,µ

�x
(�p) = µ

√

η̃21p
2
x + η̃22p

2
y ,

(7a)H0
�x

= vF
(
Kxσy −Kyσx

)
,

(7b)E
0,µ

�x
( �K) = µ vF| �K| .

Figure 2.   (a) Energy spectrum of Dirac fermions in the vicinity of the X1 point along the lines Ŵ − X1 and 
X1 −M consisting of Dirac point �′

x and saddle point S1 . The density of surface states (in arbitrary units) of 
unperturbed TCIs shows two van Hove singularities at energies ±δ corresponding to the saddle points, see panel 
(b).
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symmetry breaking and eventually a ferroelectric phase. Derivation of the following Hamiltonian can be tracked 
in Refs.7,40. Although this symmetry breaking leads to the band gap opening at surface Dirac cones, it may be 
anisotropic and direction-dependent due to the orientation-dependent displacement. From this point, we intro-
duce the corresponding distortion Hamiltonians as

Adding these terms to the corresponding pristine Hamiltonians, one may find the gapped phase for surface 
states. Again, we focus on the �x here inspiring the presence of two- and four-fold rotational symmetries in 
pristine TCI. By this, we obtain 

Using the aforementioned C2 and C4 rotational symmetries, the Hamiltonian of other gapped Dirac cones 
in the SBZ can be listed as36,40 

By evaluating Eq. (9) with the mass term �xF , one obtains the gapped dispersing bands at Dirac cones, 
as represented in Fig. 3 [the bands appear similarly with different slopes if one plots E ( �K) as a function 
of Ky ]. One, in the left panel of Fig. 3, observes that the bands get apart from each other to open a gap of 
2�xF keeping the Fermi energy at zero energy. It should be pointed out that for the two-band model, van 
Hove singularities are absent in DOS due to the linear dispersion energy of Dirac fermions as well as due to 
throwing away saddle points as the origin of the DOS divergences. As shown in the right panel of Fig. 3, the 
electronic DOS presents a different trend for surface states. It should be mentioned that we have plotted the 

(8)HFD
�x

= +�xFτz , HFD
�′

x
= −�xFτz , , HFD

�y
= +�yFτz , HFD

�′
y
= −�yFτz .

(9a)H�x =





+�xF vF
�
−Ky − iKx

�

vF
�
−Ky + iKx

�
−�xF



 ,

(9b)E
µ

�x
( �K) = µ

√

v2FK
2 +�2

xF .

(10a)H�′
x
=





−�xF vF
�
−Ky − iKx

�

vF
�
−Ky + iKx

�
+�xF



 ,

(10b)H�y =







+�yF vF

�

−K̃y − iK̃x

�

vF

�

−K̃y + iK̃x

�

−�yF







,

(10c)H�′
y
=







−�yF vF

�

−K̃y − iK̃x

�

vF

�

−K̃y + iK̃x

�

+�yF







.

Figure 3.   Two-band energy spectrum (left panel) and DOS of TCIs (right panel) in the absence and presence 
of an arbitrary ferroelectric gap �xF = ±75 meV. The distortion is applied along one direction only making two 
Dirac cones gapped and keeps two rest ones gapless in the SBZ. The total DOS of all these gapless and gapped 
Dirac cones are plotted in the right panel.
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total DOS here by summing over the Green’s functions from both X1 and X2 points, i.e. Eq. (4) is rewritten as 
D (E ) = − 2

π

∑

k∈SBZ Im
[
Tr G0

X1
(k,E )+ Tr G0

X2
(k,E )

]
 , where Eq. (3) can be employed to find the Green’s 

functions around X1 and X2 points. As can be seen, the final band of the system is gapless, giving rise to the rel-
evance of RKKY compared to the van Vleck mechanism. Out of the gap, despite of a tiny difference close to the 
band edges, the value of DOS is almost the same for the pristine TCI compared to the special case, coexistence 
of gapped and gapless Dirac cones. Similarly, one finds the band structure other Dirac cones, however; the gap 
sizes may be different applying different �xF and �yF simultaneously. Simultaneous displacement means that the 
displacement is not applied purely along the x- or y-direction. This, in turn, leads to valley-dependent electronic 
features on the (001) surface of TCIs. Since the distortion does not add/remove particles to/from the system, 
the number of states should be preserved, meaning that the area under DOS is conserved in the absence and 
presence of ferroelectric distortion. However, to apply this constraint on DOS, we need to work with full band 
spectrum of SnTe crystal. In this work, Hamiltonian is derived based on an effective theory at low energies, and 
without loss of any behavior of susceptibility, we leave this constraint in Fig. 3.

Nevertheless, in the case of gapped TCI, the relevance of RKKY response is questionable by definition since 
there is no any states inside the gap around the Fermi energy. Let us comment on this point before delving into 
the RKKY results. Of the other well-known interactions for magnetic coupling is given by the van Vleck mecha-
nism. It is demonstrated that for chemical potentials inside the gap, the van Vleck interaction between magnetic 
impurities located on the surface of a thin film of topological insulator is very large and relevant which is stem-
ming from the strong spin-orbit coupling observed in Bi2Te3 family22. This large interaction is responsible for 
strong ferromagnetism observed in TI thin films22. The origin of such ferromagnetic ordering comes back to the 
large coupling matrix elements of Sz between the conduction and valence band states which is sizable in the band 
inverted phase. It is also demonstrated that the van Vleck interaction is controlled by the structural inversion 
asymmetry44. However, two-band effective Hamiltonian represented in Eq. (7a) is written based on the p-orbitals 
of Sn and Te atoms40 without any mixing. Moreover, the gap opened here is originated from the breaking of mir-
ror symmetry induced by the ferroelectric distortion when spin-orbit coupling is ruled out at low energies. As 
a result, the van Vleck interaction in gapped TCIs is quite small. In such situation, although RKKY coupling is 
quite small too, RKKY interaction is a relevant quantity. Indeed, as shown in the integration of Eq. (13), valence 
band states are involved to the response of magnetic impurities even if the Fermi level lies inside the gap. So the 
value of susceptibility would be very smaller than the case in which the Fermi level falls inside the conduction 
band. Based on a self-consistent calculation on the surface spectrum of TIs, the structure of RKKY interaction is 
preserved in the presence of the gap induced by exchange field of magnetic impurities, nevertheless, its strength 
is considerably suppressed45. It should be mentioned that the RKKY interaction is also calculated inside the gap 
energies of TI induced by proximity of a superconductor on top of TI surface46. Furthermore, RKKY interaction 
is relevant in the presence of local gaps induced by doped magnetic impurities on the surface of TI47. We will 
explain the fingerprints of the gapped Dirac ones in our system in RKKY coupling in the next section.

Low‑energy RKKY coupling in TCIs in the presence of ferroelectric distortion
To obtain the coupling J between two magnetic moments with the separation of R = R2 − R1 considering dif-
ferent lattice sites {α,β} = 1, 2 , one allows to use the second-order perturbation theory resulting in

where J RKKY
αβ (R) is called the RKKY exchange interaction strength given by

in which one of the impurities is set to the zero position and another one at R . In this equation, χαβ(0,R) is the 
spin susceptibility which is directly proportional to the RKKY exchange interaction J RKKY

αβ (R).
The spin susceptibility for our spin-degenerate system described by a two-band model can be extracted using 

the retarded Green’s functions48–51 as

where i, j ∈ {x, y, z} , EF is the Fermi energy and

wherein G0
αβ(E ,R, 0) is the 2× 2 matrix of lattice non-interacting Green’s functions in the spin space. Regarding 

the Fermi energy, Fig. 3 states that it lies in the zero energy, in both gapless and gapped [middle of band gap] 
phases. To study the RKKY responses when the system is not doped by donors or acceptors, it is our task to set 
EF to zero in the following. Taking the Fourier transform of the reciprocal-space Green’s functions into account 
in the vicinity of two in-equivalent X1 and X2 points in the SBZ of (001) plane in TCIs, one obtains

where �q is the momenta around the Dirac cones. These momenta should be small enough so that each Dirac cone 
involves in the interaction, i.e. |�q| ≪ | ��i| and | ��′

i| ( i ∈ {x, y} ). Also, the integration is performed over the entire 

(11)J(R) = J RKKY
αβ (R) S1 · S2 ,

(12)J RKKY
αβ (R) = J 2χαβ(0,R) ,

(13)χ
αβ
ij (R ) = − 2

π
Im

∫ EF

−∞
dE C

αβ
ij (E ,R, 0) ,

(14)C
αβ

ij (E ,R, 0) = Tr
[

σi G
0
αβ(E ,R, 0) σj G

0
βα(E , 0,R)

]

,

(15)G0
αβ(E ,R, 0) = 1

�SBZ

∫

d2q ei�q·R
[

ei
�X1·RG0

αβ(�q+ �X1,E )+ ei
�X2·RG0

αβ(�q+ �X2,E )

]

,
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SBZ of �SBZ shown in Fig. 2a including four Dirac cones along different directions. Accordingly, one allows to 
rewrite the Eq. (15) as

with the defined Rx = R cos(ϕR) and Ry = R sin(ϕR) . All G functions are the real-space Green’s function, how-
ever, the reciprocal-space Green’s function is easily calculated through

w h e r e  E + io+ = iω  a n d  det = ω2 +�2
xF + v2Fq

2  .  U s i n g  d2q = q dq dϕq  a n d 
exp

[
i�q · R

]
= exp

[
i q R cos

(
ϕq − ϕR

)]
 with ϕR = tan−1

(
Ry/Rx

)
 and ϕq = tan−1

(
qy/qx

)
 , one obtains

It is necessary to point out that we are allowed to extend the momentum cutoff qc to ∞ since the RKKY response 
at long (short) distance between magnetic moments arises mainly from the small (large) momenta. Thus, to cover 
the most contribution of momenta over the entire SBZ, we use qc → ∞ simply.

After pretty simple calculations, we find 

 where A =
√

ω2 +�2
xF and K0/1(A R/vF) is the modified Bessel function of the zero/first kind. Note that 

these only provide the lattice Green’s functions for �x point. It is straightforward to deduce that 

 where B =
√

ω2 +�2
yF.

By inspiration of the two-fold C2 and four-fold C4 rotational symmetries, one simply finds lattice Green’s 
functions for other three Dirac points: 

(16)
G0
αβ(E ,R, 0) = eiX1 Rx

(

ei�x RxG
0,x

αβ + e−i�x RxG
0,−x

αβ

)

+ eiX2 Ry
(

ei�y RyG
0,y

αβ + e−i�y RyG
0,−y

αβ

)

,

(17)

G 0,x(q,E ) =
�
E + io+ −H�x (q,E )

�−1 = 1

det





−iω −�xF ivFqe
iϕq

−ivFqe
−iϕq − iω +�xF



 =





G
0,x

11 (q,E ) G
0,x

12 (q,E )

G
0,x

21 (q,E ) G
0,x

22 (q,E )



 ,

(18)G
0,i

αβ (ω,R, 0) = 1

�SBZ

∫ qc

0
q dq

∫ 2π

0
dϕqe

i q R cos (ϕq−ϕR) G
0,i

αβ (q,ω) .

(19a)G
0,x
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2
F

K0

(
A R

vF

)

,

(19b)G
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�SBZ v
2
F

K1

(
A R

vF

)

,

(19c)G
0,x

21 (ω,R, 0) = 2π e−iϕRA

�SBZ v
2
F

K1

(
A R

vF

)

,

(19d)G
0,x
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�SBZ v
2
F

K0

(
A R

vF

)

,

(20a)G
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(
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�SBZ v
2
F

K0
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B R

vF

)

,
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12 (ω,R, 0) = 2π eiϕRB

�SBZ v
2
F

K1

(
B R

vF

)

,

(20c)G
0,y

21 (ω,R, 0) = 2π e−iϕRB

�SBZ v
2
F

K1

(
B R

vF

)

,

(20d)G
0,y
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(
−iω +�yF

)

�SBZ v
2
F

K0

(
B R

vF

)

,

(21a)G 0,−x(ω,R, 0) =





G
0,x

22 (ω,R, 0) G
0,x

12 (ω,R, 0)

G
0,x

21 (ω,R, 0) G
0,x

11 (ω,R, 0)



 ,

(21b)G 0,y(ω,R, 0) =





G
0,y

11 (ω,R, 0) G
0,y

12 (ω,R, 0)

G
0,y

21 (ω,R, 0) G
0,y
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
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 Substituting Eqs. (21) and (19) into the Eq. (16), the retarded Green’s functions read as 

Turning to the Eq. (14) gives rise to C αβ
ii (ω,R, 0) = G0

αβ(ω,R, 0)G
0
αβ(ω, 0,R) and C αβ

ij (ω,R, 0) = 0 which 
i and j could be each of x, y and z due to the spin-degeneracy. Eventually, using the feature dE = idω from the 
definition of E + io+ = iω , the spin susceptibility reads

Having Green’s functions as well as susceptibility we divide the following discussion into two parts: (i) impuri-
ties located on the same sublattices and (ii) impurities located on different sublattices. We comment that it is of 
course possible to locate impurities on the center of square plaquettes or on the bonds of the SnTe (001) surface. 
For impurities far-enough from each other n compared to lattice parameter, the Hamiltonian can be simply 
given by Hint = −J (�S1 ·

∑

e se + �S2 ·
∑

e′ se′) where e and e′ are the itinerant electrons living around nearest 
neighbor magnetic impurities �S1 and �S2 . By this, we respectively find χ center

ii (R, 0 ) = 8 [χαα
ii (R, 0 )+ χ

αβ
ii (R, 0 )] 

and χbond
ii (R, 0 ) = 2 [χαα

ii (R, 0 )+ χ
αβ
ii (R, 0 )] when the impurities are located at the center of square plaquettes 

and bonds between nearest neighbors. It is clear that having the responses on the same and different sublat-
tices, these two extra cases can easily be extracted. The stronger response of impurities on different sublattices 
[it will be confirmed later] is dominant to calculate the entire response of these two extra configurations. So the 
magnetic susceptibility will show an antiferromagnetic ordering in the system. However, we would neglect these 
configurations in the present paper from a pragmatic point of view. Also, the bulk states do not significantly 
affect the RKKY coupling because it has been found that although distortion has a negligible effect on the band 
structure in the bulk, it can dramatically affect the Dirac surface states7. We note that Dirac materials that made a 
revolution in condensed matter physics have a strong impact on magnetic couplings.The decaying rate of RKKY 
coupling is faster in Dirac materials compared to 2D ordinary metals24–28,30–34. This faster decaying is also seen for 
gapped Dirac cones. In other words, gapped Dirac cones have different results than other gapped semiconductors.

Impurities on the same sublattices.  When two magnetic moments reside on the same sublattices of the 
surface (001) of SnTe (the same Sn or Te sublattices), the susceptibility can be calculated as

After tedious calculations and defining γ = X1Rx − X2Ry , ξ = �xRx −�yRy and ζ = �xRx +�yRy , we 
achieve

where Ct = 16π/�2
SBZv

4
F , C1 = cos(2�x Rx) , C2 = cos(2�y Ry) , C3 = 2 cos γ cos ξ , and C4 = 2 cos γ cos ζ . We 

comment that the susceptibility is function of both distance R and the angel ϕR due to the presence of {Rx ,Ry} . 
Also, we stress that the RKKY interaction between two magnetic moments on the same Sn and/or Te sublat-
tices is the same, i.e. χ11

ii (R ,ϕR) = χ22
ii (R ,ϕR) . Simply, it is straightforward to conclude that the coefficients 

Ci [i ∈ 1, 2, 3, 4 ] are the origins of the sign changing in the susceptibility in the presence of the distortion.

(21c)G 0,−y(ω,R, 0) =




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 .
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,
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,
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)
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(
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,
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)
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)

.
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π
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,
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As shown in Eq. (25), the spin susceptibility when the magnetic moments reside on the same sublattices sup-
ports a wide range of possibilities on the spin flipping and eventually on the magnetic phase transitions, which 
strongly depend on the gap strengths induced by �xF and �yF . To reveal the ferroelectric distortion effect on 
the RKKY interaction J RKKY

αα (R,ϕR)/J
2 Ct = χαα

ii (R ,ϕR)/Ct , we consider different possible configurations. 
Thus, to deduce the clear physical insights from such a complex response, we divide the following analysis into 
four parts, as represented in Fig. 4 namely 

1.	 Pristine TCI
2.	 Isotropically gapped TCI
3.	 Coexistence of gapless and gapped TCI
4.	 Anisotropically gapped TCI

Particularly, this classification is necessary due to various possible configurations for the gaps �xF and �yF . 
The specific nature of each part will be focused on the magnetic ordering and the role of short- and long-range 
responses. By this explicit elucidation, one can easily distinguish the novelty of electronic and/or magnetic fea-
tures in TCIs compared to other gapless and gapped Dirac materials.

For the magnetic ordering, the sign of susceptibility helps, however, in all cases, it is not hard to seek for the 
short- and long-range behaviors of the RKKY response. It can be simply formulated considering the conditions 
�x/yFR/vF ≪ 1 and �x/yFR/vF ≫ 1 in Eq. (25). By this, using the simplified modified Bessel functions 

 with γ ′ = 0.5772 being the Euler-Mascheroni constant, one finds corresponding short- and long-range responses.
Before turning to the analysis of the results, we would focus on the periodic feature of the RKKY coupling in 

the pristine and distorted square lattice of the SnTe (001) surface. By the lattice, one easily requires the property 
J RKKY

αα (R,ϕR) = J RKKY
αα (R,ϕR + 2π) at any distance R and any gap, as confirmed by the numerical result 

represented in Fig. 5, however, different interaction strengths between two magnetic impurities at different 
positionings are obvious. This anisotropy of the susceptibility could be expected from the cosinusoidal func-
tions (included in Ci coefficients) behind the integrals in Eq. (25). A general feature in the RKKY response is the 
gap-dependent beating pattern with distinct periodicities, meaning that various Fermi wavelengths contribute 
to form the entire periodic pattern. In our system, multiple surface Dirac cones, two along the x direction and 
two along the y direction in the SBZ of SnTe (001) and related alloys are responsible for the beating effect in the 
RKKY oscillations. Now it is time to study each aforementioned part.

Pristine TCI.  For the pristine case, i.e. �xF = �yF = 0 [see the first row of Fig. 4], following Eq. (25) we achieve 
the expression

where

(26a)lim
z→0

Kν(z) ∼
{− ln( z2 )− γ ′ if ν = 0

1
2 Ŵ(ν) (

z
2 )

−ν if ν > 0
,

(26b)lim
z→∞

Kν(z) ∼
√

π

2 z
e−z ,

(27)

χαα
ii (R ,ϕR)

Ct
= 2F (R ,ϕR)

∫ 0

−∞
dωω2 K2

0 (ωR/vF)

︸ ︷︷ ︸

π2v3F/32R
3

∝ F (R ,ϕR)

R3
,

Figure 4.   Two-band energy spectrum of four possible configurations for the gapes �xF and �yF , namely 
pristine TCI, isotropically gapped TCI, coexistence of gapless and gapped TCI, and anisotropically gapped TCI.
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in great agreement with our previous work43. This clearly shows that the term F (R ,ϕR) behind the integrals 
causes the positive sign of the susceptibility forever, meaning that there is no magnetic phase transition at all 
and the pristine system possesses a ferromagnetic ordering.

Moreover, the RKKY response oscillates with R because of the cosine functions in the interference term 
F (R ,ϕR) . On the other hand, since the integral is solvable analytically and no limitation is needed, one observes 
the decaying rate of the susceptibility serving as R−3 in both short- and long-range impurity separations. The 
decaying rate treatment is similar to that of undoped graphene48–51. All these are understandable in all black 
curves in Fig. 6a–c, for which the response shows a ferromagnetic spin arrangement due to the positive sign of 
RKKY interaction. We avoid the repetition of the results of this part since they are well-established in Ref.43.

Isotropically gapped TCI.  To determine the susceptibility of isotropically gap-induced TCIs due to the isotropic 
ferroelectric distortion, we consider |�xF| = |�yF| = �0 [see the second row of Fig. 4]. We would stress that 
for the case of proximity coupling to a ferromagnet, a mass term with the same signs at �x and �′

x , is induced 
by the exchange field on the SnTe (001) surface to align the spin direction. Or it may be regarded as the Zeeman 
term arising from a perpendicular external magnetic field40. However, the theory of the gapped Dirac model 
presented in this work, refers to a sign change of mass terms for the closed Dirac cones. In this case, combining 
the coefficients behind the integrals in Eq. (25) leads to the expression

where A ′ =
√

ω2 +�2
0 and

Regarding the magnetic ordering of this configuration, we comment that both ferromagnetic and antiferromag-
netic phases are possible to emerge because of the mixture of sine and cosine functions in the interference terms 
behind the integrals. However, to elucidate the role of short- and long-range impurity separations, we stick to 
Eq. (26) as well as we use the mathematical identity52

resulting in the final expressions respectively for the short-range �0R/vF ≪ 1

and for the long-range �0R/vF ≫ 1 with the help of Laplace method

(28)
F (R ,ϕR) = 2+ C1 + C2 + C3 + C4 = cos2(�x Rx)+ cos2(�y Ry)+ 2 cos γ cos(�x Rx) cos(�y Ry) ,

(29)
χαα
ii (R ,ϕR)

Ct
= 2F (R ,ϕR)

∫ 0

−∞
dωω2 K2

0

(
A ′R/vF

)
+ 2G (R ,ϕR)�

2
0
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dωK2

0

(
A ′R/vF

)
,

(30)
G (R ,ϕR) = C1 + C2 + C4 − 2− C3 = cos2(�x Rx)+ cos2(�y Ry)− 2 cos γ sin(�x Rx) sin(�y Ry)− 2 .

(31)

∫ 0

−∞
xα−1Kµ(c x)Kν(c x)dx = 2α−3
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Ŵ
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)
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(
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)
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(
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)
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(
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,

(32)
χαα
ii (R ,ϕR)

Ct
∝ F (R ,ϕR)

R3
,

Figure 5.   The behavior of the RKKY interaction J RKKY
αα (R,ϕR)/J

2 Ct as a function of ϕR at fixed R = 50 Å  
for different ferroelectric distortion strengths. The obvious periodic feature of the RKKY coupling in the pristine 
and distorted square lattice of the SnTe (001) surface is given by J RKKY

αα (R,ϕR) = J RKKY
αα (R,ϕR + 2π).
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Thus the short-range responses demonstrate the ferromagnetic ordering (stemming from the interference 
term F (R ,ϕR) in which the direction ϕR is not important in changing the sign of the susceptibility) with 
the decaying rate of R−3 like the pristine TCIs, while the long-range response decays as R−3/2�

3/2
0 e−2�0 R/vF 

and both ferromagnetic and antiferromagnetic orderings are expected to appear due to the interference term 
G (R ,ϕR) in which the direction ϕR is a matter in sign switching of the susceptibility. It is worthwhile mention-
ing that the RKKY interaction can not be influenced at all with the gap at short-range distances. The latter, in 
turn, means that the decaying function is a function associated with an extremum at which the critical distance 
R or gap �0 can be characterized. We will come to this last point later. The phase of the RKKY oscillations in 
metals becomes random in the presence of static non-magnetic impurities. In this case, averaging over various 
impurity configurations leads to an exponential factor appearing at distances larger than the mean free path53,54. 
An exponential decay on averaged RKKY couplings was also reported in disordered graphene55. In gapped 
graphene, RKKY coupling also experiences an exponential decay at large distances giving rise to Heisenberg 
interaction48,56,57.

In this configuration which the distortions are applied with the same strengths along different axes, referring 
as orange curves in our numerical results shown in Fig. 6a–c, the short-range treatment is independent of the 
gap, as expected from Eq. (32), while long-range one is associated with interesting spatial-dependent magnetic 

(33)χαα
ii (R ,ϕR)

Ct
∝ G (R ,ϕR)�

3/2
0

R3/2
e−2�0 R/vF .

Figure 6.   The behavior of the RKKY interaction J RKKY
αα (R,ϕR)/J

2 Ct as a function of R for different 
ferroelectric distortion potentials at (a) ϕR = 0 , (b) ϕR = π/6 and (c) ϕR = π/4.
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phase transitions expected from Eq. (33). Note that, physically point of view, the atomic packing factor for the 
same sublattices on the SnTe (001) surface along the x or y direction, Fig. 6a, is smaller than the atomic pack-
ing factor along the different directions, Fig. 6b and c. Thus, the shorter accessible distances are expected for 
ϕR = 0 . Although the short-range response is gap-independent, to describe long-range gap-dependent behaviors, 
we numerically plot Fig. 7 based on Eq. (25) at large-enough R = 200 Å  as a function of the gap potential �0 . 
Interestingly, the feature concluded in Eq. (33) comes up, implying that the RKKY response is an exponentially 
decaying function along all directions ϕR with a minimal gap at which the response starts to switch its trend [see 
the inset panel of Fig. 7].

Coexistence of gapless and gapped TCI.  For the individual case of |�xF| = �0 and |�yF| = 0 [see the third and 
fourth rows of Fig. 4] we have

The same expression can be obtained for the case of |�yF| = �0 and |�xF| = 0 subsituating C2  → C1 and 
C1  → C2 in the third first terms. Following Eqs. (26) and (31), we obtain respectively the effective short-range 
�0R/vF ≪ 1 and long-range �0R/vF ≫ 1 responses 

 wherein the decaying rates are similar to the previous case, whereas the interference term for the long-range 
case is quite different. While depending on the Ci coefficients, one expects almost the same behaviors for the 
RKKY interaction of gapped TCI along the x or y direction at short-range distances, the ϕR-dependent long-range 
interaction would be different [see blue and red curves in Fig. 6a–c].

This part provides the first interesting novel remark of the current paper for which the SnTe (001) surface 
confronts two phases at the same time, a gapless Dirac cones along the x/y direction and a gapped one along the 
y/x direction. As mentioned in the introduction, multiple surface Dirac conses in different topological materi-
als may show such an interesting feature as well12–15. However, the effects of such coexisted gapless and gapped 
phases on RKKY response can be rarely found in other Dirac materials. Thereby, one expects nontrivial behavior 
of the RKKY response.

In Eq.  (35), we found the underlying analytical expressions behind the short- and long-range responses. For 
the sake of completeness, it is necessary to discuss the intermediate-range RKKY response as well. Following 
the above points and considering structural symmetry of the SnTe (001) surface, one can expect some spatial 

(34)
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dωK2

0

(
A ′R/vF

)

+ (C3 + C4)

∫ 0

−∞
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χαα
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∝ F (R ,ϕR)
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,

(35b)χαα
ii (R ,ϕR)

Ct
∝ (C1 − 1)�

3/2
0

R3/2
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Figure 7.   Long-range behavior of the RKKY interaction J RKKY
αα (�0R/vF ≫ 1,ϕR)/J

2 Ct as a function of 
�0 at fixed long-range impurity separation R = 200 Å  for different directions ϕR . It is evident that the RKKY 
response is an exponentially decaying function independent of ϕR and there is a minimal gap at which the 
response starts to switch its trend.
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symmetries between the results of �xF and �yF when they are present individually, resulting in the coexistence 
of gapless and gapped phases in TCIs. Also, the same expectation is valid for the complementary angles between 
magnetic impurities. To this end, we print Fig. 8 in which the RKKY response to the direction-dependent distor-
tion potentials is plotted for two set of complementary angles, namely ϕR = {0,π/2} and ϕR = {π/6,π/3} . It is 
necessary to note that in the pristine case, the mentioned complementary angles show the same susceptibilities, 
while the distortion breaks the symmetry between them down. Depending on the values of gaps, they may 
compete. Interestingly, it is evident that regarding the C4 rotation symmetry valid for pristine TCIs, the RKKY 
response to the �xF for ϕR behaves similar to the case if it is studied in terms of �yF for π/2− ϕR [see respectively 
panels {(a),(b)} and {(c),(d)}]. Although the magnetic impurities along the x/y direction illustrate no transition, 
the other angles show the phase transition at certain gaps [see inset panels in (c) and (d)]. Another remarkable 
point here refers to the gap sign effect on the RKKY response. The sign of �xF and �yF is not matter here and 
the RKKY response is symmetric concerning opposite gap signs with the fact that the susceptibility can not be 
influenced with the band inversion caused by the gap signs [please see once more the third and fourth rows of 
Fig. 4]. From this point, one would expect the same responses for J RKKY

αα (R,ϕR)/J
2 Ct with ±�xF and ±�yF.

In addition to the above-mentioned points, we intend to discuss the origin of the decreasing and increasing 
trend of the susceptibility with the gap, which is that of nontrivial point reported before. In Fig. 8, the susceptibil-
ity decreases with |�x/yF| and after a critical gap potential, which is obviously R- and ϕR-dependent, increases. 
The reason can be traced back to the metallic phase of the system in one direction, while the gapped phase along 
another one. This implies that the reason for the observed nontrivial trend can be understood from the fact that 
the states around the band edges for the gapped Dirac cones also matter. These states which belong to the valence 
band, contribute to the RKKY interaction. The susceptibility is intensified if one can enhance the density of the 
band edge states in the valence band.

Indeed,  the susceptibi l ity is  proportional  to the correlat ion function def ining as 
D0(ω,R) = − 1

π
ImG 0

αα(ω,R, 0) . To this end, we stick D0(ω,R) at the energies equal to the gap size, e.g. �xF 
[the analysis is precisely the same for �yF ] in Fig. 9 setting ϕR = 0 [as the representative test case] and �yF = 0 . 
We intend to find the relation between the correlation function D (�xF) = D0(ω = �xF) and {�xF,R} to under-
stand the physical reason behind the nontrivial behavior of the susceptibility in Fig. 8. Two qualitatively differ-
ent regions as a function of the distance R may be seen: For short-range R < Rc [Rc = 8 Å] a high D (�xF) is 
observed, which on increasing the distance decreases gradually for all R > Rc [see below for the origin of the 
critical Rc ]. A closer look at this evolution of D (�xF) is provided in the inset panel of Fig. 9, in which we label 
the critical distance Rc . Clearly, D (�xF) increases slightly with the gap at certain R < Rc , while it increases up 
to a critical gap at certain R > Rc and starts to decrease. The critical gaps at R > Rc are labeled by the red solid 
dots. From the contour plot, it is also noteworthy that the size of this critical gap is inversely proportional to the 
distance R, meaning that it decreases with R. The rapid change in D (�xF) in terms of the gap edges for R > Rc 
is the main reason of the suddenly changes in the RKKY response at R- and ϕR-dependent critical gap potentials. 
The same argument is valid for �yF.

It is worthwhile to understand the reason behind the critical Rc from the susceptibility in Eq. (25). For 
simplicity, we restrict ourselves to the band edge ω = �xF and set �yF = 0 . The integrands of the terms show a 
maximum value of Rc ≃ 8 Å, for the considered range of distortion potential 0 < �xF < 0.1 , meaning that the 
slope of this function approaches zero at this critical Rc . The same arguments can be set for the case of ω = �yF 
and �xF = 0 . It should be restressed that the critical Rc may be different for other directions ϕR.

To summarize non-trivial behavior of the RKKY interaction in the short and intermediate range of impurity 
separations, high correlation function at the band edges leads to an enhanced host states in the valence band giv-
ing rise to stronger magnetic response. Thereby if magnetic impurities are resided along the gapped Dirac cones, 

Figure 8.   The behavior of the RKKY interaction J RKKY
αα (R,ϕR)/J

2 Ct as a function of ferroelectric distortion 
potential (a), (c) �xF and (b), (d) �yF for four different complementary angels ϕR between two magnetic 
moments at R = 25 Å. The nontrivial behavior of RKKY response characterized by the decreasing and 
increasing trends is present as long as the gapless and gapped states are coexisted.
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the RKKY interaction would be based on the mentioned mechanism which is increasing with the gap size at 
short-range distances. It should be reminded that at long-range separations, the RKKY interaction exponentially 
decays with the gap size. Simultaneously, massless Dirac fermions along the perpendicular direction indirectly 
affects RKKY response especially when Fermi energy lies in the gap. On the other hand, if impurities are aligned 
along the gapless Dirac cones, they would couple to each other by means of the massless host electrons while 
massive Dirac fermions also affects RKKY interaction indirectly via the valence band states [please see Fig. 10d].

For a physical interpretation, we would state that the system possesses a new quasifermion in this situ-
ations in the presence of simultaneous massless and massive fermions. In fact, one is allowed to define 
ψquasifermion(k) = ∑

i Piψ
massless fermions
i (k)+P ′

i ψ
massive fermions
i (k) in terms of the orthogonal massless and 

massive wave functions with corresponding probability distributions {Pi ,P
′
i } for the i-th orbital, which are 

responsible for the nontrivial RKKY treatment compared to the individual massless and massive fermions. We 
just mention this point here to justify the new created fermions when coexisting gapless and gapped phases. 
More details of the momentum-dependent Hamiltonian and the band structure of these introduced quasifer-
mions can be tracked from the Eq. (3) and corresponding Fourier transforms, which are out of the scope of the 
present paper.

Anisotropically gapped TCIAnisotropically gapped TCI.  In the case of anisotropically gapped TCI, the sign of 
�xF �yF is important and one would report the general formulation of the susceptibility in Eq.  (25) for this 
part [see the last row of Fig. 4]. However, the short- and long-range responses can be read as 

(36a)
χαα
ii (R ,ϕR)

Ct
∝ F (R ,ϕR)

R3
,

Figure 9.   The behavior of the correlation function at E = �xF as a function of ferroelectric distortion 
potential �xF and distance R for ϕR = 0 at �yF = 0 . The critical gap for which D (�xF) turns to the increasing 
trend at a certain R > Rc decreases with the distance R labeled by red solid dots.

Figure 10.   Magnetic phase diagram for the RKKY response J RKKY
αα (R,ϕR)/J

2 Ct × 10−4 at ϕR = 0 , to the 
ferroelectric distortion potentials along both x- and y-directions at (a) R = 10 Å, (b) R = 30 Å, (c) R = 50 Å, 
and (d) R = 70 Å.
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 where h(R ,ϕR) = (C1−1)�
3/2
xF e−2�xF R/vF+(C2−1)�

3/2
yF e−2�yF R/vF+(C4−C3)

�xF �yF√
�xF+�yF

e−�xF R/vF e−�yF R/vF . 
It is not easy to deduce a general treatment for this case due to the complexity of the interference term at long-
range impurity separations. But, the decaying rates are similar to two previous cases.

To understand the conditions for which the magnetic phase transition occurs by symmetry breaking and band 
gap opening in such a situation, in Fig. 10 we show the RKKY interaction strength over the full allowed range 
of gaps for different values of distance R > Rc between two magnetic impurities with ϕR = 0 . The breakdown of 
the antiferromagnetic and ferromagnetic phases is governed by the positive and negative signs in the color bars. 
For a quantitative analysis of J RKKY

αα (R,ϕR)/J
2 Ct , we label zero response by dotted lines in the color bars. We 

noted that there is no asymmetric behavior for RKKY response concerning the band inversion effect originat-
ing from the gap signs. It should be highlighted that at large separations of Fig. 10d, stronger RKKY coupling 
is obvious when magnetic moments located along ϕR = 0 are coupled to each other via the host massless Dirac 
fermions along the x-axis, �xF = 0.

In particular, independent of the distance R, the amplitude of the RKKY interaction attains a maximum in 
the absence of any mass term induced by the ferroelectric distortion, while decreases, as discussed before, with 
the gap potentials. Following the long-range RKKY response in Eq. (36), Fig. 10 shows that for the cases of 
�xF�yF  = 0 , the RKKY response decreases exponentially with the gap such that at large-enough distances, the 
magnetic phase transitions take place. For R = 10 Å  [see Fig. 10a] it is no surprise that the J RKKY

αα (R,ϕR)/J
2 Ct 

gets positive values because this is not the effective distance for the sign switching of the RKKY response. For 
R = 30 Å  i.e. Fig. 10b, again, no transition takes place, while for distance R = 50 Å  in Fig. 10c, transitions are 
appearing for |�x/yF| � 0.06 . However, if we look at the magnetic moments on the same sublattices with longer 
separation R = 70 Å  in Fig. 10d, the transition occurs in a wider range of gaps involving the negative RKKY 
interaction, namely |�x/yF| � 0.03 . We comment that for ϕR = π/2 , one would find the same feature except 
that in turn, stronger RKKY coupling would be observed if massless Dirac fermions along the y-axis play the 
role of host carriers, �yF = 0.

For other ϕR angels, we discuss RKKY response to the magnetic moments located along the direction 
ϕR = π/6 for R = 25 Å  and 50 Å  in Fig. 11a and b, respectively, as well as with ϕR = π/4 for R = 30 Å  and 50 Å  
in Fig. 11c and d. For the same range of gaps we examined, the symmetry property of the RKKY interaction with 
respect to the gap sign is broken, i.e. J RKKY

αα (R,ϕ
in−plane
R ,+�x/yF) �= J RKKY

αα (R,ϕ
in−plane
R ,−�x/yF) . However, 

regarding the Eq. 25 and numerical results in Fig. 11, the RKKY coupling depends on the sign of �yF�yF  [see 
the first and third as well as the second and fourth quarters in all panels of Fig. 11]. The above interpretation is 
valid for both considered angles.

Regarding the magnetic phase transition at ϕR = π/6 for R = 25 Å   for the gaps with the property 
�xF�yF < 0 , the spin flipping occurs, as shown in Fig. 11a. If we seek for such a phase transition at longer 
distances, however, we find it in the majority of gaps with the property �xF�yF > 0 , as shown in Fig. 11b. It is 
interesting that based on the amplitude variation of the responses, the transition in the short range of ϕR = π/6 
is stronger than that of long-range one. In the case of angle ϕR = π/4 , the situation is different, and much fewer 
amplitudes corresponding to the magnetic phase transitions are obtained. While for the short-range RKKY 
interaction, Fig. 11c, there is no phase transition, a weak transition emerges for the long-range case when the 
gaps only satisfy the feature �xF�yF > 0.

We notice that the critical susceptibility at which the magnetic phase transition appears depends strongly 
on the distance R and angle ϕR . Thereby, the behavior of spin susceptibility for two magnetic impurities placed 

(36b)
χαα
ii (R ,ϕR)

Ct
∝ h(R ,ϕR)

R3/2
,

Figure 11.   Magnetic phase diagram for the RKKY response J RKKY
αα (R,ϕR)/J

2 Ct × 10−4 , to the ferroelectric 
distortion potentials along both x- and y-directions at (a) {R = 25Å,ϕR = π/6} and (b) {R = 50Å,ϕR = π/6} as 
well as at (c) {R = 30Å,ϕR = π/4} and (d) {R = 50Å,ϕR = π/4}.
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on different atomic sites (which possesses quite different interaction conceptually) may be quite different and 
notable. In the next section, we will elucidate this.

Impurities on different sublattices.  When two magnetic moments reside on different sublattices of the 
surface (001) of SnTe, the susceptibility can be calculated as

resulting in [χ12
ii (R ,ϕR) = χ21

ii (R ,ϕR)]

where D1 = 2 cos2(�x Rx),D2 = 2 cos2(�y Ry) and D3 = 4 cos γ cos(�x Rx) cos(�y Ry).
The emergent conclusions extracting from the above susceptibility, i.e. Eq. (38) could be listed as the following. 

Firstly, we conclude that the RKKY response is negative anyway, providing an antiferromagnetic spin configura-
tion for impurities sitting on the different sublattices. Secondly, the RKKY interaction is an even function of the 
gap terms, meaning that the gap term sign is not a matter subject from the point of RKKY response. In other 
words, it is not possible to detect the magnetic phase transitions when the impurities are placed on different 
sublattices through the magnetic response, in contrary to the previous the same sublattices case.

Similar to the same sublattices case, the RKKY response is periodic in ϕR , as expected from the structure 
symmetry of the SnTe lattice. This fact is numerically verified in Fig. 12 in the absence and presence of the fer-
roelectric distortion to highlight the distortion effect on the RKKY intensity. From this plot, one immediately 
would conclude that the presence of both �xF and �yF simultaneously with different possibilities for the sign can 
not influence the RKKY response [see the orange and green curves on top of each other]. This is a direct con-
sequence of power 2 of the gaps in Eq. (38). Furthermore, it exhibits a beating type pattern with gap-dependent 
amplitudes originating from the Fermi wave vectors involving in the response.

The RKKY interaction is again strongly anisotropic concerning the direction of applied displacements. How-
ever, for a general discussion of the distortion configuration effects on the magnetic response of impurities resided 
on different sublattices, we again divide the following analyses into four parts considering (1) pristine TCI, (2) 
isotropically gapped TCI, (3) coexistence of gapless and gapped TCI, and (4) anisotropically gapped TCI.

Pristine TCI.  Considering �xF = �yF = 0 [see the first row of Fig. 4] in Eq. (38), one achieves

where

(37)χ
αβ
ii (R ) = 2

π

∫ 0

−∞
dωR

[

G0
αβ(ω,R, 0)G

0
αβ(ω, 0,R)

]

,

(38)

χ
αβ
ii (R ,ϕR)

Ct
= − D1

∫ 0

−∞
dω (ω2 +�2

xF)K
2
1

(
AR/vF

)
− D2

∫ 0

−∞
dω (ω2 +�2

yF)K
2
1

(
B R/vF

)

− D3

∫ 0

−∞
dωA B K1

(
AR/vF

)
K1

(
B R/vF

)
,

(39)χ
αβ
ii (R ,ϕR)

Ct
∝ − L (R ,ϕR)

R3
,

(40)
L (R ,ϕR) = D1 + D2 + D3 = cos2(�x Rx)+ cos2(�y Ry)+ 2 cos γ cos(�x Rx) cos(�y Ry) = F (R ,ϕR) ,

Figure 12.   The behavior of the RKKY interaction −J RKKY
αβ (R,ϕR)/J

2 Ct as a function of ϕR at fixed R = 50 
Å  for different ferroelectric distortion potentials.



17

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5273  | https://doi.org/10.1038/s41598-021-84398-0

www.nature.com/scientificreports/

Interestingly, similar interference term as the case of the same sublattices can be obtained, in an excellent agree-
ment with Ref.43, while the magnetic ordering is different due to the negative sign of susceptibility referring to 
the antiferromagnetic phase. It is worth mentioning that the pristine RKKY amplitude is different in this case 
compared to the same sublattices due to the difference between the modified Bessel functions of the zero and 
first kinds. The corresponding results are shown as black curves in Fig. 13a–c for which the short- and long-range 
responses decay as R−3 with the impurity separation, whereas RKKY interaction oscillates with intermediate R 
due to oscillating interference term L (R ,ϕR) . However, no magnetic phase transition is observed at all.

Isotropically gapped TCI.  Turning now to the isotropically gapped TCIs with the feature |�xF| = |�yF| = �0 [see 
the second row of Fig. 4] leads to the expression

With the help of Eqs. (26) and (31), one finds for the short-range �0R/vF ≪ 1

and for the long-range �0R/vF ≫ 1 using the Laplace method

(41)

χ
αβ
ii (R ,ϕR)

Ct
= − 2L (R ,ϕR)

∫ 0

−∞
dωω2 K2

1

(
A ′R/vF

)
− 2L (R ,ϕR)�

2
0

∫ 0

−∞
dωK2

1

(
A ′R/vF

)
.

(42)χ
αβ
ii (R ,ϕR)

Ct
∝ − L (R ,ϕR)

R3
,

Figure 13.   The behavior of the susceptibility −J RKKY
αβ (R,ϕR)/J

2 Ct as a function of R for different 
ferroelectric distortion potentials at (a) ϕR = 0 , (b) ϕR = π/6 and (c) ϕR = π/4.
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wherein the decaying rates are quite similar to the same sublattices case. However, there is no magnetic phase 
transition for the short-, intermediate- and long-range impurity separations in contrast to the same sublattices. 
The reason can be understood from the same interference terms behind the integrals in the equation above, while 
different interference terms came up in Eqs. (32) and (33). These behaviors are greatly confirmed numerically 
in orange curves (under the green ones) of the Fig. 13a–c describing the decaying rate above-mentioned for the 
short- and long-range responses as well as oscillation for the intermediate distances.

The exponential decaying of the RKKY interaction with the gap potential −J RKKY
αβ (R,ϕR)/J

2 Ct is inves-
tigated at long-range regime in Fig. 14 along different directions ϕR . The process of exponentially decay of the 
RKKY interaction with the gap potential is the recovery of Eq. (43).

Coexistence of gapless and gapped TCI.  For the individual case of |�xF| = �0 and |�yF| = 0 [see the third and 
fourth rows of Fig. 4], we have

Substituting D1  → D2 and D2  → D1 in the third first terms give rise to another case of |�yF| = �0 and 
|�xF| = 0 . Following Eqs. (26) and (31), we obtain respectively the effective short-range �0R/vF ≪ 1 and long-
range �0R/vF ≫ 1 responses 

 showing the same decaying rates as the previous case, while different interference terms emerge. Also, a simple 
comparison between blue and red curves in Fig. 13 and Eq. (45) alarms that the short-range RKKY responses 
are somewhat gap-independent, whereas the long-range response comes up with a difference in oscillations for 
different configurations. It is necessary to mention that the decaying rates here also behave similarly to graphene 
with oscillations depending on the various gap configurations49–51.

As expected, the difference between the case of {|�xF| = �0, |�yF| = 0} and {|�yF| = �0, |�xF| = 0} belong 
to the long-range responses except the case of ϕR = π/4 [Fig. 13c] for which both behave similarly independent 
of the impurity separation R because in this case, we have D1 = D2 and there is no priority for these configura-
tions at all.

The effect of gap formation on the RKKY interaction at an intermediate impurity separation of R = 25 Å  is 
studied in Fig. 15 for the complementary angles ϕR when the distortion is applied along the X1 − Ŵ − X1 line or 
along its perpendicular orientation X2 − Ŵ − X2 . The response is monotonically antiferromagnetic for all gap 
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Figure 14.   Long-range behavior of the RKKY interaction −J RKKY
αβ (�0R/vF ≫ 1,ϕR)/J

2 Ct as a function of 
�0 at fixed long-range impurity separation R = 200 Å  for different directions ϕR.
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terms, as expected. Moreover, a correspondence between the distortion direction and the substitutional orienta-
tion of impurities is observed in Fig. 15, i.e. the RKKY response for the distortion applied along the y-axis with 
sitting impurities along ϕR = 0 corresponds to the situation in which the distortion is applied along the x-axis 
with ϕR = π/2 . Again we observe an increased treatment of the RKKY interaction after a critical gap, which is 
originated from the high density of the band edges in short-range distances or the role of metallic states along 
the other direction. The physic behind this enhancement is similar to what we presented for the same sublattices.

We comment that this is also a nontrivial phenomenon as the same sublattices case when both gapless and 
gapped phases coexist in the whole band spectrum. An increase behavior of the RKKY coupling with the gap 
size at intermediate-range of impurity separations is traced back to those accumulated valence band states at the 
band edges affecting RKKY response. Interestingly, such nontrivial increasing trend occurs if magnetic impurities 
are located along arbitrary orientations. Let us turn to the last distortion configuration.

Anisotropically gapped TCI.  Referring again to Eq. (38), the situation of interest for the presence of both �xF 
and �yF is when they compete to change the RKKY amplitude [see the last row of Fig. 4], in which the effective 
short-range �0R/vF ≪ 1 and long-range �0R/vF ≫ 1 responses are given by 

 where

We again intend to systematically study the impact of the competition between �xF and �yF on the RKKY 
response. To do so, we plot Fig. 16 at an intermediate distance R = 30 Å  for different directions, namely (a) 
ϕR = 0 , (b) ϕR = π/6 and (c) ϕR = π/4 . Independent of the direction ϕR , the RKKY response is symmetric con-
cerning �xF �yF < 0 or �xF �yF > 0 , in which the RKKY amplitude is weaker than the other areas. Moreover, 
we once more confirm that there is no magnetic phase transition at all when the magnetic impurities are resided 
on different sublattices. A quick comparison between different directions shows that the case of ϕR = π/4 leads 
to the maximum RKKY amplitude due to the equal contribution of the Fermi wave vectors in Di coefficients.

Regarding different magnetic ordering of two configurations (when two impurities residing on the same or 
different sublattices), let us briefly mention that atomic orbitals and topology of the structure play the main role 
in magnetic ordering. Hamiltonian in Eq. (5) is written in the basis set of Te and Sn p-orbitals. When the same 
sublattices are considered, the packing factor is lower compared to the different sublattice case. It means that 
atomic separation in the same sublattice case is larger than the different sublattice case. Therefore, it is reasonable 
if the overlapping of the p-orbitals between neighbors atoms influences RKKY coupling. The effect of the atomic 
structure on RKKY interaction is seen also in graphene such that magnetic ordering along direction AA-zigzag 
is ferromagnetic while it is antiferromagnetic for AB-zigzag direction48–51.
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Figure 15.   The behavior of the RKKY interaction −J RKKY
αβ (R,ϕR)/J

2 Ct as a function of ferroelectric 
distortion potential (a), (c) �xF and (b), (d) �yF for four different complementary angels ϕR between two 
magnetic moments at R = 25 Å.
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Discussion.  The current distortion-induced RKKY response for the magnetic impurities on the same and 
different sublattices are for the case of undoped Dirac cones. However, we should mention that the presence of 
electron and/or hole-doping changes the results and the competition between the distortion and doping con-
centration is an important study because doping may induce new magnetic phases to the system due to the 
breakdown of the lattice symmetry43,48,51.

Additionally, surface roughness as a perturbation preserving time-reversal symmetry is always present in real 
materials. This perturbation breaks the mirror symmetry locally on the surface, however, the mirror symmetry 
may still be preserved on the average macroscopically point of view, i.e. when the variation of the atomic places 
is slow enough7. Thereby, we argue that, in this case, the gapless results work out well at long-range impurity 
separations, while one needs to apply a continuous gapped Dirac model for short-range distances on average. 
Thus, in the smooth variation of roughness for short distances, the gap is opened in the band spectrum, and so 
our results for RKKY interaction at short ranges can be considered, while for long-range distances the gapless 
results are applicable. In the presence of sharp variation of the atomic positions, one should similarly look at the 
mirror symmetry whether it is preserved or not.

Furthermore, we would state that the current results are based on the zero temperature, however; the tempera-
ture dependency of short- and long-range magnetic couplings in the absence and presence of symmetry breaking 
and doping can be studied as well within the finite-temperature self-consistent field approximation58,59. Tempera-
ture highlights the screening response of the conducting electrons, which strongly affects the indirect exchange 
interaction between magnetic impurities, resulting in temperature-dependent magnetic phase transitions.

Finally, we emphasize that the magnetic scattering potential may also happen in the presence of magnetic 
impurities. In such a situation, the RKKY interaction should be approached beyond the linear response theory 
and the local magnetization should also be considered60,61. This revises the theory of linear off-resonant RKKY 
interaction between magnetic impurities and considers the impact of impurity resonances. We leave the results 
of all these matters to come up in our future works.

Summary
In summary, we have addressed the ferroelectric distortion effects on the RKKY interaction between two mag-
netic impurities on the (001) surface of SnTe and related alloys as available TCIs. We have shown that the low-
energy Hamiltonian of TCIs receives a mirror symmetry breaking between multiple Dirac cones in the presence 
of the distortion, ensuring the gap at Dirac points. The coexistence of the gapless and gapped phases as well as 
the isotropically and anisotropically gapped phases grant a fascinating interference correlation between magnetic 
moments, which manifest themselves in different magnetic ordering. While other Dirac materials can be gapped 
or gapless, the key point of the present paper, especially is the the coexistence of the gapless and gapped phases and 
their nontrivial and novel fingerprints in the gap-induced RKKY response. The results are significantly different 
compared to the pristine TCI and other Dirac materials.

Our numerical results present different magnetic phase diagrams depending on the position of impurity 
magnetic moments on the (001) surface of TCIs. We have proposed a critical impurity separation of Rc for which 
the RKKY coupling shows different behaviors with the distortion strength for separations beneath and above 
Rc . Although the distortion does not lead to a magnetic phase transition for the magnetic moments resided on 
different sublattices, an irregular ferromagnetic ↔ antiferromagnetic ordering emerges as soon as the impuri-
ties reside on the same sublattices with the separation above Rc . We further demonstrated that it is feasible to 
manipulate this magnetic ordering by tuning the distortion strength. Our work paves the way to design protocols 
in tuning the multiple surface states in TCIs using the external magnetic impurities and ferroelectric distortion 
for the spintronic and valleytronic applications.

Figure 16.   Magnetic phase diagram for the RKKY response J RKKY
αβ (R,ϕR)/J

2 Ct × 10−4 at R = 30 Å , to the 
ferroelectric distortion potentials along both x- and y-directions at (a) ϕR = 0 , (b) ϕR = π/6 and (c) ϕR = π/4.
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