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Hamiltonian transformability, fast 
adiabatic dynamics and hidden 
adiabaticity
Lian‑Ao Wu1,2* & Dvira Segal3,4

We prove the existence of a unitary transformation that enables two arbitrarily given Hamiltonians 
in the same Hilbert space to be transformed into one another. The result is straightforward yet, for 
example, it lays the foundation to implementing or mimicking dynamics with the most controllable 
Hamiltonian. As a promising application, this existence theorem allows for a rapidly evolving 
realization of adiabatic quantum computation by transforming a Hamiltonian where dynamics is in the 
adiabatic regime into a rapidly evolving one. We illustrate the theorem with examples.

Understanding quantum dynamics and control is essential to modern quantum technologies such as adiabatic 
quantum  computation1,2. A quantum dynamical processes is driven by its corresponding Hamiltonian, where 
the Hamiltonian represents a physical realization. For instance, spin dynamics can be driven by the Zeeman 
Hamiltonian, which is physically realized by applying magnetic  fields3. Different realized dynamics, for example 
fast vs. adiabatically controlled  passage4–6 may seem remote from one another. However, in this paper we show 
that they can well be intimately related.

For example, a physical realization of adiabatic quantum computation (AQC) suffers from its slowness, 
with the resultant destructive effects of decoherence and the occurrence of quantum phase transitions during 
 dynamics7–10. Here, we prove rigorously that different dynamics, described by two Hamiltonians defined on the 
same Hilbert space, can always be transformed into one another. As a consequence, the physical outcome of 
AQC can be made equivalent to the outcome of a dynamical process that can be extremely fast. This relationship 
between different dynamics is based on a straightforward but profound proposition described below, implying, 
for example, that an adiabatic process may be physically realized with a fast Hamiltonian. Similarly, it implies a 
hidden adiabaticity amongst rapid dynamics.

The transformability proposition
Given any two Hamiltonians, Ĥ and ĥ in the same Hilbert space, which can be time-independent or time-
dependent, the corresponding Schrödinger equations are

and

where Û  and û are propagators of Ĥ(t) and ĥ(t) , respectively.

Proposition Two Hamiltonians Ĥ and ĥ can always be transformed into one another. Mathematically, this claim 
can be expressed as: For given Ĥ and ĥ , there exists at least one unitary operator Ŝ such that

and

(1)i∂t Û = Ĥ(t)Û ,

(2)i∂t û = ĥ(t)û,

(3)ĥ = Ŝ†ĤŜ − iŜ† ˙̂S,
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where the overdot indicates a time derivative.

Proof The operator Ŝ enables the transformation Û = Ŝû . Substituting it into the Schrödinger equation (1), we 
obtain Eq. (2) with the effective Hamiltonian ĥ = Ŝ†ĤŜ − iŜ† ˙̂S . Similarly, if we begin with the Schrödinger equa-
tion (2) we transform it to Eq. (1) by identifying its Hamiltonian with Ĥ = ŜĥŜ† − iŜ ˙̂S† . Because the solutions 
û and Û  of the Schrödinger equations (1) and (2) always exist, so does the product Û û† . By setting Ŝ = Û û† , we 
can reproduce the Hamiltonians (3) and (4) and therefore formally prove the universal existence of the unitary 
transformation Ŝ . In other words, there is always a unitary transformation that enables two arbitrarily given 
Hamiltonians in the same Hilbert space to be transformed into one another. We term this property transform-
ability, and the two Hamiltonians Ĥ and ĥ are transformable. The special case of the proposition with ĥ being 
time-independent was proven a quarter-century ago in Ref.11. In this context, Ref.12 proved a universal existence 
theorem of constant Hamiltonians for shortcuts to adiabaticity (STA)7. The theorem states that time-independent 
shortcuts can be immediately derived from the generalized phase mimicking the adiabatic evolution. This pro-
vides a direct way to implement a constant shortcut, an application that goes beyond the proof of existence that 
we provide here.

Note that in the STA protocol, corresponding to the adiabatic Hamiltonian ( ̂h ), a shortcut to the adiabatic 
Hamiltonian ( Ĥ ) is identified with a counter-diabatic  term7. Based on our theorem, a unitary Ŝ(t) is guaranteed 
to exist, allowing the transformation between the adiabatic and the STA Hamiltonians according to Eqs. (3)–(4) 
, which was exemplified e.g. in Ref.13 for the Rabi model.

Rapid adiabatic quantum computation
Adiabatic quantum computation is one of the most promising candidates to realize quantum  computing14. The 
approach is based on the adiabatic theorem: The solution to a computational problem of interest is encoded in the 
ground state of a potentially complicated Hamiltonian. To approach the solution, one prepares a system with a 
simpler Hamiltonian and initializes it at its ground state. By evolving the Hamiltonian sufficiently slowly towards 
the desired (complex) one, the adiabatic theorem guarantees that the system follows the instantaneous ground 
state, finally realizing the target ground state. Evidently, the slowness of AQC could be the main impediment to 
its utility for quantum algorithms.

The universal transformability property suggests that a slow AQC process û can be mapped onto a fast quan-
tum process Û—that is more controllable, and suffers reduced decoherence during processing. Previous studies 
on adiabatic processes have shed light on the transformability in case studies. For example, Ref.15 examined 
conditions for adiabaticity by transforming a Hamiltonian in a specific non-adiabatic regime (for instance, 
due to the resonance phenomenon) to another Hamiltonian in the adiabatic regime. Our proposition here 
points to the mathematical proof of the universal existence of (at least one) unitary operator Ŝ(t) connecting an 
arbitrarily-given (could be adiabatic) Hamiltonian and another (adiabatic or not) arbitrarily-given Hamiltonian. 
Note that as a convention, we use lower (upper) cases to denote the slow (fast) dynamics throughout the paper. 
Consequently, AQC can be physically realized by a fast process. Nevertheless, if “fastness” means less number of 
quantum gates, it might contradict results of computational complexity theory. In this case, the total number of 
gates of the quantum process described by Û  should be compensated in the implementation of Ŝ.

The eigenstate |E(T)� of the problem Hamiltonian at time T is given by implementing the adiabatic process

The second equality suggests to physically implement |E(T)� by the following circuit: the first gate Û(T) is 
governed by Ĥ . The transformation Ŝ†(T) acts on the output.

Adiabatic algorithms and their fast counterparts
Consider now the proposition in the context of a realistic AQC, i.e. an ensemble of qubits described by a family 
of slowly-varying Hamiltonians,

Here, Ŵ(t) is large at t = 0 , and slowly evolves towards zero at t = T . The Hamiltonian ĥP({Ẑi}) contains 
the Ẑi component of the i-th qubit. The solution of a hard problem is encoded within ĥP . For example, Grover’s 
search  problem14 is realized with

where |B� is the marked state, and |B��B| is a function of Ẑi.
Alternatively, in the D-Wave system, the Hamiltonian (6) is given by

(4)Ĥ = ŜĥŜ† − iŜ ˙̂S†,

(5)|E(T)� ∼ û|E(0)� = Ŝ†(T)Û(T)|E(0)�.

(6)ĥ = Ŵ(t)
∑

i

X̂i + ĥP({Ẑi}).

(7)ĥP(Ẑi) = Î − |B��B|,

(8)ĥP(Ẑi) =
∑

i

hiẐi +
∑

ij

JijẐiẐj ,
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with the parameters hi and Jij . Applying a fast magnetic field, we can enable the corresponding fast-varying 
Hamiltonian

where γ (t) = Ŵ(t)+ φ̇ is a fast-varying function. Here, the transformation matrix is given by Ŝ(t) = �ie
−iφi(t)X̂i . 

Thus, instead of evolving the system slowly under ĥ , the two gates Û(t) and Ŝ(t) should be realized, Eq. (5), allow-
ing for a fast implementation.

Built‑in adiabaticity
The discussion above focuses on implementing fast dynamics to achieve the adiabatic result, i.e. to replace 
slow dynamics by fast dynamics. Here we show that the opposite is also the case, That is, fast dynamics can be 
shown to have a “hidden adiabaticity”. As an example, consider a qubit under external fields, with the NMR-type 
Hamiltonian

Here, X̂ , Ŷ  and Ẑ are the Pauli operators, ω0(t) and φ(t) potentially depend on time and are allowed to be 
fast-varying. A unitary transformation Ŝ = exp

[

i θ(t)−φ(t)
2 Ẑ

]

 brings Ĥ into ĥ,

We assume that g is a constant and that the newly introduced time-dependent parameter θ(t) , as well as 
ω0(t)+θ̇−φ̇

2  are controlled such that they vary slowly. The transformation Ŝ thus brings the system into the adiabatic 
domain. In other words, a system driven by fast-varying Ĥ has built-in hidden adiabaticity characterized by ĥ.

In the particular case where φ(t) = ωt and ω0 , ω are constants, we can easily obtain the solution, that is the 
time evolution operator corresponding to Ĥ,

where � = ω − ω0 . We can control parameters and realize the function θ(t) = �t , resulting in

The instantaneous eigenstates of ĥ = g exp
(

−i�Ẑ
2 t

)

X̂ exp
(

i�Ẑ
2 t

)

 are

These states are proportional to the wave function û|±� ( X̂|±� = ±|±� ) as stated by the adiabatic theorem for 
the adiabatic regime g ≫ � . Therefore, in order to physically realize |E±(T)� , say at T = π/2� when ĥ(T) = gŶ  , 
one needs to implement two gates: Û(T) , then Ŝ†(T) = exp(i πω0

4� Ẑ).
We now come to a simple but nontrivial corollary following immediately from the Transformability 

proposition.

The transformability corollary at different times
Let Ĥ (the fast Hamiltonian) be a function of the normalized or scaling time τ = t/T , where T a characteristic 
time of the dynamical system. Equation (1) can then be rewritten as

Likewise,

where τ = t ′/T ′ and the latter describes a slower process so that T < T ′ , t ′(T ′) is the real time (characteristic 
time) of the Schrödinger equation (16). The scaling times of two equations may be identical or different. Here 
we set the same scaling time τ with the constraint t ′/T ′ = t/T . As proved in the transformability proposition, 
mathematically there is at least one unitary operator Ŝ such that

and

(9)Ĥ = γ (t)
∑

i

X̂i + ĥP({e
−iφi(t)X̂i Ẑie

iφi(t)X̂i }),

(10)Ĥ =
ω0(t)

2
Ẑ + g

[

X̂ cosφ(t)+ Ŷ sin φ(t)
]

.

(11)ĥ =
ω0(t)+ θ̇ − φ̇

2
Ẑ + g

[

X̂ cos θ(t)+ Ŷ sin θ(t)
]

.

(12)Û = exp

(

−i
ωẐ

2
t

)

exp

(

−i
2gX̂ −�Ẑ

2
t

)

,

(13)û = exp

(

−i
�Ẑ

2
t

)

exp

(

−i
2gX̂ −�Ẑ

2
t

)

.

(14)|E±(t)� = exp

(

−i
�Ẑ

2
t

)

|±�.

(15)i∂τ Û(τ ) = TĤ(τ )Û(τ ).

(16)i∂τ û(τ ) = T ′ĥ(τ )û(τ ),

(17)T ′ĥ = Ŝ†TĤŜ − iŜ†∂τ Ŝ,

(18)TĤ = ŜT ′ĥŜ† − iŜ∂τ Ŝ
†,
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for a given scaling time τ . The simplest non-trivial example is Ŝ = 1 , such that Ĥ = T ′

T ĥ and Û(τ ) = û(τ ) . 
The latter equality, rewritten as Û(t) = û(T

′

T t) with T < T ′ , is an exact proof that the runtime of an adiabatic 
quantum process can be reduced T

′

T  times—exact trade-off between energy and time. Specifically, Eq. (12) can 
be rewritten as

where τ = t/T = t ′/T ′ , gT = g ′T ′ and we have set ω0 = 0 . Û(τ ) ( ̂u(τ ) ) may denote a fast (adiabatic) evolution if 
T ′ is in the adiabatic regime while T is not in. The one-qubit gate Û takes shorter total time t = T (setting τ = 1 ) 
with strength g. Meanwhile, the gate û takes longer time t ′ = T ′ but with a reduced strength g ′ = gT/T ′ . This 
reflects that the trade-off between energy and time may cause the fastness of evolution for this specific case. This 
result suggests a strategy of experimentally implementing an expedited adiabatic processes: simply enhancing 
the strength of the driving Hamiltonian to its strongest possible value.

In general, the universal existence of S and the equality

manifests that an adiabatic quantum algorithm can always be mimicked by at most two fast gates where T ′ ≫ T 
is in the adiabatic regime.

Conclusion
Two arbitrarily given Hamiltonians within the same Hilbert space can be always transformed to each other via 
a unitary transformation. This seemingly simple but rigorous theorem is powerful: It allows one to implement a 
slowly varying evolution within a fast protocol, which is less susceptible to errors. We exemplified this result on 
a qubit system and on problems in the context of quantum adiabatic computing. The transformability of open 
quantum system Hamiltonians is left for future work.
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(19)Û(τ ) = û(τ ) = exp(−iπZτ) exp
(

−i(TgX̂ − π Ẑ)τ
)

,

(20)û

(

t ′

T ′

)

= Ŝ†
(

t

T

)

Û

(

t

T

)
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