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Whole genome methylation 
and transcriptome analyses 
to identify risk for cerebral palsy 
(CP) in extremely low gestational 
age neonates (ELGAN)
An N. Massaro1*, Theo K. Bammler2, James W. MacDonald2, Krystle M. Perez3, 
Bryan Comstock4 & Sandra E. Juul3

Preterm birth remains the leading identifiable risk factor for cerebral palsy (CP), a devastating 
form of motor impairment due to developmental brain injury occurring around the time of birth. 
We performed genome wide methylation and whole transcriptome analyses to elucidate the early 
pathogenesis of CP in extremely low gestational age neonates (ELGANs). We evaluated peripheral 
blood cell specimens collected during a randomized trial of erythropoietin for neuroprotection in 
the ELGAN (PENUT Trial, NCT# 01378273). DNA methylation data were generated from 94 PENUT 
subjects (n = 47 CP vs. n = 47 Control) on day 1 and 14 of life. Gene expression data were generated 
from a subset of 56 subjects. Only one differentially methylated region was identified for the day 
1 to 14 change between CP versus no CP, without evidence for differential gene expression of the 
associated gene RNA Pseudouridine Synthase Domain Containing 2. iPathwayGuide meta-analyses 
identified a relevant upregulation of JAK1 expression in the setting of decreased methylation that was 
observed in control subjects but not CP subjects. Evaluation of whole transcriptome data identified 
several top pathways of potential clinical relevance including thermogenesis, ferroptossis, ribosomal 
activity and other neurodegenerative conditions that differentiated CP from controls.

Despite advances in neonatal intensive care, survivors of preterm birth continue to suffer high rates of long 
term intellectual and/or physical impairment. Babies born prior to 28 weeks gestational age (Extremely Low 
Gestational Age Neonates—ELGANs) are at particularly high risk, with severe neurodevelopmental impairment 
reported in almost half of survivors and cerebral palsy (CP) in up to 10%1–3. Preterm birth remains the leading 
identifiable risk factor for CP, estimated to account for more than 50% of cases from population-based studies4. 
While promising neuroprotective therapies for ELGANs are under investigation, advancing neuroprotective 
care in the neonatal intensive care unit (NICU) is limited by the absence of biomarkers of brain injury that can 
identify infants early in the course of injury progression and help elucidate specific causal pathways to injury.

Prematurity-related neurologic injury is multifactorial and has been associated with various perinatal stressors 
including inflammation, intermittent hypoxia/hyperoxia, ischemia, pain, and nutritional deficiencies5. Any and 
all of these environmental triggers can lead to differential gene expression leading to risk for adverse outcomes. 
Modification of gene expression can occur by various epigenetic mechanisms, including DNA methylation6. 
Studies in preterm infants have demonstrated multiple differentially methylated regions (DMRs) compared to 
term controls7–14. Differences in DNA methylation, and associated differences in gene expression, may contribute 
to the risk for neurological sequelae in this high risk population.

We evaluated biological samples collected as a part of an NIH-funded Phase III Randomized Controlled 
Trial assessing the efficacy of erythropoietin (Epo) for neuroprotection in preterm infants (PENUT Trial, 
NCT01378273)15,16. Neonatal peripheral blood cell (PBC) samples from selected PENUT subjects were analyzed 
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to determine whether examination of DMR and gene expression profiles in ELGAN survivors will lead to early 
neonatal biomarkers of CP. We hypothesized that early stressors of extrauterine life result in DMR and/or dif-
ferentially expressed gene signatures that can distinguish infants with and without CP.

Results
We identified total of 76 CP cases after completion of PENUT follow-up. High quality DNA was isolated from 
94 PENUT subjects (n = 47 CP vs. n = 47 Control) at both timepoints of interest. The CP cohort consisted of 
babies with mild (n = 24), moderate (n = 16) and severe (n = 7) levels of motor impairment. Characteristics of 
the study population are summarized in Table 1. The majority of patients with CP had diplegia (n = 33, 70%), 
followed by spastic quadriplegia (n = 10, 21%) and hemiplegia (n = 4, 9%). While most CP subjects had a Gross 
Motor Function Classification Scale (GMFCS) level of 0 (n = 19, 40%), various levels of functional impairment 
were represented in the cohort (Table 1). Gene expression data were generated from a subset of subjects with 
adequate RNA (RIN > 5); 56 subjects (n = 29 CP vs n = 27 Control) on day 1 and 23 subjects (n = 12 CP vs n = 11 
Control) on day 14.

DNA methylation analyses.  Only 22 CpGs for the CP versus control day 1 comparison and 5 CpGs on 
day 14 were identified spread across the genome, so there was no evidence for any DMRs that differentiated 
CP cases from controls. In testing the day 1 and 14 interaction, we identified only one DMR on chromosome 
15 (chr15: 40861240–40861791; mean proportional change 0.015, p = 8.62 e−0.01) that included 11 CpGs and 
showed decreased methylation between day 1 and 14 in the CP cases, whereas stable methylation was observed 
over time in controls (Fig. 1). The single gene associated with this DMR, RNA Pseudouridine Synthase Domain 
Containing 2 (RPUSD2), is a protein coding gene without reported functional correlates to neurological disease. 
No additional DMRs were identified when the analyses were restricted to the cases with moderate or severe CP. 
Additionally, there was no evidence for differential gene expression for RPUSD2 in the subset of patients with 
available transcriptome data (log2 fold change −0.016; p = 0.994). For the between day comparisons, there were 
multiple DMRs identified within the CP (n = 302, Supplemental Table S1) and control groups (n = 339, Supple-
mental Table S2).

Whole transcriptome analyses.  There was no evidence for differentially expressed genes between CP 
and control infants at day 1, day 14 or the interaction (day 1 to 14 change). For the between day comparisons, 
numerous genes that were significantly upregulated or downregulated over time were identified in both CP 
(n = 579, Supplemental Table S3) and control infants (n = 841, Supplemental Table S4). In order to evaluate genes 
with differential expression between day 1 and 14 that were unique to CP versus control, we created a Venn 
diagram to demonstrate the overlap in significant genes between the two conditions (Fig. 2). iPathwayGuide 
analysis of differentially expressed genes between day 1 and 14 that were unique to each diagnosis identified 
several top pathways of potential clinical relevance (Table 2).

Meta‑analyses of DNA methylation and transcriptome analyses.  Secondary iPathwayGuide 
meta-analyses were performed to identify genes and/or pathways that were unique to CP subjects or controls 
across both methylation and gene expression datasets. We extracted the DMRs that were significant for the day 1 
to 14 comparisons that were unique to each diagnosis and output the set of associated genes for each DMR. We 

Table 1.   Characteristics of the Study Population. Data presented as n(%) unless otherwise specified.

Cerebral Palsy
(n = 47)

No Cerebral Palsy
(n = 47) P Value

Gestational Age
(mean ± SD weeks) 25.88 ± 1.29 25.93 ± 1.26 0.853

Birthweight
(mean ± SD grams) 753.09 ± 190.56 837.91 ± 190.09 0.033

Sex (n, %male) 23 (49) 23 (49) 1.000

Severe bronchopulmonary dysplasia 19 (42) 22 (47) 0.680

Intraventricular hemorrhage,
Grade 3 or 4 12 (25) 1 (2) 0.002

Severe retinopathy of prematurity (requiring intervention) 9 (19) 2 (4) 0.050

Necrotizing enterocolitis,
Stage 2b or 3 2 (4) 3 (6) 1.000

Sepsis 4 (8) 2 (4) 0.677

GMFCS level  < 0.001

0 19 (40) 45 (96)

0.5 8 (17) 1 (2)

1 10 (21) 1 (2)

2 7 (15) 0 (0)

4 3 (7)) 0 (0)



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5305  | https://doi.org/10.1038/s41598-021-84214-9

www.nature.com/scientificreports/

generated a Venn diagram to evaluate the overlap between genes associated with a DMR and genes that dem-
onstrated differential expression (Fig. 3). We identified only 2 genes, and no relevant pathways, that were dif-
ferentially expressed between day 1 and 14 only in CP cases, and 4 genes only in Controls, observed consistently 
across both DNA methylation and gene expression datasets (Fig. 3). These genes and functional information are 
summarized in Table 3.

Discussion
DNA methylation is known to play an important role in brain development17–21, with alterations described in 
infants born preterm and those with postnatal stress14,22. While epigenetic changes are tissue-specific and it is 
recognized that between-tissue variation in DNA methylation exceeds between-individual differences, some 
inter-individual variation is reflected across brain and blood indicating that peripheral tissues may have some 
utility in identifying biomarkers of disease phenotypes that manifest in the brain23–25. Given this biological 
context and limited plausibility for identifying PBC DMRs as epigenetic biomarkers of prematurity-related 
developmental brain injury, it is not surprising that our genome wide DNA methylation analyses demonstrated 
limited evidence for early epigenetic factors in this tissue type that relate to later CP in ELGANs. Meanwhile, 
whole transcriptome analyses identified a profile of genes that are uniquely differentially expressed between day 

Figure 1.   Significant DMR on chromosome 15 for the interaction (day 1 to 14 change) in CP vs Control. 
Methylation decreases in CP babies on day 14 (pink) compared to day 1 (blue), whereas appears stable in 
Control babies (red and green). Individual CpG numbers (denoted by green vertical bars) are listed as follows: 
cg09167084; cg18988510; cg12754238; cg20139049; cg17356999; cg15454857; cg21874278; cg14760714; 
cg12307764; cg18013830; cg00066468. Figure generated with the Bioconductor Gviz package (version 1.28.3).
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Figure 2.   Venn diagram of differentially expressed genes between day 1 and 14 that are unique in CP (yellow) 
compared to control (blue) ELGANs. Figure generated using the CRAN package gplots (version 3.0.1.1).

Table 2.   Top pathways based on differentially expressed genes between day 1 and 14 in CP vs Control cases.

Pathway Name p-value FDR Perturbed Genes Notes

Unique to CP

Huntington Disease 4.593e–5 0.008
Upregulated: VDAC2, COX5A, POLR2E
Downregulated:GPX1, NDUFB3, NDUFA13, UQCR10, 
TGM2, COX7C

Interference with BDNF transcription/transport, desta-
bilization of neuronal mitochondria

Thermogenesis 2.889e–4 0.026
Upregulated:COX5A, ADCY7
Downregulated: GNAS, NDUFB3, NDUFA13, 
UQCR10, DPF3, COX7C, ADRB3, ADCY1-6, ADCY8-
10

Process triggered by hypothermia whereby chemical 
energy is converted to heat in adipose tissue to ensure 
normal cellular processes

Parkinson Disease 5.085e–4 0.030
Upregulated:CYCS, VDAC2, CASP9, CASP3, COX5A
Downregulated:NDUFB3, NDUFA13, UQCR10, 
COX7C

Proteasome dysfunction, mitochondrial impairment 
and oxidative stress leading to loss of dopaminergic 
neurons

Ferroptosis 7.290e–4 0.032 Upregulated: VDAC2, CYBB
Downregulated: SLC11A2, GCLC

Regulated cell death characterized by production of 
reactive oxygen species from iron and lipid peroxida-
tion; involved in neurodegenerative disease

Unique to control Ribosome 2.035e–8 5.2e–6
Upregulated (in Control):RPL7A, RPL11, RPL19, 
RPL23A, RPL30, RPL37, RPL38, RPS5, RPS8, RPS11, 
RPS15A, RPS20, RPS29, MRPL20
Downregulated in Control): UBA52, MRPL1

Developmental increase in ribosomal biogenesis 
observed in controls but not CP subjects is consistent 
with prior reports of impaired ribosomal activity in CP

Figure 3.   iPathwayGuide meta-analysis of DNA methylation and gene expression data identified 2 genes 
(highlighted in white) unique to CP, and 4 genes (black box) unique to Controls, that demonstrated evidence of 
differential methylation and gene expression. Figure generated using Advaita Bio’s iPathway Guide (https://​www.​
advai​tabio.​com/​ipath​waygu​ide).

https://www.advaitabio.com/ipathwayguide
https://www.advaitabio.com/ipathwayguide
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1 and 14 in patients who later developed CP. Further investigation of these pathways may elucidate important 
insights into the early pathogenesis of CP.

DNA methylation and cerebral palsy.  We identified one DMR in the interaction (day 1 to 14 change) 
comparison between CP and controls, without associated evidence of differential gene expression. In our sec-
ondary analyses, we identified 2 DMR-associated differentially expressed genes in CP cases (CSRP1, USP44) 
and 4 in Controls (CRELB2, DCAF11, FEM1A, JAK1). Apart from JAK1, these genes are widely expressed and 
generally involved in cell cycle, growth or differentiation without direct correlates to neurological disease. JAK1, 
however, is involved in regulating cytokine signaling, mediating innate immune response, and has been linked 
to the growth, differentiation and aging process of nerve cells. The JAK/STAT pathway has been implicated in the 
pathogenesis of CP and may serve as a mediator of Epo neuroprotection26. The role of methylation in regulating 
JAK1 expression may warrant further investigation.

Prior studies have suggested epigenetic mechanisms for CP pathogenesis in preterm infants. Two studies 
reported evidence for differential methylation in young children and adolescents with CP born preterm compared 
to term born controls27,28. These studies utilized sequencing data and evaluated individual CpG probes and/or 
evaluated differences among each gene, which may suffer from noise compared to DMRs which pool information 
across genomically adjacent probes in order to boost true signal29–31. These two studies also used fewer subjects 
(four pairs of discordant twins, and 22 CP and 21 controls, respectively). In addition to the methodological dif-
ferences, our results may differ from these studies given our evaluation of methylation differences in the first 
2 weeks of life. Thus, we cannot exclude the possibility of epigenetic changes that occur outside of the newborn 
period that can lead to CP risk in infants born preterm.

Two recent studies analyzed archived blood spots to evaluate neonatal DNA methylation differences between 
CP cases and controls. Bahado-Singh and colleagues reported a case–control study (n = 23 CP and n = 21 con-
trols) in which they identified 230 differentially methylated CpG probes that were linked to canonical pathways 
involved in neuronal function and were found to be overall predictive of CP32. This study utilized a 450 K array 
which investigates half the CpGs as the EPIC array used in our study, requiring a less stringent correction for 
multiplicity. Their analyses, however, were based on comparisons using beta values (% methylation estimates) 
rather than the more customary M-values (used in the current study), which satisfy the assumptions of normal-
ity for statistical testing. While recent reports suggest that M-value preprocessing may not impact results in 
large scale datasets33, other reports suggest that M-value methods may allow more reliable identification of true 
positives, particularly in studies with smaller sample sizes34,35. More consistent with our results, Mohandas and 
colleagues reported a study evaluating neonatal blood spots from 15 CP-discordant monozygotic twin pairs (12 
born preterm) and described 33 CpG probes and 2 DMRs36, although these did not meet significance threshold 
after adjustment for multiplicity. To our knowledge, this report represents the largest study to date evaluating 
DNA methylation in neonatal blood samples from preterm infants and the risk for later CP. Our data suggest 
that epigenetic changes reflected in PBCs in the first 2 weeks of life have a limited role in the pathogenesis of CP.

Transcriptome profiles and cerebral palsy.  Although we did not identify significant differentially 
expressed genes in our direct comparisons between CP and control groups, evaluation of genes with differential 
expression from day 1 to 14 that were unique to each group provided insights into pathways with potential rel-
evance to neurological disease. Two of the top canonical pathways identified included Parkinson’s and Hunting-
ton’s disease, both neurodegenerative conditions affecting the basal ganglia with associated motor dysfunction. 
The link between thermogenesis and CP is less clear, although this process is regulated by dopaminergic sign-
aling in the CNS37. Of interest is the identification of ferroptosis, which has recently emerged as an important 

Table 3.   Gene information from iPathwayGuide meta-analysis.

Gene symbol Name
Methylation
Log Fold Change; P-value

Gene expression
Log Fold Change; P-value Functional information

Unique to CP Cases

CSRP1 Cysteine and Glycine Rich Protein 1 − 0.209;
p = 1.000e−6

 + 0.270;
p = 0.015

Gene regulation, cell growth and 
somatic differentiation; promotes 
skeletal muscle growth

USP44 Ubiquitin Specific Peptidase 44  + 0.015;
p = 1.000e–6

 + 0.261;
p = 0.036

Deubiquitinating enzyme; regulates 
spindle assembly checkpoint by 
preventing anaphase onset; regulates 
cell cycle progression and genomic 
stability

Unique to Controls

CRELB2 cAMP responsive element binding 
protein like 2

− 0.003;
P = 2.460e−4

− 0.302;
P = 0.010

Protein with DNA binding capabilities; 
may act as tumor suppressor gene

DCAF11 DDB1 and CUL4 associated factor 11  + 0.006;
P = 2.900e−5

− 0.469;
P = 9.326e−4

Mediates degradation of stem-loop 
binding protein, regulates cell cycle/ 
viability

FEM1A Fem-1 homolog A  + 0.007;
P = 2.170e−4

− 0.504;
P = 2.404e−4

Mediates degradation of stem-loop 
binding protein, regulates cell cycle/ 
viability

JAK1 Janus kinase 1 − 6.115e−4;
P = 1.370e−4

 + 0.235;
P = 0.044

Protein-tyrosine kinase; key role in 
interferon-alpha, beta and gamma 
signal transduction
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oxidative stress-induced cell death pathway and has been implicated in the pathogenesis of neurodegenera-
tive diseases such as Alzheimer’s, traumatic brain injury, and stroke38. As this pathway is uniquely upregulated 
in babies with CP, it warrants further investigation. Similarly, the upregulation of ribosomal genes observed 
only in control infants suggests that this developmental change may be an important mediator of CP risk and 
that impaired upregulation of genes encoding ribosomal machinery may contribute to the development of CP. 
This finding is consistent with prior reports that have linked ribosomal activity to CP and other neurological 
diseases39–42. While these results do not provide specific causal pathways to CP, further exploration of relevant 
pathways may provide novel insights and gene targets for future studies.

Prior studies have evaluated neonatal transcriptome data in mixed cohorts of preterm and term born children 
with CP. Ho and colleagues evaluated neonatal peripheral blood from 20 preterm-born (< 37 weeks gestational 
age) children with CP and 1:1 gender and gestational age matched controls43. They reported that inflammatory, 
hypoxic and thyroidal gene sets were upregulated in preterm-born CP cases compared to controls. Of note, RNA 
was extracted from archived neonatal blood spots and significant degradation was noted (average RIN 2.3 ± 0.7) 
which may have impacted reproducibility of these findings. Van Eyk and colleagues demonstrated transcriptional 
dysregulation of trophic signaling pathways in patient-derived immortalized B-cell lines of a large cohort of CP 
cases (n = 182) and network analyses demonstrated significant overlap with genes observed in autism44. Cell lines 
used in these analyses were derived from multiple separate biorepositories which may have contributed techni-
cal variability. While methodological differences may explain variable results across studies, these studies and 
ours suggests that investigating transcriptome profiles in babies with CP can provide insights into pathogenic 
mechanisms and potentially identify early therapeutic targets.

Technical notes and limitations.  We evaluated mixed PBC specimens to generate DNA methylation and 
RNA transcriptome data. It is acknowledged that several factors including age, prematurity45 and erythropoi-
etin treatment46 may impact cell proportions. We chose to use the surrogate variable analysis approach, which 
ensures orthogonality of our covariates and has been shown to be a reasonable approach for cell-type mixture 
adjustment under most scenarios47. Another important technical note is to acknowledge that these PBC pellets 
were not primarily stored for RNA preservation. Thus, we faced significant RNA degradation which limited our 
sample size and introduced technical variability into our analyses. We limited the impact of this on our analyses 
by requiring a minimum RIN (> 5) and using robust analytic and QC approaches to increase confidence that 
differences observed were biological and not due to differential degradation or other technical confounders. 
Given the stringent significance criteria and multiplicity correction used for our primary analyses, we performed 
secondary pathway analyses to identify potentially relevant DMRs or differentially expressed genes that were 
uniquely changing within CP versus controls. These findings should be considered hypothesis generating and 
warrant further investigation in future studies. Likewise, future studies will need to investigate the impact of 
important clinical confounders that may impact methylation profiles. While our principle components analyses 
demonstrated that the selected clinical factors explored did not correlate with methylation changes in our dataset 
(supplemental figures), our study was not designed to investigate methylation in these co-morbidities. Finally, 
we included all severity levels and classifications of CP in order to increase sample size and power for our analy-
ses. It is acknowledged that the pathogenesis of the more severe forms or subtypes of CP may differ and future 
investigations focusing on specific phenotypes may yield different results.

Conclusion
While the role of methylation in regulating JAK1 expression warrants further investigation, we found limited 
evidence of distinguishing methylation changes in peripheral blood cells that related to the development of CP 
in this selected population of ELGANs. Whole transcriptome analyses may implicate ferroptosis and riboso-
mal activity as potential canonical pathways leading to CP risk in the preterm ELGAN which warrant further 
investigation.

Methods
Study population.  This is an ancillary study to the NIH-funded PENUT Trial15,16, a randomized, pla-
cebo-controlled study of Epo treatment in 941 preterm infants 24-0/7 to 27–6/7  weeks of gestation. Infants 
were enrolled between December 2013 and September 2016 from 19 U.S. sites. Written informed consent was 
obtained from the parent of each participant and the study was approved by the institutional review boards at 
each participating study site. Infants were randomized to Epo treatment or placebo within 24 h of birth, with 
study drug continued until 32–6/7 weeks corrected age. Infants with major life-threatening or chromosomal 
anomalies hematopoietic crises such as DIC or hemolysis, polycythemia, congenital infection or prior use of Epo 
were excluded. Detailed characteristics of the study population have been previously reported16. Developmental 
assessment at 24 ± 2 month corrected age included diagnosis and classification of CP by standardized neurologi-
cal examination based on ELGAN Neurological Exam Study protocol48,49 and the Gross Motor Function Clas-
sification System (GMFCS)50,51. The GMFCS is a 5-level system to aid in classification of CP on the basis of vol-
untary gross motor skills, with a level of 5 the most severe. For this study, the subset of infants with any diagnosis 
of CP by neurological exam were identified and included if they had adequate biological specimens available at 
both timepoints of interest. Severity of motor impairment was classified as mild, moderate or severe based on CP 
subtype and GMFCS level as prescribed by the parent study15,16. This CP cohort was distributionally matched 1:1 
to a cohort of control infants without CP by gestational age (within 3 days), treatment allocation and sex. This 
study is reported in accordance with the Strengthening the Reporting of Observational Studies in Epidemiology 
(STROBE) guidelines and all methods were carried out in accordance with relevant guidelines and regulations52.
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Specimen processing, DNA and RNA isolation.  Serial blood samples were obtained at baseline (day 
1), day 7, 9 and 14 to measure circulating inflammatory and brain-specific biomarkers. Samples were spun for 
8 min at 2000 G, plasma separated from PBC pellet and each stored at -70 °C. Stored day 1 and 14 PBC speci-
mens from selected PENUT subjects were divided into 2 aliquots for DNA and RNA isolation. DNA isolation 
was performed using the commercially available QIAamp Blood DNA isolation kit (Qiagen, Inc., Valencia, CA) 
according to the manufacturer’s protocol. DNA purity was assessed by measuring OD260/280 and OD260/230 
ratios. Samples with OD260/280 ratios and OD260/230 ratios ≥ 1.8 were deemed of good quality DNA. RNA 
isolation was performed using a commercially available RNA isolation kit (Macherey–Nagel’s NucleoSpin RNA 
Blood kit, cat#740200.50; Macherey–Nagel, Bethlehem, PA) using the manufacturer’s “RNA isolation from 200 
uL blood” protocol. RNA quantities was determined by spectrometry using the NanoDrop 8000 Spectropho-
tometer (ThermoFisher Scientific, Waltham, MA) and quality assessment using an Agilent 2100 Bioanalyzer 
(Agilent, Santa Clara, CA). As the PBC pellets were not collected primarily for RNA analyses, we used experi-
mental approaches designed to address issues with storage-associated RNA degradation (described below). We 
restricted analyses to samples with RNA integrity number (RIN) > 5.

DNA methylation.  Whole genome DNA methylation was determined using commercially available Illu-
mina Infinium MethylationEPIC BeadChip Assay (Illumina, San Diego, CA). 500 ng of DNA is first treated with 
sodium bisulfite, using the EZ DNA Methylation Kit (Zymo Research) and following the Illumina-specified 
instructions. Converted DNAs are then processed on the Illumina Infinium Methylation EPIC 8-Sample Bead-
chip following the Infinium HD Methylation 15019521v01 protocol. DNA from the conversion step is denatured 
and neutralized to prepare it for amplification. The denatured DNA is amplified overnight at 37 °C. Next, ampli-
fied bisulfite-converted DNA is enzymatically fragmented for 60 min at 37 °C, precipitated with isopropanol and 
air dried. DNA is then re-suspended in hybridization buffer. Eight samples are applied to each beadchip, kept 
separate with an IntelliHyb seal. The prepared beadchip is incubated overnight in a hybridization oven at 48 °C 
with rocking. The amplified and fragmented DNA samples anneal to locus-specific 50mers during hybridization. 
Following hybridization, unhybridized and non-specifically hybridized DNA is washed away, and the chip is 
prepared for staining and extension. The chip undergoes staining and extension in capillary flow-through cham-
bers. Allele-specific single-base extension of the oligos on the beadchip, using the captured DNA as template, 
incorporates detectable labels on the beadchip and determines the methylation profile for the sample. After 
staining, beadchips are scanned using the Illumina iScan + with ICS v3.3.28, and intensity data is extracted with 
Illumina GenomeStudio software (GenomeStudio v2011.1 with Methylation Analysis Module v1.9.0).

Gene transcription analyses.  Whole transcriptome analyses were performed using the Human Clariom 
S Array (Affymetrix, ThermoFisher Scientific, Waltham, MA), following the GeneChip Pico protocol, which is 
optimized for degraded sample types including FFPE samples, frozen tissues and PBCs. This assay can gener-
ate robust expression profiles from as little as 100 pg of total RNA. Briefly, amplified double-stranded cDNAs 
are synthesized and converted to cRNAs via in vitro transcription. After clean-up, double-stranded, antisense 
cDNAs are synthesized using 20 µg cRNAs. Using 5.5 µg of cDNA samples are then fragmented and labeled, 
and then hybridized onto the Clariom S Human Arrays for 16 h at 45 °C. Arrays are then washed, stained and 
scanned using an Affymetrix GeneChip Scanner 3000.

Bioinformatics and data analysis.  For methylation data, raw data from Illumina Human Methylation 
EPIC arrays (IDAT files) were imported into R (r-project.org) using the Bioconductor minfi package53. These 
arrays have extensive quality control (QC) probes used to determine the quality of each processing step. Any 
arrays that failed QC were either re-processed or discarded. We also discarded any probes that have binding 
indistinguishable from background for > 5% of the subjects. We then background adjusted the raw probe inten-
sities using ‘out of bounds’ probes, which are non-complementary probes that are not expected to hybridize 
and, thus, provide a measure of non-specific probe binding54, followed by a functional quantile normalization 
that uses control probes to eliminate technical differences between arrays55. Following normalization, we gener-
ated a principal components analysis (PCA) plot to evaluate the relative contribution of clinical variables (e.g. 
treatment allocation, baseline Epo level, gestational age, sex, severe bronchopulmonary dysplasia, necrotizing 
enterocolitis Bell’s stage 2b or 356, intraventricular hemorrhage grade 3 or 457, severe retinopathy of prematurity 
(requiring laser or bevacizumab), culture-proven sepsis, maternal race/ethnicity, CP status48,49 and GMFCS50,51) 
and cell components to the variability within each principal component (Supplemental Figures S1-13). Based on 
these plots, we included sex and race/ethnicity as confounders in our models. In addition, to control for other 
unobserved variability (for example, differences in cell composition from each sample), we used the Bioconduc-
tor sva package to estimate surrogate variables which we included in the models58. We made various inter-group 
comparisons using the Bioconductor limma package59 and DMRcate package29 to detect DMRs. This software 
accounts for the fact that individual CpG probes may be less reliable and suffer from both false positives and false 
negatives. Conversely, CpGs that are closely spaced tend to be highly correlated, with the correlation between 
CpGs dropping off as the genomic distance increases. Therefore, by grouping CpGs within genomic regions 
(within < 1000bps) and ‘smoothing’ the statistics used to detect differential methylation from adjacent CpGs, 
we increased power to detect DMRs. To reduce false positives, we required that any DMR consist of at least 10 
CpGs and selected individual CpGs based on a false discovery rate (FDR) < 0.05. The group comparisons per-
formed included: (1) Day 1 CP vs no CP, (2) Day 14 CP vs no CP, (3) the interaction (Day 1 to Day 14 change) 
CP vs no CP and (4) the Day 1 to 14 change within each diagnosis. Sensitivity analyses were also performed with 
parallel comparisons between controls and the CP cohort limited to the moderate and severely affected babies 
(GMFCS level ≥ 1). Given our study design, we fit different models depending on the comparison. For the first 
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two comparisons, we fit a conventional analysis of variance (ANOVA) model, adjusting for sex, race, ethnicity 
and seven surrogate variables. For the remaining models, since we had repeated measures for each subject, we fit 
an ANOVA model that included patient-level blocking factors, an interaction between CP status and sampling 
day, and eight surrogate variables. To ensure goodness of fit for the individual CpG comparisons, we evaluated 
histograms of the resulting p-values, after which we combined into DMRs and tested for differential methylation.

For transcriptome data, we summarized and normalized transcript expression data using the RMA 
algorithm60, as implemented in the Bioconductor oligo package61. Analogous to the DNA methylation analyses, 
we used the Bioconductor sva package62 to estimate surrogate variables to adjust for known and unknown sources 
of technical and clinical variability. We then fit a linear mixed model that fits the patient as a random effect and 
includes these variables as well as the variable of interest (CP or control), and made comparisons using empirical 
Bayes adjusted contrasts59. We performed group comparisons as described above for the DNA methylation analy-
ses. Genes were considered significant based on a FDR < 0.0563. We defined genes that may be affected by changes 
in methylation as those genes that fulfilled our significance criteria (FDR < 0.05) in a given contrast that were 
also within a 1 Mb region centered on a DMR. We performed several QC plots including normalized unscaled 
standard errors (NUSE), relative log expression (RLE), and MA plots using the RMA algorithm52 to evaluate 
the quality of the normalization and adequacy of surrogate variables to control for excess technical variability.

Secondarily, we evaluated the profile of genes that demonstrated significant up or downregulation between 
day 1 and 14 that was unique to CP cases as compared to controls. Impact analyses (iPathwayGuide) were per-
formed to identify relevant pathways that were unique to each diagnosis. Functional information for candidate 
genes was derived from the GeneCards database (genecards.org).

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.

Received: 18 May 2020; Accepted: 5 January 2021

References
	 1.	 Stoll, B. J. et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics 126, 

443–456. https://​doi.​org/​10.​1542/​peds.​2009-​2959 (2010).
	 2.	 O’Shea, T. M. et al. The ELGAN study of the brain and related disorders in extremely low gestational age newborns. Early Human 

Dev. 85, 719–725. https://​doi.​org/​10.​1016/j.​earlh​umdev.​2009.​08.​060 (2009).
	 3.	 Horbar, J. D. et al. Trends in mortality and morbidity for very low birth weight infants, 1991–1999. Pediatrics 110, 143–151 (2002).
	 4.	 Schieve, L. A. et al. Population impact of preterm birth and low birth weight on developmental disabilities in US children. Ann. 

Epidemiol. 26, 267–274. https://​doi.​org/​10.​1016/j.​annep​idem.​2016.​02.​012 (2016).
	 5.	 Back, S. A. White matter injury in the preterm infant: pathology and mechanisms. Acta Neuropathol. https://​doi.​org/​10.​1007/​

s00401-​017-​1718-6 (2017).
	 6.	 Feinberg, A. P. Phenotypic plasticity and the epigenetics of human disease. Nature 447, 433–440. https://​doi.​org/​10.​1038/​natur​

e05919 (2007).
	 7.	 Schroeder, J. W. et al. Neonatal DNA methylation patterns associate with gestational age. Epigenetics 6, 1498–1504. https://​doi.​

org/​10.​4161/​epi.6.​12.​18296 (2011).
	 8.	 Menon, R., Conneely, K. N. & Smith, A. K. DNA methylation: an epigenetic risk factor in preterm birth. Reprod. Sci 19, 6–13. 

https://​doi.​org/​10.​1177/​19337​19111​424446 (2012).
	 9.	 Fernando, F. et al. The idiopathic preterm delivery methylation profile in umbilical cord blood DNA. BMC Genomics 16, 736. 

https://​doi.​org/​10.​1186/​s12864-​015-​1915-4 (2015).
	10.	 Burris, H. H. et al. Associations of LINE-1 DNA Methylation with Preterm Birth in a Prospective Cohort Study. J. Dev. Origins 

Health Dis. 3, 173–181 (2012).
	11.	 Cruickshank, M. N. et al. Analysis of epigenetic changes in survivors of preterm birth reveals the effect of gestational age and 

evidence for a long term legacy. Genome Med. 5, 96. https://​doi.​org/​10.​1186/​gm500 (2013).
	12.	 Parets, S. E. et al. Fetal DNA methylation associates with early spontaneous preterm birth and gestational age. PLoS ONE 8, e67489. 

https://​doi.​org/​10.​1371/​journ​al.​pone.​00674​89 (2013).
	13.	 Piyasena, C. et al. Dynamics of DNA methylation at IGF2 in preterm and term infants during the first year of life: an observational 

study. Lancet 385 Suppl 1, S81, https://​doi.​org/​10.​1016/​S0140-​6736(15)​60396-8 (2015).
	14.	 Sparrow, S. et al. Epigenomic profiling of preterm infants reveals DNA methylation differences at sites associated with neural 

function. Transl. Psychiatry 6, e716. https://​doi.​org/​10.​1038/​tp.​2015.​210 (2016).
	15.	 Juul, S. E., Mayock, D. E., Comstock, B. A. & Heagerty, P. J. Neuroprotective potential of erythropoietin in neonates; design of a 

randomized trial. Maternal Health Neonatology Perinatol. 1, 27. https://​doi.​org/​10.​1186/​s40748-​015-​0028-z (2015).
	16.	 Juul, S. E. et al. A randomized trial of erythropoietin for neuroprotection in preterm infants. N. Engl. J. Med. 382, 233–243. https://​

doi.​org/​10.​1056/​NEJMo​a1907​423 (2020).
	17.	 Teter, B., Finch, C. E. & Condorelli, D. F. DNA methylation in the glial fibrillary acidic protein gene: map of CpG methylation sites 

and summary of analysis by restriction enzymes and by LMPCR. J. Neurosci. Res. 39, 708–709. https://​doi.​org/​10.​1002/​jnr.​49039​
0611 (1994).

	18.	 Fan, G. et al. DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals. J. Neurosci. 21, 
788–797 (2001).

	19.	 Takizawa, T. et al. DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev. Cell 
1, 749–758 (2001).

	20.	 Hutnick, L. K. et al. DNA hypomethylation restricted to the murine forebrain induces cortical degeneration and impairs postnatal 
neuronal maturation. Hum. Mol. Genet. 18, 2875–2888. https://​doi.​org/​10.​1093/​hmg/​ddp222 (2009).

	21.	 Sauvageot, C. M. & Stiles, C. D. Molecular mechanisms controlling cortical gliogenesis. Curr. Opin. Neurobiol. 12, 244–249 (2002).
	22.	 Mehta, D. et al. Childhood maltreatment is associated with distinct genomic and epigenetic profiles in posttraumatic stress disorder. 

Proc. Natl. Acad. Sci. USA 110, 8302–8307. https://​doi.​org/​10.​1073/​pnas.​12177​50110 (2013).
	23.	 Davies, M. N. et al. Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across 

brain and blood. Genome Biol. 13, R43. https://​doi.​org/​10.​1186/​gb-​2012-​13-6-​r43 (2012).

https://doi.org/10.1542/peds.2009-2959
https://doi.org/10.1016/j.earlhumdev.2009.08.060
https://doi.org/10.1016/j.annepidem.2016.02.012
https://doi.org/10.1007/s00401-017-1718-6
https://doi.org/10.1007/s00401-017-1718-6
https://doi.org/10.1038/nature05919
https://doi.org/10.1038/nature05919
https://doi.org/10.4161/epi.6.12.18296
https://doi.org/10.4161/epi.6.12.18296
https://doi.org/10.1177/1933719111424446
https://doi.org/10.1186/s12864-015-1915-4
https://doi.org/10.1186/gm500
https://doi.org/10.1371/journal.pone.0067489
https://doi.org/10.1016/S0140-6736(15)60396-8
https://doi.org/10.1038/tp.2015.210
https://doi.org/10.1186/s40748-015-0028-z
https://doi.org/10.1056/NEJMoa1907423
https://doi.org/10.1056/NEJMoa1907423
https://doi.org/10.1002/jnr.490390611
https://doi.org/10.1002/jnr.490390611
https://doi.org/10.1093/hmg/ddp222
https://doi.org/10.1073/pnas.1217750110
https://doi.org/10.1186/gb-2012-13-6-r43


9

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5305  | https://doi.org/10.1038/s41598-021-84214-9

www.nature.com/scientificreports/

	24.	 Hannon, E., Lunnon, K., Schalkwyk, L. & Mill, J. Interindividual methylomic variation across blood, cortex, and cerebellum: 
implications for epigenetic studies of neurological and neuropsychiatric phenotypes. Epigenetics 10, 1024–1032. https://​doi.​org/​
10.​1080/​15592​294.​2015.​11007​86 (2015).

	25.	 Edgar, R. D., Jones, M. J., Meaney, M. J., Turecki, G. & Kobor, M. S. BECon: a tool for interpreting DNA methylation findings from 
blood in the context of brain. Transl. Psychiatry 7, e1187. https://​doi.​org/​10.​1038/​tp.​2017.​171 (2017).

	26.	 Tao, W., Wen, F., Zhang, H. & Liu, G. The signal transduction mediated by erythropoietin and proinflammatory cytokines in the 
JAK/STAT pathway in the children with cerebral palsy. Brain Develop. 31, 200–207. https://​doi.​org/​10.​1016/j.​brain​dev.​2008.​06.​
011 (2009).

	27.	 Jiao, Z. et al. Wholegenome scale identification of methylation markers specific for cerebral palsy in monozygotic discordant twins. 
Mol. Med. Reports 16, 9423–9430. https://​doi.​org/​10.​3892/​mmr.​2017.​7800 (2017).

	28.	 Crowgey, E. L., Marsh, A. G., Robinson, K. G., Yeager, S. K. & Akins, R. E. Epigenetic machine learning: utilizing DNA methylation 
patterns to predict spastic cerebral palsy. BMC Bioinf. 19, 225. https://​doi.​org/​10.​1186/​s12859-​018-​2224-0 (2018).

	29.	 Peters, T. J. et al. De novo identification of differentially methylated regions in the human genome. Epigenet. Chromatin 8, 6. https://​
doi.​org/​10.​1186/​1756-​8935-8-6 (2015).

	30.	 Jaffe, A. E. et al. Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies. Int. J. Epidemiol. 
41, 200–209. https://​doi.​org/​10.​1093/​ije/​dyr238 (2012).

	31.	 Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. 
Nat. Genet. 33(Suppl), 245–254. https://​doi.​org/​10.​1038/​ng1089 (2003).

	32.	 32Bahado-Singh, R. O. et al. Deep Learning/Artificial Intelligence and Blood-Based DNA Epigenomic Prediction of Cerebral 
Palsy. International journal of molecular sciences 20, https://​doi.​org/​10.​3390/​ijms2​00920​75 (2019).

	33.	 33van Rooij, J. et al. Evaluation of commonly used analysis strategies for epigenome- and transcriptome-wide association studies 
through replication of large-scale population studies. Genome biology 20, 235, https://​doi.​org/​10.​1186/​s13059-​019-​1878-x (2019).

	34.	 Zhuang, J., Widschwendter, M. & Teschendorff, A. E. A comparison of feature selection and classification methods in DNA meth-
ylation studies using the Illumina Infinium platform. BMC Bioinf. 13, 59. https://​doi.​org/​10.​1186/​1471-​2105-​13-​59 (2012).

	35.	 Du, P. et al. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC 
Bioinf. 11, 587. https://​doi.​org/​10.​1186/​1471-​2105-​11-​587 (2010).

	36.	 Mohandas, N. et al. Epigenome-wide analysis in newborn blood spots from monozygotic twins discordant for cerebral palsy reveals 
consistent regional differences in DNA methylation. Clin. Epigenet. 10, 25. https://​doi.​org/​10.​1186/​s13148-​018-​0457-4 (2018).

	37.	 Folgueira, C. et al. Hypothalamic dopamine signaling regulates brown fat thermogenesis. Nat. Metabol. 1, 811–829. https://​doi.​
org/​10.​1038/​s42255-​019-​0099-7 (2019).

	38.	 Ratan, R. R. The Chemical Biology of Ferroptosis in the Central Nervous System. Cell Chem. Biol. https://​doi.​org/​10.​1016/j.​chemb​
iol.​2020.​03.​007 (2020).

	39.	 39Zomzely, C. E., Roberts, S., Gruber, C. P. & Brown, D. M. Cerebral protein synthesis. II. Instability of cerebral messenger ribo-
nucleic acid-ribosome complexes. J Biol. Chem. 243, 5396–5409 (1968).

	40.	 Von Walden, F. et al. Muscle contractures in patients with cerebral palsy and acquired brain injury are associated with extracellular 
matrix expansion, pro-inflammatory gene expression, and reduced rRNA synthesis. Muscle Nerve 58, 277–285. https://​doi.​org/​10.​
1002/​mus.​26130 (2018).

	41.	 Hetman, M. & Slomnicki, L. P. Ribosomal biogenesis as an emerging target of neurodevelopmental pathologies. J. Neurochem. 
148, 325–347. https://​doi.​org/​10.​1111/​jnc.​14576 (2019).

	42.	 Koren, S. A. et al. Tau drives translational selectivity by interacting with ribosomal proteins. Acta Neuropathol. 137, 571–583. 
https://​doi.​org/​10.​1007/​s00401-​019-​01970-9 (2019).

	43.	 Ho, N. T. et al. Gene expression in archived newborn blood spots distinguishes infants who will later develop cerebral palsy from 
matched controls. Pediatr. Res. 73, 450–456. https://​doi.​org/​10.​1038/​pr.​2012.​200 (2013).

	44.	 van Eyk, C. L. et al. Analysis of 182 cerebral palsy transcriptomes points to dysregulation of trophic signalling pathways and overlap 
with autism. Translational psychiatry 8, 88. https://​doi.​org/​10.​1038/​s41398-​018-​0136-4 (2018).

	45.	 Vatansever, U. et al. Nucleated red blood cell counts and erythropoietin levels in high-risk neonates. Pediatr Int 44, 590–595. 
https://​doi.​org/​10.​1046/j.​1442-​200x.​2002.​01630.x (2002).

	46.	 Ferber, A., Fridel, Z., Weissmann-Brenner, A., Minior, V. K. & Divon, M. Y. Are elevated fetal nucleated red blood cell counts an 
indirect reflection of enhanced erythropoietin activity?. Am. J. Obstet. Gynecol. 190, 1473–1475. https://​doi.​org/​10.​1016/j.​ajog.​
2004.​02.​033 (2004).

	47.	 McGregor, K. et al. An evaluation of methods correcting for cell-type heterogeneity in DNA methylation studies. Genome Biol. 
17, 84. https://​doi.​org/​10.​1186/​s13059-​016-​0935-y (2016).

	48.	 Kuban, K. C. et al. An algorithm for identifying and classifying cerebral palsy in young children. J. Pediatr. 153, 466–472
	49.	 Kuban, K. C. et al. Video and CD-ROM as a training tool for performing neurologic examinations of 1-year-old children in a 

multicenter epidemiologic study. J. Child Neurol. 20, 829–831 (2005).
	50.	 Palisano, R. J. et al. Validation of a model of gross motor function for children with cerebral palsy. Phys Ther 80, 974–985 (2000).
	51.	 Palisano, R. J., Rosenbaum, P., Bartlett, D. & Livingston, M. H. Content validity of the expanded and revised Gross Motor Function 

Classification System. Dev. Med. Child Neurol. 50, 744–750. https://​doi.​org/​10.​1111/j.​1469-​8749.​2008.​03089.x (2008).
	52.	 guidelines for reporting observational studies. 52von Elm, E. et al. The Strengthening the Reporting of Observational Studies in 

Epidemiology (STROBE) statement. Lancet 370, 1453–1457. https://​doi.​org/​10.​1016/​S0140-​6736(07)​61602-X (2007).
	53.	 Fortin, J. P., Triche, T. J. Jr. & Hansen, K. D. Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC 

array with minfi. Bioinformatics 33, 558–560. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btw691 (2017).
	54.	 Triche, T. J. Jr., Weisenberger, D. J., Van Den Berg, D., Laird, P. W. & Siegmund, K. D. Low-level processing of Illumina Infinium 

DNA Methylation BeadArrays. Nucleic Acids Res. 41, e90. https://​doi.​org/​10.​1093/​nar/​gkt090 (2013).
	55.	 Fortin, J. P. et al. Functional normalization of 450k methylation array data improves replication in large cancer studies. Genome 

Biol. 15, 503. https://​doi.​org/​10.​1186/​s13059-​014-​0503-2 (2014).
	56.	 Bell, M. J. Neonatal necrotizing enterocolitis. N. Engl. J. Med. 298, 281–282 (1978).
	57.	 Papile, L. A., Burstein, J., Burstein, R. & Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: a 

study of infants with birth weights less than 1,500 gm. J. Pediatr. 92, 529–534 (1978).
	58.	 Leek, J. T. & Storey, J. D. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 3, 1724–

1735. https://​doi.​org/​10.​1371/​journ​al.​pgen.​00301​61 (2007).
	59.	 59Smyth, G. K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. 

Statistical applications in genetics and molecular biology 3, Article3, https://​doi.​org/​10.​2202/​1544-​6115.​1027 (2004).
	60.	 Irizarry, R. A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 

4, 249–264. https://​doi.​org/​10.​1093/​biost​atist​ics/4.​2.​249 (2003).
	61.	 Carvalho, B. S. & Irizarry, R. A. A framework for oligonucleotide microarray preprocessing. Bioinformatics 26, 2363–2367. https://​

doi.​org/​10.​1093/​bioin​forma​tics/​btq431 (2010).
	62.	 Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted 

variation in high-throughput experiments. Bioinformatics 28, 882–883. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bts034 (2012).
	63.	 Reiner, A., Yekutieli, D. & Benjamini, Y. Identifying differentially expressed genes using false discovery rate controlling procedures. 

Bioinformatics 19, 368–375 (2003).

https://doi.org/10.1080/15592294.2015.1100786
https://doi.org/10.1080/15592294.2015.1100786
https://doi.org/10.1038/tp.2017.171
https://doi.org/10.1016/j.braindev.2008.06.011
https://doi.org/10.1016/j.braindev.2008.06.011
https://doi.org/10.3892/mmr.2017.7800
https://doi.org/10.1186/s12859-018-2224-0
https://doi.org/10.1186/1756-8935-8-6
https://doi.org/10.1186/1756-8935-8-6
https://doi.org/10.1093/ije/dyr238
https://doi.org/10.1038/ng1089
https://doi.org/10.3390/ijms20092075
https://doi.org/10.1186/s13059-019-1878-x
https://doi.org/10.1186/1471-2105-13-59
https://doi.org/10.1186/1471-2105-11-587
https://doi.org/10.1186/s13148-018-0457-4
https://doi.org/10.1038/s42255-019-0099-7
https://doi.org/10.1038/s42255-019-0099-7
https://doi.org/10.1016/j.chembiol.2020.03.007
https://doi.org/10.1016/j.chembiol.2020.03.007
https://doi.org/10.1002/mus.26130
https://doi.org/10.1002/mus.26130
https://doi.org/10.1111/jnc.14576
https://doi.org/10.1007/s00401-019-01970-9
https://doi.org/10.1038/pr.2012.200
https://doi.org/10.1038/s41398-018-0136-4
https://doi.org/10.1046/j.1442-200x.2002.01630.x
https://doi.org/10.1016/j.ajog.2004.02.033
https://doi.org/10.1016/j.ajog.2004.02.033
https://doi.org/10.1186/s13059-016-0935-y
https://doi.org/10.1111/j.1469-8749.2008.03089.x
https://doi.org/10.1016/S0140-6736(07)61602-X
https://doi.org/10.1093/bioinformatics/btw691
https://doi.org/10.1093/nar/gkt090
https://doi.org/10.1186/s13059-014-0503-2
https://doi.org/10.1371/journal.pgen.0030161
https://doi.org/10.2202/1544-6115.1027
https://doi.org/10.1093/biostatistics/4.2.249
https://doi.org/10.1093/bioinformatics/btq431
https://doi.org/10.1093/bioinformatics/btq431
https://doi.org/10.1093/bioinformatics/bts034


10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5305  | https://doi.org/10.1038/s41598-021-84214-9

www.nature.com/scientificreports/

Acknowledgements
The PENUT Trial (NCT01378273) was supported by the National Institutes of Health National Institute of 
Neurological Disorders and Stroke (1U01NS077953). We are indebted to the PENUT investigators, coordinators 
and the PENUT families. This ancillary study was supported by the Cerebral Palsy Alliance Research Founda-
tion (PG10617).

Author contributions
A.N.M. made substantial contributions to the conception or design of the work; interpretation of data; and 
drafted the work for publication. T.K.B. made substantial contributions to the conception or design of the work; 
analysis and interpretation of data; and substantively revised the work for publication. J.M. made substantial 
contributions to the conception or design of the work; analysis and interpretation of data; and substantively 
revised the work for publication. K.M.P. made substantial contributions to the interpretation of data; and sub-
stantively revised the work for publication. B.C. made substantial contributions to the conception or design of 
the work; the acquisition and analysis of data; and substantively revised the work for publication. S.E.J. made 
substantial contributions to the conception or design of the work; the acquisition, analysis, and interpretation of 
data; and substantively revised the work for publication. All authors have approved the submitted version (and 
any substantially modified version that involves the author’s contribution to the study); and have agreed both to 
be personally accountable for the author’s own contributions and to ensure that questions related to the accuracy 
or integrity of any part of the work, even ones in which the author was not personally involved, are appropriately 
investigated, resolved, and the resolution documented in the literature.

Funding
This study was funded by the Cerebral Palsy Alliance Research Foundation.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​84214-9.

Correspondence and requests for materials should be addressed to A.N.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection 
may apply 2021

https://doi.org/10.1038/s41598-021-84214-9
https://doi.org/10.1038/s41598-021-84214-9
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Whole genome methylation and transcriptome analyses to identify risk for cerebral palsy (CP) in extremely low gestational age neonates (ELGAN)
	Results
	DNA methylation analyses. 
	Whole transcriptome analyses. 
	Meta-analyses of DNA methylation and transcriptome analyses. 

	Discussion
	DNA methylation and cerebral palsy. 
	Transcriptome profiles and cerebral palsy. 
	Technical notes and limitations. 

	Conclusion
	Methods
	Study population. 
	Specimen processing, DNA and RNA isolation. 
	DNA methylation. 
	Gene transcription analyses. 
	Bioinformatics and data analysis. 

	References
	Acknowledgements


