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A predictive internet‑based model 
for COVID‑19 hospitalization 
census
Philip J. Turk1*, Thao P. Tran1,2, Geoffrey A. Rose1 & Andrew McWilliams1

The COVID‑19 pandemic has strained hospital resources and necessitated the need for predictive 
models to forecast patient care demands in order to allow for adequate staffing and resource 
allocation. Recently, other studies have looked at associations between Google Trends data and the 
number of COVID‑19 cases. Expanding on this approach, we propose a vector error correction model 
(VECM) for the number of COVID‑19 patients in a healthcare system (Census) that incorporates Google 
search term activity and healthcare chatbot scores. The VECM provided a good fit to Census and 
very good forecasting performance as assessed by hypothesis tests and mean absolute percentage 
prediction error. Although our study and model have limitations, we have conducted a broad and 
insightful search for candidate Internet variables and employed rigorous statistical methods. We have 
demonstrated the VECM can potentially be a valuable component to a COVID‑19 surveillance program 
in a healthcare system.

The SARS-CoV-2 coronavirus, initially emerging in Wuhan, China on December 2019, has spread worldwide 
in what is now described as the COVID-19 pandemic. The coronavirus outbreak was declared a global public 
health  emergency1 by the World Health Organization [WHO] on January 30, 2020, and as of October 17, there 
were over 39 million confirmed cases worldwide with over a million lives  lost2. While evidence supports the 
effectiveness of guidelines and  restrictions3,4 in containing the spread of SARS-CoV-2 (“flattening the curve”), 
the health and economic consequences have been devastating on many  levels5,6.

By April 11, 2020, the US had more COVID-19 cases and deaths than any other  country2. As of June 30, 
the US had 4% of the world’s population, but 25% of its coronavirus cases. While most states avoided a rapid 
surge in cases during the first phase of the pandemic, the majority of them have begun to lift social distancing 
and gathering restrictions, raising concern that we will see large surges in infection incidence and  mortality7–9. 
Without a widely available vaccine, we expect that the pandemic activity will continue to rise and fall through 
the winter, requiring health care systems to remain vigilant as they balance hospital resources.

As has been seen in this pandemic, when SARS-CoV-2 prevalence grows quickly and reaches high levels in 
a community, large numbers of people develop symptomatic COVID-19 infection. Many require hospitaliza-
tion, and this has the capacity to overwhelm regional health care resources (e.g., Northern Italy and New York). 
Acknowledging this risk, health care systems have implemented crisis planning to guide infection management, 
bed capacity, and secure vital supplies (e.g., ventilators and personal protective equipment)10–12. Ideally, health 
systems’ efforts to best prepare for COVID-19 demand surges would be informed by data that provide early 
warning, or “lead time”, on the local prevalence and impact of COVID-19.

Traditional epidemiological models (e.g., SIR model) do not provide health system leaders with lead time for 
accurate planning. In searching for leading indicators, researchers have turned to internet data that reflect trends 
in community behaviors and activity. In recent years, researchers in the field of  infodemiology13 have utilized 
various internet search data to predict different health-related metrics, such as dengue  incidence14, infectious 
disease risk  communication15, influenza epidemic  monitoring16, and malaria  surveillance17. Google Trends is one 
of the most popular tools that allows researchers to pull search query data of a random, representative sample 
drawn from billions of daily searches on Google-associated search  engines18.

In the last six months, several papers have made use of Google Trends data to test the association between 
the popularity of certain coronavirus-related terms and the number of cases and deaths related to COVID-
1919–22. While these papers do not address using Google Trends data to build a predictive model for COVID-19 
modeling  applications21,23, they have contributed to our collective understanding of the relationship between 
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the public’s internet search behavior and the pandemic, supporting the notion that search query data can be 
used for surveillance purposes.

In addition to internet users’ search query data, another source of data that is of importance for public health 
research is geospatial mobility data. Since the initial outbreak of COVID-19 in Wuhan, China, researchers 
have believed that population mobility is a major driver of the exponential growth in the number of infected 
 cases24–26. It is now well-accepted that mobility reduction and social distancing are timely and effective meas-
ures to attenuate the transmission of COVID-1927,28. Thus, it stands to reason that mobility changes may be a 
predictor of COVID-19 hospital case volume. Many different interactive dashboards are available and display 
up-to-date regional mobility data that are publicly available, most notably from Facebook and Apple  Maps29–33. 
In this paper, we specifically considered Apple Mobility Trend Reports and Facebook Movement Range Maps, 
which are mobility data reported in the form of aggregated, privacy-protected information.

Another area with great potential in modeling COVID-19 hospital case volume are the data generated by vir-
tual AI-based triage systems (also known as “healthcare chatbots”). During the COVID pandemic, these chatbots 
have been deployed to provide virtual consultation to people who are concerned they may have SARS-CoV-234,35. 
In particular, Microsoft offers its Health Bot service to healthcare  organizations36. Medical content, together with 
an interactive symptom checker, custom conversational flow, and a system of digital personal assistants can be 
integrated into the Health Bot configuration to help screen people for potential coronavirus infection through 
a risk  assessment37–40. User outcomes (with no personally identifiable information) can be aggregated, and the 
number of people “flagged” with COVID-19 could then be potentially used to predict COVID-19 hospital case 
volume in the future. Specifically, if a hospital has its own Health Bot for delivering a tele-health COVID-19 risk 
assessment to the public, then it is reasonable to expect that people who are identified as having COVID-19 are 
likely to seek treatment from the same hospital.

Atrium Health is a healthcare system operating across North Carolina, South Carolina, and Georgia, with 
the majority of its hospitals located in the greater Charlotte metropolitan area. Investigators from the Atrium 
Health Center for Outcomes Research and Evaluation sought to leverage internet search term volumes, mobility 
data, and Health Bot risk assessment counts, collectively known as “Internet variables”, to provide leadership 
with information that would allow for planning purposes during the COVID-19 pandemic. Specifically, this 
paper describes the steps to characterize and understand the relationships between our Internet variables and 
the daily total number of COVID-19 patients hospitalized in our hospital system’s primary market. Furthermore, 
we sought to develop a novel forecast model for these patients to provide advance warning of any anticipated 
surges in patient care demands.

Methods
Measures. Our interest lies in the population served by Atrium Health’s greater Charlotte market area which 
spans approximately 11 counties in western North Carolina and two counties in northern South Carolina. This 
area includes approximately 400,000 South Carolina residents, 2.5 million North Carolina residents (24% of the 
North Carolina population), over 1.1 million of which live in Mecklenburg County and 900,000 within North 
Carolina’s largest city,  Charlotte41.

Because of the focus on health care system capacity, our outcome variable of interest is the total COVID-19 
positive census across 11 Atrium Health Hospitals that serve the greater Charlotte market (hereafter referred 
to as “Census”) with an additional virtual hospital, Atrium Health Hospital at Home, providing hospital level 
care in a patient’s home. Census is a cross-sectional count taken each morning as the total number of patients 
hospitalized and COVID-19 positive.

Rather than a raw count of “hits”, Google Trends data reflect the relative popularity of a search term, or rela-
tive search volume (RSV). Specifically, the RSV of a search term is calculated as the proportion of interest in 
that particular topic relative to all searches over a specified time range and location. The RSV is normalized to 
a scale of 0–100. “0” indicates that the term appears in very few searches and “100” shows maximum interest 
in the term for the chosen time range and  region18. To retrieve Google Trends data for our analysis, we utilized 
the gtrendsR package in R (https:// cran.r- proje ct. org/ web/ packa ges/ gtren dsR/ gtren dsR. pdf). We performed 
twelve different queries from 02/21/20 to 08/01/20 for Google Trends’ “Charlotte NC” metro designation (county-
level data is unavailable) using a list of terms obtained based on our prior beliefs and the medical expertise of 
our physicians. Since punctuations can influence the search  results42,43, we followed the guidelines from Google 
News  Initiative44 to refine our search queries. Details on the search terms can be found in Table 1.

Table 1.  Google Trends search terms used. Google Trends search terms with no punctuation will contain the 
term(s), along with other words, in any order. Using double quotation marks give results that include that exact 
term, possibly with words before and after. The use of a plus sign ( +) is shorthand for OR.

covid coronavirus

symptoms covid covid testing + covid test + covid19 Testing + covid19 test + covid 19 Testing + covid 19 test

fever + chills headache

“shortness of breath” “shortness of breath” + “trouble breathing” + “difficulty breathing”

tired + fatigue pneumonia

“sore throat” + cough CDC

https://cran.r-project.org/web/packages/gtrendsR/gtrendsR.pdf


3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5106  | https://doi.org/10.1038/s41598-021-84091-2

www.nature.com/scientificreports/

Apple Mobility Trend Reports collect Apple Maps direction requests from users’ devices and record the 
relative percentage change in driving direction requests compared to the baseline requests volume on January 
13, 2020 on a daily basis. These data are available at the county-level allowing us to pull data specifically for 
Mecklenburg County, North Carolina from 02/21/20 to 08/01/20. For unknown reasons, data were missing for 
two days (May 11 and May 12), so we replaced them with estimates using linear interpolation.

Facebook Movement Range Maps include data from Facebook users who access Facebook on a mobile device, 
with Location History and background location collection enabled. A data point for a given region is computed 
using the aggregate locations of users for a particular day. Specifically, there are two metrics, Change in Move-
ment and Staying Put, that provide slightly different perspectives on movement trends. The Change in Movement 
metric measures the proportion change in frequency of travel (relative to the day of the week) compared to the 
last two weeks of February recorded on a daily basis, while the Staying Put metric measures the proportion of 
the regional population who remained in one location for 24 h. Once again, we pulled data from 02/21/20 to 
08/01/20 for Mecklenburg County, North Carolina.

In the early days of the pandemic, Atrium Health collaborated with Microsoft Azure to launch its own 
public-facing Health Bot to converse with people about their COVID-19 symptomology. Generally, a person 
will respond “Yes/No” to a series of questions on COVID-19 symptoms, whether they belong to a vulnerable 
group (e.g., elderly people, pregnant women, people with compromised immune system, etc.) and whether they 
are scheduled for a medical procedure or surgery. Depending on the users’ answers, the Health Bot will use 
branched logic to indicate if the person is at risk of having COVID-19 and prompt appropriate further actions. 
In this study, we focused on the number of times that people are flagged as “may have COVID-19” for further 
analysis. These data are daily counts of users that have completed the risk assessment and that Health Bot has 
classified as “may have COVID-19”.

After the data were pulled, we generated 16 time plots (12 for Google Trends, 1 for Apple, 2 for Facebook, 
and 1 for Health Bot). We then computed Spearman’s correlation coefficient for Census at time t and each of 
the “lagged” Internet variables at times t, t – 1, …, t – 14. A lag of − 14 was chosen because 14 days is consist-
ent with the known maximum incubation period associated with COVID-193. For each variable, we looked for 
the maximum absolute correlation coefficient across all 15 values to guide the selection of the most important 
variables for further study.

Analytic approach. The analytic approach discussed in this section can be briefly summarized as follows. 
We first introduce the time series model we used for forecasting and provide background information. After 
specifying the model, we then fit the model to our data. Goodness-of-fit of the model is checked along with its 
assumptions. Lastly, we generate forecasts of the COVID-19 hospital census. Details now follow.

In considering models for observed time series, suppose we have the stochastic process 
{

yt : t = 0,±1,±2, . . .
}

 , 
where yt is oftentimes referred to as the “level of the time series”. A stochastic process 

{

yt
}

 is (weakly) stationary 
if the mean E

[

yt
]

 is constant over time, and if the autocovariance Cov
[

ys , yt
]

= Cov
[

ys+k , yt+k

]

 for all times s 
and t, and lags k = 0,±1,±2, . . . . Informally, a stationary time series is one whose properties do not depend on 
the time at which the series is observed. Thus, time series with non-constant trends, seasonality, changes in vari-
ance, etc., are nonstationary. We used the methodology described in  Pfaff45 and Dickey and  Fuller46 to determine 
whether or not a time series is stationary. If it is not, then we further characterize the nature of the nonstationarity.

Suppose yt can be decomposed into a deterministic linear trend component and a stochastic residual com-
ponent that is an autoregressive-moving average (ARMA) process. A time series can exhibit a type of nonsta-
tionarity, perhaps confusingly, referred to as “difference-stationary”, which means that yt − yt−1 is a stationary 
stochastic process. Also, a time series can exhibit a type of nonstationarity referred to as “trend-stationary”. Once 
the data are detrended, the resulting time series is a stationary stochastic process. The difference between these 
two types of nonstationarity may imply different time series dynamics and hence, different forecasts.

In order to understand the model proposed in this research, we must first define cointegration. We use a 
broader  definition47 than is typically defined elsewhere in the literature. Specifically, let yt be an n × 1 vector of 
variables yt , where yt can contain time series that are either difference-stationary or trend-stationary. This vec-
tor is said to be cointegrated if there exists an n × 1 vector β i (  = 0) such that β ′

iyt is trend-stationary. β i is then 
called a cointegrating vector. In fact, it is possible that there are r linearly independent vectors β i ( i = 1, . . . , r).

We now consider some background behind our time series model. A vector autoregression model of order 
K (VAR(K)) is defined as:

where t = 1, . . . ,T . Here, yt is an n × 1 vector of time series at time t, Πi ( i = 1, . . . ,K ) is an n x n matrix of coef-
ficients for the lagged time series, µ is an n × 1 vector of constants, dt is an p × 1 vector of deterministic variables 
(e.g., seasonal indicators, time, etc.), and Φ is a corresponding n x p matrix of coefficients. We assume the εt are 
independent n × 1 multivariate normal errors with mean 0 and covariance matrix � . In order to determine a value 
for K in practice, one can sequentially fit a VAR model, for K = 1, . . . , 10 , say, and compare Akaike’s Informa-
tion Criterion (AIC)  values48, where smaller values of AIC offer more evidence to support a specific  model49.

One way to respecify the VAR model is as a (transitory) vector error correction model (VECM). Using linear 
algebra, we can obtain:

where �yt is the (first) difference yt − yt−1 , Γ i = −(Πi+1 + · · · +ΠK ) , for i = 1, . . . ,K − 1 and K ≥ 2 , and 
Π = −(I −Π1 − · · · −ΠK ) for an identity matrix I of order n. In effect, a VECM is a VAR model (in the dif-
ferences of the data) allowing for cointegration (in the levels of the data). The matrix Π measures the long-run 

yt = Π1yt−1 + · · · +ΠKyt−K + µ+�dt + εt

�yt = Γ 1�yt−1 + · · · + Γ K�yt−K+1 +�yt−1 + µ+�dt + εt
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relationships among the elements of yt , while the Γ i measure short-run effects. �yt−1 is oftentimes called the 
“error correction term” and it is assumed this term is (trend-)stationary. More rigorous background on cointe-
gration, the VAR model, and the VECM can be found in  Pfaff45.

An important part of fitting a VECM is determining the number (r) of cointegrating relationships that are 
present. It can be shown that the rank of the matrix Π is equal to r. In practice, the most interesting case is 
when r ∈ (0, n) . In this case, we can use a rank factorization to write, Π = αβ ′ , where both α and β are of size 
n x r. Therefore, �yt−1 = αβ ′yt−1 is (trend-)stationary. Because α is a scale transformation, β ′yt−1 is (trend-)
stationary. By our definition of cointegration, there are r linearly independent columns of β that are the set of 
cointegrating vectors, with each of these column vectors describing a long-run relationship among the individual 
time series. Elements in the vector α are often interpreted as “speed of adjustment coefficients” that modify 
the cointegrating relationships. The number of cointegrating relationships can be formally determined using 
Johansen’s  procedure50.

Following  Johansen51 and Johansen and  Juselius52, we consider how to specify the deterministic terms in 
the VECM using AIC and a likelihood ratio test on linear trend. In our case, due to the nature of the research 
problem and by visual inspection of the time plots, we initially set �dt = 0 (this form of the model is known 
as a restricted VECM). We then consider two possibilities for the constant µ . The first possibility is to place µ 
inside the error correction term. Specifically, define an additional restriction µ = αρ . Then, the error correction 
term can be rewritten as α

(

β ′yt−1 + ρ
)

 so that the cointegrating relationships have means, or intercepts, ρ . The 
second possibility is to leave µ as is to account for any linear trends in the data.

We used maximum likelihood estimation to fit the VECM and report estimates and standard errors for ele-
ments of α,β and Γ 1 , along with corresponding t-tests run at a significance level of 0.05.

When fitting a VECM, it is important to check the goodness-of-fit. Using the fitted VECM, and r, as deter-
mined by Johansen’s procedure, we backed out estimates of the coefficients Πi of the corresponding VAR model 
of order K (in levels). This was then recast as a VAR model of order 1; that is, it was rewritten in “companion 
matrix”  form53. The VECM is stable, i.e., correctly specified with stationary cointegrating relationships, if the 
modulus of each eigenvalue of the companion matrix is strictly less than 1. Another stability check is to inves-
tigate the cointegration relationships for stationarity. For the later, we again used the methodology described in 
 Pfaff45 and Dickey and  Fuller46.

Residuals diagnostics were run to check assumptions on the errors εt . We computed a multivariate Portman-
teau test for serially correlation, and generated autocorrelation function (acf) and cross-correlation function (ccf) 
plots to guide interpretation. Also, we computed univariate and multivariate Jarque–Bera tests for normality.

For a VECM, predictions and forecasts for the level of a time series are obtained by transforming the fit-
ted VECM to its VAR form. It can be shown that in-sample (training) predictions are actually one-day-ahead 
forecasts using estimated model coefficients based on the whole time series. We obtain approximate in-sample 
prediction intervals by making use of the estimated standard deviation of the errors taken from the Census 
component of the model. Out-of-sample (test) forecasts are computed recursively using all three time series from 
the VAR model fit to past data, for horizons equal to 1, 2, …, 7, say. The construction of out-of-sample forecast 
intervals as a function of the horizon are described elsewhere in the  literature54.

In order to assess the out-of-sample forecasting performance of our VECM, we used a time series cross-
validation procedure. In this procedure, there is a series of test sets, each consisting of 7 Census observations. 
The corresponding training set consists only of observations that occurred prior to the first observation that 
forms the test set. Thus, no future observations can be used in constructing the forecast. We gave ourselves a 
2-week head start on the frontend of the Census time series, and a 1-week runway on the backend. For the 
88 days starting from 04/29/20 up to 07/25/20 by one day increments, we iteratively fit the VECM and computed 
the 7-days-ahead out-of-sample mean absolute percentage prediction error (MAPE). MAPE is defined here 
as (100/7) ∗

∑7
i=1 |Oi − Ei|/Oi , where Oi is the observed Census value, Ei is the projected Census value, and 

i = 1, 2, . . . , 7 horizons. Notice the “origin” at which the forecast is based, and which delineates training versus 
test set, rolls forward in time. We chose 7 days because it is in accordance with the weekly cadence of reporting on 
pandemic behavior and forecast metrics at Atrium Health. In addition, 7 days is a reasonable average timeframe 
for infection with coronavirus, incubation, and the potential subsequent need for hospitalization. As a baseline 
for comparison, we also evaluated our VECM against a basic ARIMA model, derived using the approach of 
Hyndman and  Khandakar55, using the same time series cross-validation procedure.

All data analysis, including creating plots, was done using R statistical software, version 3.6.2, with the pack-
ages tsDyn, vars, and urca being the more important ones for fitting the VECM. The data and code used in 
the data analysis is publicly available at GitHub (https:// github. com/ philt urk/ CovCe nVECM).

Results
The 16 time plots for the Internet variables are shown in Fig. 1. The first three rows are for those from Google 
Trends, while the last row contain those from Apple, Facebook, and Health Bot. Clearly, several of the time series 
are visibly nonstationary.

In looking at the maximum absolute Spearman’s correlation coefficient between Census and each Internet 
variable across lags 0, − 1, …, − 14, two variables stood out (Table 2). The first was Health Bot, with a maximum 
absolute correlation coefficient of 0.865 at time t – 4. The second was the Google Trends search term for covid 
testing + covid test + covid19 testing + covid19 test + covid 19 testing + covid 19 test, henceforth, referred to as 
Testing. Testing had a maximum absolute correlation coefficient of 0.819 at time t. Three other search terms 
were noted, but their maximum absolute correlation coefficients were substantially lower than HealthBot and 
Testing. For covid and symptoms covid, it was felt their searches might substantially overlap with Testing. The 
search term coronavirus had a negative correlation, likely attributable to people’s initial interest in the novelty 

https://github.com/philturk/CovCenVECM
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of COVID-19, which waned over time, as reflected from the beginning of June onward when RSV values for 
coronavirus were quite small. Therefore, for the sake of parsimony, the three other search terms were not con-
sidered further for this research.

After examination of scatter plots, and in preparation for modeling, we transformed both Health Bot (by 
taking the natural logarithm) and Testing (by taking the square root) to linearize the relationship between each 
of these variables and Census. We then generated longitudinal “cross-correlation”-type of profiles for Health Bot 
and Testing using Pearson’s correlation coefficients for lags 0, − 1, …, − 14 as shown in Fig. 2. We can see strong 
correlations, all well above 0.80, throughout the time period under consideration.

To better understand the relationships among the three time series, we normalized both the Health Bot and 
Census time series to the same [0, 100] scale as Testing, and obtained the results in Fig. 3. Both the Testing and 
Health Bot time series appear to share common features of the Census time series (e.g., approximate linear 

Figure 1.  Time plots for internet variables used in data analysis.

Table 2.  Internet variables and maximum absolute correlation with census in previous 14 days.

Internet variable Lag (in days from time t) Maximum correlation (in absolute magnitude)

covid − 13 0.518

coronavirus 0 − 0.565

symptoms covid − 14 0.614

covid testing (and 5 other related terms) 0 0.819

fever + chills 0 − 0.322

headache − 5 0.083

“shortness of breath” 0 − 0.073

“shortness of breath” (and 2 other related terms − 13 0.156

tired + fatigue − 13 0.125

pneumonia − 1 − 0.453

“sore throat” + cough 0 − 0.478

cdc 0 − 0.448

Apple mobility 0 0.378

Facebook movement − 14 0.153

Facebook staying put − 14 − 0.109

Health Bot − 4 0.865
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increase from mid-May until mid-July). There is also the suggestion that both the Testing and Health Bot time 
series “lead” the Census time. For example, from mid-April until the beginning of May, Health Bot shows a 
downward linear trend and this behavior is mirrored in the Census time series roughly one week later.

Using the methodology of  Pfaff45 and Dickey and  Fuller46, all three time series are nonstationary. Specifi-
cally, the Census time series is difference-stationary, while the Health Bot and Testing time series are both 
trend-stationary.

Results from examining AIC values after fitting a VAR model to Census, Testing, and Health Bot, sequentially 
increasing the lag order up to 10, were inconclusive. Therefore, we chose the minimum value of K = 2 . Johansen’s 
procedure (using the trace test version) indicated that two cointegrating vectors should be used. A comparison 
of the two AIC values for restricted VECM models described in the Methods suggested placing µ inside the 

Figure 2.  Longitudinal cross-correlation profiles for census and the two internet variables health bot and 
testing.

Figure 3.  Multivariate time series plot for census and the two internet variables health bot and testing.
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error correction term (AIC = 212.598) as opposed to not doing so (AIC = 217.592). This was also corroborated 
by a likelihood ratio test for no linear trend (p-value = 0.32).

For the sake of brevity, and because we are most interested in modeling Census, we only show the portion of 
the fitted VECM pertaining to Census. Both α and β are not unique, so it is typical in practice to normalize them. 
The normalization we used is the Phillips triangular representation, as suggested by  Johansen51. The expression 
for Census in scalar form using general notation is:

where γ1, γ2, and γ3 are the corresponding elements of Γ 1 , α1 and α2 are the corresponding elements of α , and 
CR1 and CR2 are the first and second cointegrated relationships. Collectively, α1CR1,t−1 and α2CR2,t−1 are the 
error correction terms. In our case, we obtained the results shown in Table 3:

An overall omnibus test for the Census component of the VECM was statistically significant (F0 = 3.393 on 
5 and 101 degrees of freedom; p-value = 0.0071). We see that the long-run effects for both cointegrated relation-
ships were important in modeling the first difference of Census at time t. However, the short-run, transitory 
effects as measured by first differences of Census, Health Bot, and Testing at lag 1 were not statistically significant.

Furthermore, the expressions for the cointegrated relationships are:

where ρ1 and ρ2 are the corresponding elements of ρ , and β1 and β2 are the corresponding elements of β . We 
obtained the results shown in Table 4:

Considering the model, parameter estimates from the previous two tables, and looking at CR1,t−1 , we see 
that if Testing is unusually low relative to Census at time t − 1 , so that Testingt−1 < −0.0257Censust−1 − 1.9911 , 
then this suggests a decrease in Census at time t. Similarly for CR2,t−1 , if Health Bot is unusually low relative 
to Census at time t − 1 , so that HealthBott−1 < −0.0131Censust−1 − 2.9994 , then this suggests a decrease in 
Census at time t.

A check of the modulus of all the eigenvalues from the companion matrix associated with the VECM showed 
them all to be well below 1, suggesting stability of the model. Inspection of the two fitted cointegration relation-
ships β ′

1yt−1 and β ′
2yt−1 did not suggest any nonstationarity.

Results from the Portmanteau test for serially correlation suggested the presence of serially correlated errors 
(p-value = 0.0035). Inspection of all nine acf and ccf plots of the residuals for lags between -15-to-15 identified 
the likely reason. The acf plots for Testing and Health Bot showed mild autocorrelation at lag 7. This can be 
attributed to a “day of the week” seasonal effect. We address this further in the Discussion. Turning our attention 
towards the normality of the errors, the univariate Jarque–Bera test for Health Bot suggested a departure from 
this model assumption (p-value = 0.0001). This was attributed to the presence of two mild statistical outliers 
early on in the time series. Since these values were otherwise practically unremarkable and with no assignable 
cause, we did not remove them.

Figure 4 shows the VECM fit for Census on August 1, 2020. The red line corresponds to the predictions and 
forecasts (or “fitted values”) from the model, the black dots are the observations, the blue envelope is the approxi-
mate in-sample 95% prediction interval band, and the pink envelope is, in this case, the 14-days-ahead out-of-
sample forecast interval cone. Up to August 1, the model fit evidences quite reasonable accuracy and precision. 

�Censust = γ1�Censust−1+γ2�HealthBott−1+γ3�Testingt−1+α1CR1,t−1+· · ·+α2CR2,t−1+εt

CR1,t−1 = Testingt−1 + β1Censust−1 + ρ1

CR2,t−1 = HealthBott−1 + β2Censust−1 + ρ2

Table 3.  Results from fitted VECM. Results denoted with an asterisk are statistically significant at a 
significance level of 0.05. The estimates for α1 and α2 are normalized.

Parameter Estimate Standard Error

γ1 0.0424 0.0931

γ2 − 3.8514 2.5773

γ3 − 1.3412 0.8382

α1 1.6559* 0.7837

α2 4.3317* 2.1967

Table 4.  Results from fitted VECM. The estimates for all parameters are normalized.

Parameter Estimate

ρ1 − 1.9911

ρ2 − 2.9994

β1 − 0.0257

β2 − 0.0131
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We have included the 14 actual Census values that were subsequently observed from August 2-to-August 15. 
The corresponding MAPE is 6.4%. While there is clearly a large outlying value on August 4, the VECM forecast 
captures the salient feature of the Census counts; that is, a declining local trend. It is interesting to observe the 
declining trend in Testing and Health Bot in late July (Fig. 3).

In Fig. 5, we show the distribution of 7-days-ahead out-of-sample MAPE using our time series cross-valida-
tion procedure described in the Methods (n = 88). The distribution is clearly right-skewed. The median MAPE 
is 10.5%, while the 95th percentile is 32.9%. In the context of pandemic surveillance and planning, we interpret 
these results to suggest our MAPE exhibits very good accuracy of the Census forecast, on average. Ceteris paribus, 
a MAPE beyond 32.9% would be unusual and worthy of further investigation.

Figure 4.  Fitted VECM for census and 14-days-ahead out-of-sample forecast.

Figure 5.  Distribution of 7-days-ahead out-of-sample MAPE under time series cross-validation.
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When we looked at 7-days-ahead out-of-sample MAPE for the ARIMA model using time series cross-vali-
dation, the median MAPE was 8.3%, which was smaller than the value of 10.5% for the VECM. Whether or not 
this difference is statistically significant would require additional rigor, which is not done here.

Discussion
In this study, a VECM model inclusive of Internet variables that reflect human behavior during a pandemic 
performed very well at 7-day forecasting for a regional health system’s COVID-19 hospital census. In terms of 
short-run fluctuations, there is insufficient evidence that lag 1 values of the three differenced series are useful 
for prediction of the differenced Census time series. However, in terms of long-run equilibrium, both the error 
correction terms are statistically significant. Although all three time series, Census, Testing, and HealthBot, are 
nonstationary, their cointegrating relationships allows to predict the change in Census using the VECM.

There are several advantages in adopting our approach. We have conducted a much more thorough search 
for candidate Internet variables than what we have observed in the current literature during this pandemic and 
employed more rigorous statistical methods. Not only have we used Google Trends search terms, but we also 
evaluated mobility data from Facebook and Apple. Further, we have added data from a healthcare chatbot specifi-
cally constructed to assess risk of having COVID-19. Our approach is statistically more rigorous to the extent that 
we did not stop at stating correlations, but rather provided a formalized multivariate time series model that can 
be potentially used to provide highly accurate forecasts for health system leaders. We know of no other straight-
forward approach in statistics that allows one to simultaneously model nonstationary time series in a multivari-
ate framework and subsequently generate forecasts. Lastly, using time series cross-validation in the manner we 
have described here also provides a way of quantifying forecasting performance for various metrics. The VECM 
can be easily fit using base R and a few additional packages and we make our code publicly available on GitHub.

The research we have done here can be extended to look at other potential variables that may be leading 
indicators for predicting COVID-19 Census. These include the community-level effective reproduction number 
Rt

56 and the daily community-level COVID-19 infection incidence, among other examples. Additionally, this 
same methodology described herein can be extended to look at other health system relevant outcomes, like ICU 
counts, ventilator counts, or hospital daily admissions.

During our specified time period, both the VECM and the ARIMA model provided very good forecasting 
performance as measured by MAPE, with the VECM returning a slightly larger MAPE value on average. Other 
performance metrics (e.g., RMSE) were not considered here. During the 88 days used for this comparison, the 
Health Bot and Testing time series were relatively stable with respect to linear trend. Using the PELT (Pruned 
Exact Linear Time) method in the EnvCpt R package, we found two linear trend changepoints for the Health 
Bot time series (on 05/28/20 and 07/04/20) and one for the Testing time series (on 06/21/20). How the VECM 
would compare to an ARIMA model if the time series under consideration were to exhibit different types of 
behaviors would require a further sensitivity study using simulation. We add that just prior to submission (Sep-
tember 26) we refit the VECM and compared it to the ARIMA model. Interestingly, the VECM 7-day forecast 
projections were trending upward, while those from the ARIMA model were trending downward. A week later, 
when we computed out-of-sample MAPE for the week of September 27th, we obtained 18.1% for the ARIMA 
model and 6.8% for the VECM. In fact, Census was beginning to climb. Looking at a multivariate time series 
plot similar to Fig. 3, we observed both Testing and Health Bot start to rise in mid-September and then roughly 
a week later, Census started to rise.

It is worth mentioning that the VECM is no more or less immune to the same problems we can encounter in 
obtaining good forecasts when working with any other models. For example, in order to have good forecasts, the 
future must resemble the past. In the midst of a pandemic, other variables can be introduced with the potential 
to dramatically alter observed behavior. If a shelter-in-place order, say, were to go in effect in the midst of the 
forecast horizons and significantly dampen infection spread, then forecasting performance in that time frame 
would likely suffer. In this scenario, no model will work well.

A potential criticism of our work will likely be that the strong correlations we see between Health Bot and 
Census, and Testing and Census are “spurious”, being attributable to chance or some underlying unobserved 
lurking variable. We feel though it is a reasonable assumption that those individuals in the greater Charlotte 
area that are becoming sick with COVID-19 are likely to search Google for a nearby test site (Testing) or take 
Atrium Health’s online risk assessment (HealthBot), and then as symptoms subsequently progress proceed to 
one of Atrium Health’s facilities to be hospitalized.

This study had several limitations, the first three of which are more specific to the field of  infodemiology42,57. 
First, in terms of data collection, Google’s designation of the Charlotte NC metro area does not perfectly spatially 
align with Atrium Health’s core market. Also, Facebook and Apple Map is biased towards users who have enabled 
their location history on their mobile devices in order to be detected. Second, the time series in this study were 
not collected using any probabilistic sampling design; rather, they were collected using convenience sampling. 
Hence, we should be cautious about generalizability of our results. Third, when working with data pulled from 
the internet, there is always the chance that the data could be made unavailable or be altered in some way, thus 
threatening the durability of such models. We were fortunate in that one of our two important Internet variables 
was from Atrium Health’s own public-facing Microsoft Azure HealthBot, at least in part mitigating this risk for 
our model. Lastly, perhaps the biggest limitation is that the relationships we have observed in this research could 
change at any point in the future so that our model is no longer predictive. Stated another way, because these time 
series are nonstationary, they might not stay in sync over long periods of time as their cross-correlations change.

We initially considered other simpler time series regression models (e.g., autoregressive distributed lag 
model). However, this approach requires time series under consideration to all be stationary, which ours were 
not. A spurious regression will result when one nonstationary time series is regressed against one or more other 
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nonstationary time series. Hence, we initially spent a considerable effort trying to stationarize our variables (using 
differencing, taking logs), and then using lagged versions of the variables before fitting a regression model. In 
assessing model fit, we were unsuccessful with this approach. Ultimately, the best way to work with nonstationary 
time series in our case was to acknowledge the cointegration of the variables under study.

Because these are variables derived from the internet, it would not be unexpected to see evidence of seasonal 
effects in their time series (e.g., day of the week, weekend versus weekday, etc.). For Testing and Health Bot, 
we noted the presence of mild autocorrelation in the errors at lag 7. While our VECM results are already very 
good, incorporating seasonality into our analysis perhaps might improve forecasting performance. What are 
some options to do this? One approach would be to add seasonal effects directly to the VECM (through dt ). 
However, with 7 days a week, this would add 18 effect parameters to the model. As we discovered in our case, 
if many of these effects were unimportant, then this would negatively affect model fit. It is also important to 
understand that this approach makes the assumption that seasonality is deterministic; whereas, we may actually 
have stochastic seasonality. A second approach would be to deseasonalize the time series before modeling, i.e., 
a two-stage approach. We deseasonalized the three time series using seasonal decomposition by  loess58, noting 
that the seasonal effects were relatively small. After repeating our data analysis, we found that the VECM fit was 
not as good. A third approach we leave as a future research topic would be to look at initially fitting a VAR(7) 
model but disregarding some of the lags (e.g., keeping lags 1 and 7 to address the seasonality, but without the 
lags 2–6, say). This would require more intensive programming in R. With any of these approaches, one still has 
to check the model for goodness-of-fit and assumptions on the errors; specifically, multivariate normality and 
lack of serial correlation.

Our VECM model provides a useful forecasting tool that can guide data-driven decision making as health 
system leaders continue to navigate the COVID-19 pandemic. In exploring candidate predictors, valuable insight 
was gained as to the relationship between the Internet variables and the hospital census. Both the Health Bot 
and the Testing time series from the previous 14 days are strongly informative regarding the hospital COVID-19 
census and twice gave ample lead time to a substantial change in the census. The VECM provides another model 
for the hospital COVID-19 positive census in case the simpler ARIMA model no longer exhibits a good fit. It 
also provides another candidate model that can be used for model-averaged forecasting. While the statistical 
underpinning of the VECM is somewhat complex, we found the model outputs to be intuitive and thus easily 
communicated to clinical leaders. Access to this information can help better inform manpower planning and 
resource allocation throughout the health care system by leveraging insights derived using both of these Internet 
variables. For these reasons, it is worth considering adding a VECM to the repertoire of a COVID-19 pandemic 
surveillance program.
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