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Likelihood‑based approach 
to discriminate mixtures 
of network models that vary 
in time
Naomi A. Arnold*, Raul J. Mondragón & Richard G. Clegg

Discriminating between competing explanatory models as to which is more likely responsible for the 
growth of a network is a problem of fundamental importance for network science. The rules governing 
this growth are attributed to mechanisms such as preferential attachment and triangle closure, with a 
wealth of explanatory models based on these. These models are deliberately simple, commonly with 
the network growing according to a constant mechanism for its lifetime, to allow for analytical results. 
We use a likelihood‑based framework on artificial data where the network model changes at a known 
point in time and demonstrate that we can recover the change point from analysis of the network. 
We then use real datasets and demonstrate how our framework can show the changing importance of 
network growth mechanisms over time.

Network growth  models1–5, for example, the Barabási-Albert1 (BA) preferential attachment model, the ranking-
based model by Fortunato et al.6 or the Jackson-Rogers friends of friends  model3, provide an iteravive process 
for constructing a network by adding nodes and edges, beginning with an initial seed network. These models are 
widely cited as a potential explanation for the properties of real-life networks, for example the tail of the degree 
distribution or the clustering coefficient. Typically, network growth models provide a single mechanism that 
applies to the whole lifetime of the graph which has the appeal that mean-field predictions of network quantities 
can be  derived7. However, it has become clear that real networks can exhibit change points in their  evolution8–10 
for example the Enron email  network11 might be expected to change its structure when it became clear that the 
company was in severe legal and financial trouble. It is reasonable to expect network models to change in time 
given that real networks are often subjected to perturbations that we would expect to affect growth (e.g. an online 
social network introduces a new friend recommendation algorithm, a new field emerges in a citation network). 
Therefore there is a clear need for a framework that can allow network growth models that vary in time and 
hence a need to establish the optimal parameters for such models.

This paper provides a way to generate a large family of parameterised models that change in time and encom-
pass the majority of existing models from the literature. We use a rigorous likelihood-based framework to com-
pare models of growth that change in time. It has previously been shown that several network growth models 
can be combined to form a family of different  models12. For example, a model could be one third  BA1 two thirds 
random  growth13. The best mixture to fit a given target network can be obtained using likelihood  techniques12,14. 
This paper makes three contributions: (i) We create an extremely rich class of models for network growth by 
allowing the mixture parameters to change in time. (ii) Using artificial data generated from a known time-varying 
model we demonstrate a likelihood based framework that can find the correct model and its change points in 
time that were responsible for the observed network data. (iii) Using real data we show how this framework can 
give insights into the different mechanisms responsible for network growth. Hence we allow the use of existing 
popular models, combined into a flexible time-varying framework, either as a tool to generate new types of 
network or as an explanatory framework to determine the growth mechanism seen in a real data set.

In12 we described a likelihood based method that evaluates which hypothesised model is the best explana-
tion for an observed network. In this paper we extend this to models that vary in time. First, we summarise the 
method and its extension to time-varying models. Second, we demonstrate the validity of the method by showing 
it is possible to accurately infer preferential attachment parameters from artificially generated networks, and 
correctly infer the time at which a changepoint has occurred. Finally, we study four temporal network datasets 
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comprising a citation  network15, a StackExchange forum interaction  graph16, a Facebook wall posts interaction 
 graph17 and the Enron emails  dataset11, showing the best description of each network using a time-varying model 
comprising three simple mechanisms: preferential attachment where an individual’s chance of acquiring new links 
is proportional to their current number of links, triangle closure, where the chance of two nodes connecting is 
proportional to their number of mutual connections, and a random model where all links are equally likely to 
occur. On the Enron email  network11 we show these changes in the context of documented real-life events that 
would be expected to influence this network.

Framework
In this paper we develop an extension to the framework  from12 for analysing the likelihood that a given model 
led to a set of observations for a dynamic graph. The models have the common structure that at each time step 
they produce a probability for different potential next steps in the evolution of a graph (for example the BA 
model gives the probability of choosing a particular node to connect to as being proportional to its degree). 
By carefully constructing a likelihood from these probabilities we can deduce which hypothesised model is the 
most likely explanation for a set of graph observations. In this paper we introduce the idea that this model may 
vary over time and investigate this through artificial and real data. In this section we begin by describing how 
the framework introduced  in12 can be extended to analyse models that vary in time. We then introduce a new 
measure that shows how similar two hypothetical models for graph evolution are when applied to a given graph 
at a given time. The more similar two models are the harder it will be, in principle, to tell them apart.

Model structure. We consider dynamic graphs G(t) = (V(t),E(t)) where V(t) is the set of nodes and 
E(t) is the set of edges at time t, with number of nodes N(t) = |V(t)| . For simplicity we describe undirected, 
unweighted simple networks and consider only networks where nodes and edges are permanent once added. The 
restriction to undirected and unweighted graphs is purely for clarity of explanation and is not a fundamental 
constraint on the framework. Assume the graph changes at some set of times t1, t2, . . . and let gi be the observa-
tion made at time ti (that is G(ti) = gi ). We will use the word increment to describe the change in the graph from 
observation gi−1 to gi that is observed at time ti . This increment is a time and a set of nodes and links that are 
added at that time. Let Gi be a random variable representing the graph the ith observation. A model is a set of 
rules that gives the probability P(Gi = gi|Gi−1 = gi−1) , the probability the observed graph gi−1 will change at 
time ti to the graph gi.

Models that describe processes for network growth can be split into two parts: the first is the operation model 
that describes the type of change being made (e.g. “add a new node and connect it to two existing nodes” or “add 
one link connecting two existing nodes”; the second, the object model, is a set of rules for exactly which entities 
should be chosen. The former explains phenomena such as  densification18 (in later stages of a network’s life links 
are more commonly made between existing nodes rather than adding new nodes, changing the average degree) 
and the varying rate of node and link arrival to the  network19. The operation model can be directly extracted from 
network data provided that the time (or order) at which each node and edge is added to the network is known. 
The latter has been used to explain more structural characteristics such as power-law degree distributions, high 
clustering coefficients and assortative/disassortative mixing. As an example, the Barabási-Albert  model1 specifies 
that, starting from an initial small seed network, at each timestep a single new node is added and connected to 
m existing nodes (operation model), and those nodes are chosen with a probability proportional to their degree 
(object model). These concepts of a graph increment and an operation and object model, simply make formal 
the underlying assumptions of models from the literature that define how networks grow.

Operation model. The operation model specifies the type of transformation that will happen to the graph and 
the time at which it will happen. It selects the time and the number of edges and nodes and how they will be 
connected in the next graph increment. In this paper we use operation models comprising growth by stars (see 
Fig. 1 for an example), that is, a new or existing node connecting to a number of existing or new nodes.

Examples of networks which grow in this way are citation networks, in which each paper is a new node citing 
existing papers, or email networks, where a star is formed with the centre node the sender and outer nodes the 
recipients. Another natural operation to consider is growth by cliques, characteristic of collaboration networks, 
which is not within the scope of this paper.

As an example of how the operation model affects the graph, consider Fig. 2 that separates links in a grow-
ing network into those that join new nodes to the network and those that are purely internal between nodes 

Figure 1.  Examples of the two types of star growth operations considered within this framework.
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that already exist. The citation network for example comprises purely external links since it always grows by a 
new paper citing existing papers, whereas all the others are a mixture, with most new links being internal ones.

Object model. Given the type of transformation and number of nodes n chosen by the operation model, the 
object model must select which set of n nodes are changed. It does this iteratively by assigning a probability pi(t) 
to each node i in the network reflecting its chance being selected to be part of a graph increment at time t with 
∑N

i=1 pi(t) = 1 . This probability depends on the existing state of the graph and possibly also nodes already 
selected in the set. This set is selected by sampling, with or without replacement depending on whether dupli-
cate links are allowed, from the distribution provided by the object model. This part of the model is aimed at 
understanding the factors governing which nodes are more likely to attract new links in a growing network. For 
example, imagine the operation model has selected that the next increment will be a star centred on an existing 
node and connecting to three other existing nodes (in an email network this represents an email sent from a user 
that has been previously interacted with to three other nodes that have been previously interacted with). The 
object model must pick a node to represent the sender and then three different nodes to represent the recipients. 
Some example object models (omitting the t for simplicity) are:

• Random attachment Mrand is the simplest model and accounts for unknown behaviour not captured by other 
models. All nodes are assigned equal probability, so the probability of choosing node i is pi ∝ const.

• Degree power MDP(α) captures the rich-get-richer effect where nodes of a high degree are more likely to attract 
new links, with pi ∝ kαi

2. When α = 1 this corresponds to the Barabási-Albert (henceforth BA)  model1 MBA 
for generating scale-free networks. This rich-get-richer effect is amplified with larger values of α.

• Triangle closure Mtri captures the tendency of triangles of connected nodes to occur. It selects edges with 
probabilities proportional to the number of triangles that edge would complete. The source node j of an edge 
is chosen at random (using Mrand ). The destination node i is chosen with pi ∝ |Γ (j) ∩ Γ (i)| , where Γ (i) 
is the set of neighbours of node i. When we connect a star (as in this paper) we pick a single source j using 
Mrand and connect it to n destinations using the probability pi defined previously. This is reminiscent of a 
friend recommendation algorithm which recommend connections between individuals with many friends 
in  common20.

• Rank-preference model MRP(α) gives higher probability to nodes with higher rank. It assigns probability 
pi ∝ R−α

i ,α > 0 , where Ri is the rank of node i for some choice of ranking  system6. If the node labels cor-
respond to the order in which the nodes arrive to the network, the ranking Ri = i corresponds to a tendency 
to connect to the longer established nodes in the networks, and is an alternative mechanism to generate 
scale-free  networks21.

Figure 2.  Number of edges in the network, split into those which join pairs of existing nodes (Internal) and 
those which join a new node to other new or existing nodes (External).
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A network’s growth may best be described by a mixture of models, and this mixture may change over time. 
Assume we mix together L models where in the lth model Ml , the probability of selecting node i at time t, is 
p
Ml
i (t) . Therefore, we propose a mixture model with the probability of choosing node i at time t given by:

where the sum is over the L different model components Ml considered, βl(t) ∈ [0, 1] and 
∑L

l=1 βl(t) = 1 . Later 
in this paper we may denote a model mixture as M(t) =

∑L
l=1 βl(t)Ml as shorthand for the fuller model descrip-

tion given by Eq. (1). For a fixed value of t the βl(t) should be thought of as interpolating between the models. 
For a simple concrete example, a mixture of random attachment and the standard preferential attachment model 
with no time-dependence on the mixture takes the form

with β ∈ [0, 1] . In this example β = 0 would give result in a pure BA model whilst β = 1 would result in a model 
where nodes are chosen at random. This example is investigated using a master equations approach  in22. In this 
paper we use values of βl(t) that are constant or piecewise-constant over evenly sized time intervals, and so when 
we are considering a model with L components spanning J time intervals, we may write for convenience βlj for 
the weight of the l  th model component during the j th time interval.

Likelihood calculation. Let g0 be our first observation of a graph G, and G1,G2, . . . be random variables 
representing the subsequent states of G, with corresponding observations g1, g2, . . . at times t1, t2, . . . . We assume 
that our observations are high resolution enough that, the subgraph gi \ gi−1 is a small increment δi which is the 
set of nodes and edges added to the graph when changing from gi−1 to gi (this assumption is discussed in more 
detail in the supplementary information). In this sense, the random variable describing the graph at observation 
n given a starting observation g0 can be expressed as

Here ∆i is the random variable associated with δi , and the union ∪ of two graphs G and H should be understood as 
the graph whose vertex set is the union of G’s and H’s vertices and whose edge set is the union of G’s and H’s edges.

This allows us to calculate a likelihood of a model M given observations g = g0, g1, . . . , gn of G as

where the probability P(∆i = δi) is provided exactly by the object and operation model and refers specifically 
to the probability of selecting the nodes that are involved in that increment. In practice, we transform Eq. (3) to 
use the per-choice likelihood ratio c0  from12 given by

where m(i) is the number of node choices at timestep i. This provides a useful reference figure of c0 > 1 if the 
model given is more likely than the basic model Mrand and c0 < 1 if it is less likely, as well as moving the likeli-
hood into a more human-readable range. So if ∆i specifies a single link added between two existing nodes, 
P(∆i = δi) for observation δi is the probability of selecting the observed source multiplied by the probability of 
the destination node from the remaining nodes. As an explicit example, if we used the model MBA and our 
observed graph increment δi at time ti was the internal node with index 1 connecting to the internal node with 
index 2, the probability P(∆i = δi) would be given by k1

∑

j=1N kj
k2

∑

j=2 kj
 . The probability P(∆i = δi) is defined 

completely by the operation and object model. The supplementary information details how this is achieved. 
Hence we can calculate the likelihood of a model and rigorously compare which model from a candidate set 
gives the highest likelihood.

Model similarity. Some pairs of models may give similar probabilities for most nodes in a graph because of prop-
erties that are correlated (e.g. the rank-preference model gives rise to a strong correlation between high rank and high 
degree, so gives similar node probabilities to the BA model). To measure this, we use cosine similarity to compare the 
overlap in node probabilities given to a graph by a pair of different models. The intuition is that this measure will be 
equal to 1 if and only if the probability distributions given to the node set by each model are identical, and closer to 0 
if these distributions are very different. Let G be a graph and M1,M2 be two different object models with node i ∈ G 
being assigned probability pM1

i , pM2
i  by M1,M2 respectively. Then we define their cosine similarity over G as:

(1)pi(t) =

L
∑

l=1

βl(t)p
Ml
i (t)

pi(t) = β
1

N(t)
+ (1− β)

ki(t)
∑

j kj(t)

(2)Gn = g0 ∪
n
i=0 ∆i .

(3)l(M|G = g) =

n
∏

i=1

P(∆i = δi|Gi−1 = gi−1,M).

(4)c0 = exp

(

log
(

l(M|G = g)
)

− log
(

l(Mrand|G = g)
)

∑n
i=1 m(i)

)

(5)σG(M1,M2) = K−1
N
∑

i=1

pM1
i pM2

i
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where K =

√

(

∑N
i=1

(

pM1
i

)2
)(

∑N
i=1

(

pM2
i

)2
)

 is a normalisation ensuring that this measure lies between 0 

and 1, and is equal to 1 if and only if pM1
i = pM2

i  for all i. The numerator of this quantity is the probability that 
M1 and M2 would pick the same node of G from a single draw. An important feature is that this quantity depends 
highly on the structure of G. For example, if M1,M2 are based strictly on node degree, then their similarity will 
be 1 if G is a regular graph (all nodes of the same degree). To highlight this, consider models Mrand and MBA 
assigning probabilities prandi = 1/N and pBAi = ki/

∑N
j=1 kj respectively. Their (squared) similarity is given by:

This is equal to 1 if and only if G is regular (all nodes the same degree). On the other hand, if G is close to scale-
free (i.e. with 〈k2〉 very large compared to 〈k〉 ) then their similarity is close to zero.

Results
Estimating preferential attachment model parameters. To provide confidence in the likelihood 
framework, our first set of experiments relates to our ability to recover correct model parameters in artificial 
data experiments. We estimate the preferential attachment exponent α in networks generated using the degree 
power object model MDP(α) , where each node i is chosen with probability proportional to kαi  . This is a challeng-
ing estimation problem because for α > 1 a single node eventually will attract connections from every new node 
that joins the network, making the difference in observed behaviour between a pair of networks grown using 
different but high values of alpha very small (for a more in-depth discussion on this  see2,23). Other estimation 
methods are Newman’s24 non-parametric method which underestimates the α  exponent14. We generate networks 
of 1000 nodes, with operation model comprising, at each iteration, one new node attaching to m existing nodes. 
We then find maximum likelihood estimates α̂ = arg maxα l(MDP(α)|G) , by performing a grid search through 
α = −0.1,−0.09, . . . , 2.1 . In the case m = 1 the likelihood can be written l(MDP(α)|G) =

∏t
i=1 k

α
ci
/
∑N(i)

j=1 kαj  , 
where N(i) is the number of nodes at time i and ci is the node chosen at timestep i. Instead, empirical results sug-
gest that our method gives an estimator which does not exhibit bias and has small variance even for large powers 
of α . Figure 3 shows maximum likelihood estimators of parameter α from artificially generated networks where 
a single node is added at each timestep and connects to m existing nodes. Reassuringly, increasing m, the num-
ber of links that arrive at each timestep in the network, does not degrade the quality of the parameter estimates.

(6)σG(Mrand,MBA)
2 =

�k�2

�k2�
.

Figure 3.  Estimation of non-linear preferential attachment exponent α with the shaded areas representing 95% 
confidence intervals over ten experiments (upper) and root mean squared error in parameter estimates for α 
(lower). The y = x line in the upper plot is included to aid comparison between our estimated value and the 
true values. For each value of α and m the synthetic network was generated using the degree power object model 
MDP(α) with each new node connecting to m existing nodes; the lines and confidence intervals for each of these 
heavily overlap in the upper plot.
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Distinguishing similar network generation mechanisms. As well as correctly estimating model 
parameters, we investigate whether our method can correctly distinguish different network generation mecha-
nisms. We consider a difficult task of distinguishing two models which generate networks that have very similar 
degree distributions and summary statistics: the BA object model which generates scale-free networks via pref-
erential attachment to node degree and the (static) rank-preference model which achieves the same end but via 
preferential attachment to the oldest nodes. To test whether we can distinguish between these mechanisms, we 
combine them in an object model we refer to as

so that β = 0 gives a model that is entirely rank-preference and β = 1 entirely BA. The rank-preference model 
parameter α = 0.5 is chosen to yield the same degree distribution power law exponent γ = 3 as the BA  model6. 
We generate networks of 1000 and 10,000 nodes, with operation model comprising, at each iteration, one new 
node attaching to 3 existing nodes, chosen according to the object model in Eq. (7). For each of the 1000 node 
networks, we calculated the similarity between the model M(β) that generated it and each of the BA and the 
rank-preference models, finding between 90 and 100% overlaps for each of the model pairs over the whole range 
(Fig. 4 top). We then calculate maximum likelihood estimators β̂ by performing a (parallel) search through the 
space β = 0, 0.01, 0.02, . . . , 1 . The mean of these maximum likelihood estimators (over 10 realisations for each 
parameter) and SD error areas is displayed in Fig. 4, showing high accuracy in detangling these two very similar 
mechanisms. We find intuitively that the error is smaller for the larger network, since the likelihood is calculated 
from ten times more datapoints in this case. The error is smaller at the extremes β = 0 and β = 1 ; this is because 
only values β ∈ [0, 1] are possible, so β̂ cannot overshoot at either end.

Recovering change‑points in artificial data. Next we demonstrate that in artificial data we can recover 
the known point in time where one model changes to another model. For the following experiments, we con-
sider an object model assigning probabilities to nodes as

for a single changepoint time T, i.e. the degree power model MDP(α) where the exponent changes from α to β at 
time T. We test our ability to estimate T from networks generated with known T, assuming also that α and β , the 
degree power exponents before and after the changepoint respectively, are known. We generate artificial networks 
with a single changepoint at time T, and find an estimator T̂ by maximising the likelihood T̂ = arg maxT l(G|T) . 

(7)M(β) = (1− β)MRP(0.5)+ βMBA

(8)pi(t) ∝

{

kαi t ≤ T

k
β
i t > T

Figure 4.  The upper plot shows the average model similarity values σG(MBA,M(β)) and σG(MRP,M(β)) where 
G is the network of 1000 nodes generated from model M(β) . The lower plot shows the performance of the 
maximum likelihood estimator β̂ in recovering the true mixture parameter β of the model combining the BA 
and rank-preference mechanisms. In both plots, the shaded region represents a 95% confidence interval over 10 
repetitions, and each synthetic network was generated by, starting from a clique of 5 nodes, adding a single node 
at each iteration and connecting to m = 3 existing nodes.
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A first observation is that more accurate estimates are obtained in the larger network. A subtle point is that this 
is not because of having a higher number of observations in the larger network; indeed, the changepoints in the 
larger network span the same time range (1000) as the smaller network, but because in the larger network we 
are observing nodes being drawn from a more stabilised distribution later in the network’s lifetime. The second 
is that the changepoint resulting from the smaller parameter change (1.0 to 0.9) draws noisier estimates T̂ than 
for larger parameter changes (1.2 to 1.0).

We explore this latter observation in more detail by fixing our initial changepoint time T = 5000 and cal-
culating the root mean squared error (RMSE) in estimates T̂ arising from different pre- and post-changepoint 
parameters α1 and α2 (Fig. 6a). As with Fig. 5, we note that smaller parameter changes are more difficult to detect, 
corresponding to the band of higher error around the diagonal α1 = α2 . We also notice the band increasing in 
width toward the extremes of the diagonal. In the lower extreme case ( α1 small), this is likely because the degree 
distribution pre-changepoint is more homogeneous and thus many nodes have a similar likelihood of being cho-
sen. In the higher extreme ( α1 large) we suspect that this is due to an amplification of the rich-get-richer effect: 
after a certain point in time, the highest degree is so extreme that changing the power in the model slightly will 

Figure 5.  Maximum likelihood estimators for time at which degree power exponent changes value, with mean 
and standard deviation error areas calculated over 10 experiments. In both (a) and (b), a network is generated 
with each new node joining connecting to 3 existing nodes, node i chosen with probability pi as in Eq. (8). The 
shaded region represents a 95% confidence interval over the 10 experiments.

Figure 6.  Experiments on a 10,000 node network generated using object model described in Eq. (8). The 
operation model used is to at each iteration, add a single new node and connect to 3 existing nodes (i.e. an 
external star).
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not alter its near-certain probability of the corresponding node being selected. Shown also is a heatmap (Fig. 6b) 
showing the model similarity calculated for pairs of models MDP(α1) and MDP(α2) , over the networks generated 
from the model in Eq. (8) at the time of their changepoint. We find asymmetry in the α1 − α2 phase plane, with 
σG(MDP(α1),MDP(α2)) being large for large α1 values regardless of the value of α2.

Reproduction of network statistics from synthetic networks with changepoints. The previous 
test on finding the correct time of a changepoint assumed that we knew that just one changepoint was to be 
found and knew the form of the model before and after the changepoint. While the results are reassuring given 
the discussed difficulty of preferential attachment estimation, those assumptions are unlikely to hold for a real 
data setting. We test now if we can find the right number of changepoints to use and the correct models between 
these changepoints. As with the previous experiment, starting from a seed network of 5 nodes we generate a 
synthetic target network of 10,000 nodes with a single changepoint at T = 5000 (i.e. when the network reaches 
5000 nodes). Specifically, we use an object model M(t) of

with β = 0.3 , i.e. a model that switches from being mostly random and part BA for t ≤ 5000 and mostly random 
and part BA for t > 5000 , and operation model of each new node connecting to 3 existing nodes.

We fit a model of the form

where j(t) is the number of the interval containing time t, over J evenly spaced time intervals j = 1, . . . , J , and 
first establish which value of J works best. The upper plot in Fig. 7 shows how the c0 value changes for numbers J 
of time intervals. As the synthetic network has just one changepoint exactly at the halfway point in the network’s 
growth, the c0 values alternate as J moves between even and odd numbers, increasing when J is incremented to an 
even number of intervals and decreasing when it is odd. We then take measurements on networks generated from 
best fitting models for J = 1 (no changepoints) and J = 2 (one changepoint) compared to the target network. 

(9)M(t) =

{

βMBA + (1− β)Mrand 0 ≤ t ≤ 5000
(1− β)MBA + βMrand t > 5000

(10)M(t) = βrand,j(t)Mrand + βBA,j(t)MBA

Figure 7.  Investigation of a synthetic network (parameters described in text) with a single changepoint at 
timestamp t = 5000, signified by the dashed line in the lower plots. The upper plot shows how the normalised 
model likelihood varies as the estimated number of time intervals increases (the correct number is two). The 
lower plot shows how well an artificial model reproduces network statistics with no changepoints or with a 
single changepoint. The shaded area represents a 95% confidence interval over 10 repetitions.
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We consider the maximum degree kmax , the mean squared degree 〈k2〉 , the degree  assortativity25, the average 
clustering coefficient and number of singleton (degree 1) nodes, all shown in Fig.  7 apart from the singleton 
nodes which were zero for all cases (since each new node has degree at least 3). For each value of J, we generate 
10 networks and an average and confidence interval are provided. For J = 1 our method estimated the model 
to be 0.5MBA + 0.5Mrand throughout; trying J = 2 yielded an estimate of 0.29MBA + 0.71Mrand for the first half 
and 0.69MBA + 0.31Mrand for the second half. In effect the J = 1 model time-averages the best mixture from that 
of the correct number of intervals, so the measurements for these behave accordingly, with most measurements 
for the J = 1 time interval model matching the target network toward the end but mismatching in the middle.

Fitting time‑varying models to real data. To demonstrate the relevance of this methodology, we 
investigate its use on four real world network datasets: the arXiv high energy phenomenology (cit-hepPh) cita-
tion  network15, a Facebook wall posts  dataset17, a StackExchange MathOverflow  dataset16 and the Enron email 
 corpus11. More information on the datasets is given in supplementary material. Importantly, for the first three 
datasets, there isn’t any prior reason for which we would expect to see behaviour that might be described as a 
changepoint, as there are no documented events to our knowledge that would change how nodes would interact 
in those networks. The Enron dataset, however—the corpus of emails between company employees made public 
when it was being investigated—spans the 2001–2002 period in which many exogeneous events occurred that 
one might expect to influence connection forming within the network. For each dataset, we fit an object model 
of the form

to the dataset, where, as with the synthetic network example, we use J evenly sized time intervals and j(t) corre-
sponds to the interval number containing time t. These three models represent three different processes that may 
contribute to network growth: a tendency to connect to nodes of higher degree, a tendency to connect node pairs 
that have mutual connections and a random factor. To find a good number of time intervals to use, we see how the 
likelihood varies going from just a single time intervals up to 18 evenly spaced time intervals, using the c0 value 
defined in the Likelihood calculation section. A model of the form 11 is fitted for each number of time intervals 
and the c0 value calculated for the best fitting model in each case, and these are shown in Fig. 8, normalised by 
its maximum value in the right hand plot. We see from the right hand plot on Fig. 8 that the model for the Enron 
dataset benefits the most from the addition of changepoints, with the increasing c0 trend seen throughout the 
whole range of number of changepoints used, compared to the other datasets whose c0 flattens off very quickly. 
The fits found for each of these are displayed in Fig. 9. From Fig. 9 we can see that all four networks have a rea-
sonably high BA component as well as a triangle-closure based component, with the random model seeming to 
fill the gaps. In the case of arXiv and StackExchange the components keep very similar proportions across time. 
In the case of Facebook we can see a large increase in the random component in the later data. In the case of the 
Enron data, we have added the times of some of the documented events of the scandal for context, though we do 
not assert that movements in the data are caused by these events, especially when just using ten time intervals. 
This being said, we see that there is a small peak in the degree (BA) model component proportions around the 
time of the bankruptcy announcement (event 2) when the central figures of the network are contacted by many 
different individuals in the few days following this. Finally, we generate artificial networks using these model fits 
and the operation model extracted from the data to investigate if there is an improved reproduction of network 
statistics by allowing a time-varying component. Figures 10 and 11 show various network statistics for the real 
network and the networks generated by the best fitting model, for a single time interval J = 1 and J = 10 time 
intervals, denoted “no changepoint” and “with changepoints” respectively (results just for the StackExchange and 
Enron networks are shown, those for the two remaining datasets are in the supplementary information). Results 
from the models show the average value from 10 realisations, and 95% confidence intervals. 

One thing that can be concluded from these real data results is that the fitted models do not well reproduce 
the majority of network statistics considered for these real networks. Given the fitted models were the highest 
likelihood combination of the three input models this gives us reasonable certainty that no combination of these 

(11)M(t) = βBA,j(t)MBA + βtri,j(t)Mtri + βrand,j(t)Mrand

Figure 8.  Likelihood ( c0 measure) of maximum likelihood object model of the form in Eq. (11), plotted against 
the number of time intervals used (left) and normalised by the maximum value it takes.
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input models can provide a good fit to this set of statistics. This should not be a surprise since the real graphs are 
the results of highly complex processes between individuals. It should be considered a strength of our technique. 
There is no other technique (that the authors know of) that could rule out the idea that some combination of 
those models at different time intervals would well explain the data. The only alternative we know would be 
growing and measuring a network for each combination of parameters at each time interval and this would be 
infeasible computationally.

Given that Figs. 10 and 11 suggest only modest improvements to network statistics reproduction by includ-
ing changepoints, we may ask whether the inclusion of more time intervals leads to a significant increase in the 

Figure 9.  Best fitting (maximum likelihood) mixture of the BA, Triangle Closure and Random model over 10 
time intervals. The Enron data is annotated with some key events in the company’s collapse.

Figure 10.  Enron emails: comparison on various network statistics between best fitting mixture model without 
change and its best fitting counterpart fitted over 10 equally sized intervals for the Enron emails dataset.
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model likelihoods. We check this using Wilks’  theorem26 on the FETA model as explained  in12, Example 3.1. 
We are fitting an object model of L different components over J time intervals, so let βlj be the proportion of 
the l  th model component at time interval j, with 

∑L
l=1 βlj = 1 for all j. We then test H0 : βij = βi , i.e. a model 

with no changepoints, against H1 : βlj varies with j. Wilks’ theorem allows us to test the statistical significance 
of H1 vs H0 (accounting for the number of extra parameter in H1 ). The same procedure can be used to compare 
adding more time intervals if H0 “nests” inside H1 , that is H1 has the same changepoints as H0 and some extra 
changepoints (alternatively this can be thought of as H1 contains all the time intervals in H0 and subdivides one 
or more). Running this test on the four datasets in this paper shows that adding one or more changepoints where 
there were none before is statistically significant at p < 0.0001 . Again in all four datasets moving from two to ten 
timeintervals was statistically significant with p < 0.0001 . In all data sets but StackExchange, moving from five 
to ten time intervals was statistically significant with p < 0.01 (this dataset was the one that showed the smallest 
change in βlj as j varies, see Fig. 11).

In the StackExchange dataset, even without adding changepoints, the model mixture captures most statistics 
fairly well apart from the clustering coefficient, and adding changepoints makes a modest improvement to most 
of these statistics. The latter is true for the Enron emails dataset, though the difference is very small. It is clear 
that these relatively simple models are not correctly reproducing all network statistics (that is not the aim of this 
paper). However, it can be seen that adding changepoints has increased the fidelity of the model for reproducing 
most of the statistics studied. Further work will investigate adding other model components to the mixture and 
how well this improves the ability of artificial models to recreate network statistics.

Discussion and conclusion
This work shows a way forward for the promising research area of growth network models that change in time. 
The framework given here allows a large number of existing models to be combined with time-varying param-
eters. This can generate a large family of different networks according to the user’s need. When investigating 
real data we can fit models that change in time and look for points in the network history when the underlying 
model generating the network data changes. We showed how this can reveal how and when the importance of 
different growth mechanisms changes over time in real networks.

This adds to a toolkit of techniques for understanding time-varying networks, in a time where timestamped 
network data is becoming more available. Furthermore, it formally generalises and combines ideas from a wealth 
of literature on network growth models into a framework that is amenable to statistical inference. The main 
modelling focus in this work was on which nodes attract new links in growing networks, in isolation from other 
considerations such as the frequency of new link/node arrivals. Our approach could be extended to addressing 
this, investigating the interplay between these aspects of network evolution. Whilst for simplicitly we treated all 
networks as undirected, the method works also for directed networks by making some minor modifications to 
object models, such as models dependent on node degree being instead dependent on in, out or total degree.

Using experiments on artificial data we have shown that we can not only capture the known underlying model 
that generated the observed network data but also that we can capture with good accuracy the point in time at 
which that model changed. We use a similarity measure to formally capture the notion of two growth models 
that may give rise to similar networks and show that the problem of estimating network parameters or change 
points is more difficult when they are more similar. The good performance of our estimation procedure gives us 

Figure 11.  Stack Exchange MathOverflow: comparison on various network statistics between best fitting 
mixture model without change and its best fitting counterpart fitted over 10 equally sized intervals for the Stack 
Exchange MathOverflow dataset.
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confidence that the framework can accurately evaluate different explanatory models for real data and how those 
models may change throughout the observed period in a real dataset.

We investigated four well-known data sets from the literature and use three common mechanisms applied in 
network models. We show that for some datasets the proportion of these models can change considerably over 
time while in other data sets the proportions remain largely fixed. The mechanisms used here are deliberately 
chosen to be simple and therefore do not accurately generate all network statistics. However, we show that in 
some cases adding models that vary in time can improve this. There is a potentially large field of research in 
investigating model components that could be used to better capture these statistics.

The code we used in this paper is available on GitHub as multipurpose software (https ://githu b.com/narno 
lddd/FETA3 ) for generating networks from a given object and operation model and fitting mixed and time 
varying models to real data.
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