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Negative correlations can play 
a positive role in disordered 
quantum walks
Marcelo A. Pires1 & Sílvio M. Duarte Queirós1,2*

We investigate the emerging properties of quantum walks with temporal disorder engineered from 
a binary Markov chain with tailored correlation, C, and disorder strength, r. We show that when the 
disorder is weak—r ≪ 1—the introduction of negative correlation leads to a counter-intuitive higher 
production of spin-lattice entanglement entropy, S

e
 , than the setting with positive correlation, that is 

S
e
(−|C|) > S

e
(|C|) . These results show that negatively correlated disorder plays a more important role 

in quantum entanglement than it has been assumed in the literature.

Inasmuch as the random walk has been at the cradle of the development of processes and techniques through 
out one hundred-off years, the introduction of its quantum counterpart, the quantum  walk1(QW), urged a range 
of prospective applications, namely those related to the Feynman’s quantum computer proposal made some 10 
years  earlier2. Formally defined by a succession of local and unitary operations on qubits, QWs have definitely 
established as the direct path to understand complex quantum phenomena by means of relatively simple 
 protocols3–5 that can be reproduced in a  laboratory6–8 or the development of quantum  algorithms5. Explicitly, 
the quantum walk evolves on a Hilbert space, H2 ⊗HZ , by means of the combined application of two unitary 
operators , the operator R̂ acts on subspace H2 and plays the role of quantum coin related to internal (spin) states, 
s, whereas the external states related to the subspace HZ change due to the shift operator, T̂ . The successive 
application of a time-evolution operator allows obtaining the probability of finding the walker at position x at 
time t, Pt(x) , is given by Pt(x) =

∑
s

∣∣∣�(s)
t (x)

∣∣∣
2
 , from which the statistical characterization of the QW is made. 

Along the years, the original  model1 has given raise to multitude of variants, e.g., by changing the dimensionality 
of the walk, the topology of the lattice as well as disorder in the jump size and the angle defining the quantum 
 coin9–19.

A comparison between the classical and the quantum walker protocol shows that in latter, the stochastic 
part is replaced by operations on an internal degree of freedom the walker—traditionally its spin. Given that 
the position state of the walker has to do with that internal state, it is therefore natural to ask how much both 
states relate. The most straightforward way to quantum mechanically assess the degree of relation between both 
states is to look at quantum entanglement, specifically the entanglement entropy. The study of entanglement is 
of crucial importance for quantum information theory either for fundamental or applied  issues20. In this work, 
we analyse the impact in the quantum entanglement of the correlation function—a classical measure—defining 
the disorder introduced in the system by means of a Markov process for the coin operator angle. Those proto-
cols allow experimental implementation with the state-of-art photonic  platforms21. Especially, we focus on the 
relevance of negative correlations to enhancing or undermining entanglement.

As we will show, the arrangement of random disorder with negative correlation leads to the appearance of 
distinctive configurations that produce more spin-lattice entanglement than the corresponding case with posi-
tive correlation.

Literature review
Carrying out computational simulations, the issue of entanglement between the internal and external degrees 
of freedom of a quantum walker was first studied in  200522; there, it was conveyed the asymptotic coin-position 
entanglement entropy Se → 0.872 . . . . Afterwards, that result was analytically  corroborated23 and verified in 
linear-optical  experiments24.

Those works only considered disorder-free configurations in which the coin and translation operator are 
homogeneous in space and time. However, as mentioned in the previous Section, the assumption of disorder 
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in such operators has opened the door for novel phenomenologies. For instance, nongaussian distributions can 
 emerge25 or unusual gaussian with hyperballistic spreading can take  place16. In 2012, it was reported an enhance-
ment of entanglement with random  disorder26, a result that was analytically proven  afterwards15. Subsequently, 
the entanglement analysis was extended for other protocols of disorder either in the coin  operator14,15,21,26–29,29–34 
or in the step  operator18,35,36. Recently, it was brought forth the first model with disorder in the translation opera-
tor that displays both the strengthening of entanglement and tunable spreading from slower-than-ballistic to 
faster-than  ballistic17 and even can be found within a relativistic  context37. From an experimental perspective, 
using photonic platforms, it was possible to confirm non-static disorder can favor  entanglement21.

QWs with correlated disorder were previously studied in both discrete-38–40 and continuous-time41,42 repre-
sentations. In Refs.39,41, it was shown that randomness leads to a diffusive-like behavior even when correlation is 
present. Regardless, the question of how the coin-space entanglement is affected by the correlation in the disorder 
remains uncovered to the best of our knowledge.

Results
First, in Fig. 1 we present the time dependent properties in the angle of the coin operator, θt . For details see 
“Methods”.

We start the characterization of our dynamics by computing the scaling exponent α of m2(t) ∼ tα , the second 
statistical moment of the probability distribution Pt(x) . With α , we classify this process in terms of its diffusion 
features. Explicitly,

(1)α = lim
t→∞

logm2(t)

log t

(2)m2(t) = x2t =
∑

x

x2Pt(x).

(3)Pt(x) = |ψD
t (x)|2 + |ψU

t (x)|2

Figure 1.  (a) Markov chain employed for tailoring the disorder with prescribed persistence probability w that 
provides the control of the autocorrelation with Eq. (29). (b) Autocorrelation of the sequence {θt}Tt=0 . Monte 
Carlo simulations performed until tmax = 5000 . The theoretical line comes from Eq. (29). (c,d) Time series for 
θt engineered from Markov chains with θa = (1+ r)π/4 and θb = (1− r)π/4 for r = 0.1 and C = ±0.8 that 
comes from w = {0.1, 0.9} .
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In Fig. 2, we see how α depends on the correlation in the disorder C. Let us first consider the particular cases 
previously addressed in the literature. Heed that we are using the variance so that α must be half should one is 
comparing the present results with diffusion defined by the standard deviation as made by some authors. As 
 expected43–46 for uncorrelated disorder C = 0 , the diffusive-like behavior α = 1 is achieved within error margin. 
In the maximal correlated situation, C = 1 , θt is constant, which explains the ballistic spreading α = 2 . In the 
maximal anticorrelated case, C = −1 , θt is periodically  alternating47,48 and this deterministic pattern leads to 
ballistic spreading as the standard quantum walk. For the other configurations, we observe that randomness 
induces a diffusive-like scaling exponent α for any correlation |C| < 1 . Even though this is not straightforward 
to interpret for a strong correlation 0.7 < |C| < 1 this result is in agreement with Refs.39,41. That is to say, that 
randomness plays an important role in the path towards diffusive behavior in QWs with time-dependent coins, 
but spatial translational invariance, as done here. Event though randomness is an important ingredient for the 
emergence of diffusive scaling in quantum walks, we emphasize that it is not the only path to diffusion in QWs. 
For instance, two counterexamples are presented in Refs.49,50 where it was reported that some specific time 
dependence in θt can lead to diffusive-like spreading without any randomness.

The qubit-lattice entanglement is an important quantity that can also be quantified experimentally. To assess 
such feature we compute the Von Neumann entropy

where ρc is the reduced density matrix obtained after tracing out the position degree of freedom

and where ρ is the full density matrix of the complete system

Following14,23,29 we can obtain Se with expressions that are computationally faster to process

where the eigenvalues �± of ρc are

with

(4)Se = −Tr
[
ρc log ρc

]
,

(5)ρc = Trx(ρ)

(6)ρ = |����|

(7)Se = −
∑

�∈{�±}
� log2 �

(8)�
± = 1

2
±

√
1

4
− GuGd + |Gud |2,
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Figure 2.  Diagram of the spreading regime versus the correlation C in the disorder for typical values 
r = {01, 0.5, 0.9} . We compute α from m2(t) ∼ tα employing tmax = 5× 105 after discarding the transient 
t < 5× 104.
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In Fig. 3a,b, we quantify the the entanglement between the internal and external degrees of freedom during the 
time evolution of the bipartite system. As initial condition, the QW starts from a state with minimum entropy 
Se = 0 , i.e., a separable state. For systems without disorder (dashed horizontal line in Fig. 3a,b), the asymptotic 
entanglement entropy is Se → 0.872 . . . as obtained in Refs.22,23. That value is quickly overcome for correlated 
arrangements in θt with C = ±0.8 . Asymptotically, both cases lead to the maximum value, which is quite unex-
pected bearing in mind the strong correlation we are dealing with. The mathematical proof presented  in15 
requires randomness in θt for maximum Se as t → ∞ . In the present case, our results show that randomness in 
the presence of correlation also leads to Se → 1.

Still in Fig. 3a,b, the case with negative correlation C = −0.8 produces more entanglement per unit of time 
than the case with C = 0.8 . This result persists if the strength of the temporal disorder increases from r = 0.0.5 
to r = 0.1 . Our findings open the way to the next question: how robust is such result for other correlation C? This 
question is addressed in Fig. 3c,d where we see that negative correlations are more prone to produce entangle-
ment for any 0 < |C| < 1 . However, as the intensity of the disorder r increases this advantage peters out. This is 
further stressed by the results depicted in Fig. 4a–c.

As aforementioned, we observe standard diffusion behavior, Fig. 2 typical of a classical system. Therefore, let 
us shed light on how much discrepancy is produced between the distributions arising from quantum and clas-
sical walks, Pqwt (x) and Pcwt (x) . To that, we compute the Jensen-Shannon  dissimilarity51.

where the first term is the entropy of the mean  distribution51

and Smean is the mean entropy

(9)Gu =
∑

x

|ψU
t (x)|2

(10)Gd =
∑

x

|ψD
t (x)|2 = 1− Gu

(11)Gud =
∑

x

ψU
t (x)

(
ψD
t (x)

)∗
.

(12)JSDt(P
qw, Pcw) ≡ S(Pmean)− Smean,

(13)Pmean(x) ≡ Pqw(x)+ Pcw(x)

2
,

Figure 3.  Von Neumann entanglement entropy Se versus (a,b) time, (c,d) C. Other parameters displayed in the 
panels. For (c,d) Se is computed at t = 500 and each point is an average over 100 samples.
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An additional advantage of JSDt(P
qw, Pcw) refers to its property of being upper and lower bounded, 

0 ≤ JSDt(P
qw, Pcw) ≤ 1.

In Fig. 4, we see how JSDt(P
qw, Pcw) changes with r for typical values of C. We generate the space-time prob-

ability distribution of the CW using the recursive relation,

The disorder-free scenario, r = 0 , leads to the highest difference between Pqwt (x) and Pcwt (x) . That dissimilarity 
decreases as the intensity of the disorder increases, because of increased overlap between the distributions aris-
ing from classical and quantum walk. In other words, the introduction of disorder with negatively correlated 
patterns in θt is more prone to disturb Pqwt (x).

(14)Smean = S(Pqw)+ S(Pcw)

2
.

(15)Pcwt+1(x) = 0.5Pcwt (x − 1)+ 0.5Pcwt (x + 1).

Figure 4.  Entanglement entropy Se (a–c), Jensen–Shannon dissimilarity JSD (d–f), Interference measure I (g–i) 
at t = 500 for increasing disorder strength r and C = {±0.4,±0.6,±0.8} . Each point comes from an average 
over 500 samples. The red shadow area for (a–c) shows the regime where anticorrelation gives a clear advantage 
in terms of Se.
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Besides Pt(x) , we can delve into the analysis of the relation between the components ψU
t (x) and ψD

t (x) . 
Allowing for Refs.25,52,53, we compute PUt (x) = |ψU

t (x)|2 and PDt (x) = |ψD
t (x)|2 in terms of the coin parameter

where the local interference  term53 is

where R(z) stands for the real part of a complex number z and ∗ its conjugate. The total interference over the 
chain at t is

In Fig. 4, we see that differently from JSD It displays a nonmonotonic behavior. More importantly, It contains 
a signature of the regime where the negative correlation overcomes the positive correlation in terms of the 
entanglement production. Thus, the emergence of the regime where Se(−|C|) > Se(|C|) comes at the expense 
of the emergence of a marked difference in the mutual modulation between the spin components at the level 
ψU
t (x) and ψD

t (x).
In order to better grasp the underlying mechanism behind our results let us inspect the local features of the 

spatial flux of probability over the  chain54. This task can be achieved with

In Fig. 5, we see that the embedded disorder in the coin operation leaves clear fingerprints in the spatiotemporal 
patterns in the normalized measure At(x)/|At |max where |At |max = maxx At is the maximum over the chain 
updated for each t. For C = −0.8 , the presence of pulse trains of short-time duration in θt induces a strengthening 
in the spatial interference of the components |ψU ,D

t (x)|2 which leads to a substantial flux of probability towards 
the central region. For C = 0.8 , the presence of pulse trains of long-time duration in θt stimulate a slowdown in 
the decay of the peaks near the edges. In both cases C = ±0.8 , the increase in the magnitude of the disorder r 
leads to a increase in the evanescence of the fronts near the borders.

Finally, as the calculation of Se has the input the eigenvalues of ρc , let us explore the asymptotic features of 
such reduced density matrix. To this  task15, we pick the initial condition given by ψU

0 (x) = ψD
0 (x) = δx,0/

√
2 

(16)
Pt+1(x) = PUt+1(x)+ PDt+1(x) = cos2 θt

(
PUt (x + 1)+ PDt (x − 1)

)
+ sin2 θt

(
PDt (x + 1)+ PUt (x − 1)

)
+ Jt(x)

(17)Jt(x) = sin 2θtR{ψU
t (x − 1)ψD∗

t (x − 1)− ψU
t (x + 1)ψD∗

t (x + 1), }

(18)It =
∑

x

|Jt(x)|

(19)At(x) = |ψU
t (x)|2 − |ψD

t (x)|2,

Figure 5.  Spatiotemporal pattern for the normalized measure At(x)/|At |max for r = {0.05, 0.5} and correlation 
C = ±0.8 . Red profile: preponderance of |ψD

t (x)| . Blue profile: dominance of |ψU
t (x)| . In both cases, the 

darkness indicates the strength of At(x)/|At |max.
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(only for this analysis) and investigate the scaling behavior of the standard trace distance between states span-
ning consecutive time steps

The numerical experiments in Fig. 6 and Table 1 highlight that average D̄(t) decays with a power-law in the 
long-run thus providing numerical evidence that ρc achieves an asymptotic limit D̄ → 0 . It was  shown15 the 
standard QW follows D̄ ∼ t−1/2 and the random QW follows D̄ ∼ t−1/4 for uncorrelated disorder. Our results 
show the algebraic decay D̄ ∼ t−1/4 holds even for temporal disorder with strong correlation C = {−0.8, 0.8} . 

(20)D(t) ≡ 1

2
Tr

(
|ρc(t)− ρc(t − 1)|

)
.

Figure 6.  Time series for the average trace distance between states at adjacent instants. Outcomes for disorder 
strength r = {0.1, 0.5} as well as C = {−0.8, 0.8, 1} . Full lines are obtained with 100 samples, except for the 
nonrandom QW with C = 1 . The superimposed dashed lines are the fits (values in Table 1) that are obtained 
after discarding 5 initials steps in order better describe the long-run tendency.

Table 1.  Fitted values used in Fig. 6.

– r = 0.1 r = 0.5

C = −0.8 D̄ = (0.116056± 0.000050)t−1/4 D̄ = (0.272672± 0.000087)t−1/4

C = 0.8 D̄ = (0.075485± 0.000053)t−1/4 D̄ = (0.157816± 0.000036)t−1/4

C = 1 D̄ = (0.245038± 0.000051)t−1/2 D̄ = (0.100453± 0.000020)t−1/2
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Such results – new to the literature on this subject to the best of our knowledge – provide novel insights about 
the time-dependence of the trace distance separating states at neighboring times.

Discussion
Arenas where negative correlations can play a positive role, are rare. Recently, it was discovered a set of configu-
rations in which energy transport at microscopic level can be heightened by negative  correlations13. While in 
our scheme of disorder any value of correlation, c ≡ |C| < 1 , reduces the spreading to the diffusive regime, we 
present a framework where anti-correlated disorder confers a clear advantage for entanglement production in 
comparison with the corresponding protocol with positive correlation.

Entanglement in QWs has been addressed earlier with the introduction of modifications—relatively to the 
standard QW—either in the coin  operator14,15,21,26–29,29–34,55 or in the step  operator17,18,35,36. Nevertheless, the 
model we have introduced is able to combine the set of properties we obtained: (1) for weak disorder strength, 
r << 1 , and assuming systems with either negative or positive correlation, C = ∓c , [eg, Fig. 1c,d where c = 0.8 ] 
the production of entanglement entropy (per timestep) is higher in the former than the latter; (2) asymptotically, 
randomness even in the presence of strong correlation also induces Se → 1 . These results open up new possibili-
ties for tailoring correlated disorder with target features, while keeping preserved Se → 1.

From an experimental point of view, the optical apparatuses in Ref.56,57 are promising candidates for imple-
menting our proposal due to their flexibility in the design of the coin operator. Of particular interest here is the 
recent experiment conducted  in21 where their compact photonic platform employs a time-dependent binary 
disorder in the coin operator that can be adapted to introduce our prescription of correlation. Their setup allows 
the reconstruction of the local spinor state for each site which in turn provides an indirect way to quantify the 
entanglement entropy and related measures. In a broader view, our work brings about further prospect in the 
definition of correlated disorder in experimental setups for realizing quantum  walk6–8.

We reckon these results contribute to a better understanding of the relationship between correlated disorder 
and entanglement between the degrees of freedom of a quantum walk. On the one hand, Markov chains are very 
flexible and diverse with entire books devoted to its features. On the other hand, quantum walks are multigoal 
and versatile platforms. By bridging the two fields, our results strongly suggests that negatively correlated disorder 
could play a much more important role in applied  issues3–5,58 as well as fundamental  topics59,60.

Methods
One-dimensional quantum walks. We consider a discrete-time evolution of a two-state quantum 
walk moving on a one-dimension lattice whose composite Hilbert space is H2 ⊗HZ . The composed state 
|x� ⊗ |c� = |x, c� indicates the position x ∈ Z of a QW with internal degree of freedom (up/down), c = {U ,D} . 
That degree of freedom, c = {U ,D} , is associated with the corresponding space-time dependent amplitude of 
probability ψU ,D

t (x) , respectively. At a given time t ∈ N we can write the full wave function �t as

The time evolution of the QW is governed by

with the identity operator IdZ =
∑

x∈Z |x��x| and:

• The coin operator: 

 where the off-diagonal elements modulated by sin θt are accountable for the coupling between the evolution 
of ψU

t (x) and ψD
t (x) . The diagonal elements tempered by ± cos θt are responsible for propagation. The time-

dependence of θt will be described in detail below.
• The state-dependent translation operator: 

 Meaning that the hopping-induced flux of probability takes place to neighbor sites.
Now we set the initial condition as

Tailoring disorder with Markov chains. At each time step t, we generate a random variable 
zt = {a = −1, b = 1} following a two-state Markov chain with transition probability matrix:

(21)�t =
∑

x∈Z

(
ψU
t (x)|U� + ψD

t (x)|D�
)
⊗ |x�

(22)�t+1 = Ŵ�t

(23)Ŵ = T̂(R̂⊗ IdZ)

(24)R̂ :
{
|x,U� → cos θt |x,U� + sin θt |x,D�
|x,D� → sin θt |x,U� − cos θt |x,D�

(25)T̂ :
{
|x,U� → |x + 1,U�
|x,D� → |x − 1,D�

(26)ψU
0 (x) = 1√

2
δx,0, ψD

0 (x) =
i√
2
δx,0,
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where w is the persistence probability. Explicitly, w quantifies the probability of a given value to persist in the 
same state in the next step t + 1 . Thus, the switching probability is 1− w . See Fig. 1a.

We set the baseline angle θ0 , the kicking strength r. Then we define θa = (1+ r)θo and θb = (1− r)θo . This 
protocol is complete with the equation

Explicitly, we start with z0 = −1 then with probability w we pick z1 = z0 , otherwise z1 = −z0 . This procedure is 
repeated iteratively until the desired time. With the time series zt , we apply Eq. (28) to obtain the time series for 
θt . With this routine, each kick train has a changeable length, but constant amplitude (1± r)θo . In all circum-
stances, we fixed θo = π/4 . As 0 ≤ r ≤ 1 , then θa = (1+ r)π/4 ∈ [π/4,π/2] and θb = (1− r)π/4 ∈ [0,π/4] , 
then 0 ≤ (1− r)π/4 ≤ θt ≤ (1+ r)π/4 ≤ π/2.

For characterizing the similarity of the patterns through θt generated over time we employ the autocorrelation

In Fig. 1b, we show the estimated autocorrelation obtained from the Monte Carlo simulation of the disorder 
and using C = �ztzt−1�.

Depending on the magnitude of the correlation we impose on the system The patterns in θt show different 
levels of similarity during the temporal evolution . The time series displayed in Fig. 1c,d illustrate the antiper-
sistent patterns for C = −0.8 (marked by pulse trains of short duration) as well as the persistent patterns for 
C = 0.8 (marked by pulse trains of long duration).

Apart from the transition matrix in Eq. (27), we generate a sequence, {θt}Tt=0 , with the prescribed correla-
tion C, which has the interesting property of being unbiased since the fractions of each ingredient in {θt}Tt=0 are

where pba = pab = 1− w.
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