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Utility of CT texture analysis 
to differentiate olfactory 
neuroblastoma from sinonasal 
squamous cell carcinoma
Masaki Ogawa1*, Satoshi Osaga2, Norio Shiraki3, Daisuke Kawakita4, Nobuhiro Hanai5, 
Tsuneo Tamaki6, Satoshi Tsukahara7, Takatsune Kawaguchi1, Misugi Urano1 & 
Yuta Shibamoto1

The purpose of this study was to examine differences in texture features between olfactory 
neuroblastoma (ONB) and sinonasal squamous cell carcinoma (SCC) on contrast-enhanced CT 
(CECT) images, and to evaluate the predictive accuracy of texture analysis compared to radiologists’ 
interpretations. Forty-three patients with pathologically-diagnosed primary nasal and paranasal 
tumor (17 ONB and 26 SCC) were included. We extracted 42 texture features from tumor regions on 
CECT images obtained before treatment. In univariate analysis, each texture features were compared, 
with adjustment for multiple comparisons. In multivariate analysis, the elastic net was used to select 
useful texture features and to construct a texture-based prediction model with leave-one-out cross-
validation. The prediction accuracy was compared with two radiologists’ visual interpretations. In 
univariate analysis, significant differences were observed for 28 of 42 texture features between ONB 
and SCC, with areas under the receiver operating characteristic curve between 0.68 and 0.91 (median: 
0.80). In multivariate analysis, the elastic net model selected 18 texture features that contributed to 
differentiation. It tended to show slightly higher predictive accuracy than radiologists’ interpretations 
(86% and 74%, respectively; P = 0.096). In conclusion, several texture features contributed to 
differentiation of ONB from SCC, and the texture-based prediction model was considered useful.

Olfactory neuroblastoma (ONB) is a rare malignant neuroectodermal tumor, accounting for 2 to 6% of all nasal/
sinonasal  tumors1,2, and is most commonly characterized by intracranial extension through the cribriform plate 
or skull base with rapid  growth1,3. The symptoms are nonspecific and similar to those of benign sinonasal masses 
such as polyps, which can lead to delays in diagnosis. The optimal treatment for ONB is complete tumor resec-
tion; a craniofacial surgical approach is often performed but is technically quite  difficult1,2. The most important 
differential diagnosis for ONB is squamous cell carcinoma (SCC), which is the most common malignant sinona-
sal tumor and has similar clinical manifestations to  ONB2. Endoscopic excisional biopsy is the gold standard 
for definitive diagnosis of sinonasal tumors, but its diagnostic sensitivity is not high because of surrounding 
inflammatory tissues, patterns of local spread, and massive nasal  hemorrhage2. Noninvasive imaging techniques, 
such as computed tomography (CT) and magnetic resonance (MR) imaging, are performed first for a suspected 
sinonasal tumor, and malignant tumors are suspected based on a finding of bony  destruction2,3. However, the 
differential diagnosis between ONB and SCC remains difficult.

Most ONBs are centered in the superior nasal cavity, ethmoid, or cribriform plate, and characteristic CT 
image features were reported to be a well-circumscribed margin, uniform enhancement, and bony  erosion1,3,4. As 
a specific MR feature, a relatively rare finding of cysts along the intracranial margin of a tumor was  reported3,5. 
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Nevertheless, differentiation is difficult on conventional CT and MR  images2. Xiao et al.2 reported the utility of 
diffusion kurtosis imaging and dynamic contrast-enhanced MR imaging for differentiation between ONB and 
SCC. However, these advanced techniques are not routinely performed in many hospitals. CT examinations are 
probably performed more often than MR owing to the shorter scan time, high spatial resolution with multipla-
nar reconstruction images, stable image quality with few artifacts, low cost, greater number of devices in the 
world, and lack of MR contraindications such as pacemakers. Several studies have recently reported that texture 
analysis of CT images, a post-processing method, can add finer structural information related to tumor grade 
and phenotype that is not visually evident on conventional morphological  analysis6–12. Image texture is defined 
as a complex pattern within an image consisting of simpler sub-patterns with characteristic features that may be 
evaluated by quantitative analysis. Texture analysis allows mathematical evaluation of tumor heterogeneity that 
is related to differences in pathologic features not easily quantifiable by the human  eye6–12. The purpose of this 
study was to examine differences in texture features between ONB and SCC on contrast-enhanced CT (CECT) 
images and to evaluate the diagnostic performance of texture analysis.

Methods
Study design and patients. This retrospective study was approved by Nagoya City University Graduate 
School of Medical Sciences and Nagoya City University Hospital Institutional Review Board (No. 60-19-0114) and 
other four participating institutions, with a waiver for informed consent. All methods were performed in accord-
ance with the relevant guidelines and regulations. ONB is a rare tumor, and we collected cases from several insti-
tutions in our university group. The privacy of the patients was carefully protected. The patients were selected 
following a search of medical records between May 2005 and February 2020. Eligibility criteria for entry were: 
(1) adult patients; (2) histological diagnosis of primary nasal and paranasal ONB or SCC; and (3) CECT exami-
nation reconstructed with 3-mm slice thickness before treatment. The exclusion criteria were: (1) recurrence, 
previously treated, or metastasis; and (2) CECT images affected by motion or streak artifacts. Consequently, 17 
cases with ONB and 26 cases with SCC were fully analyzable.

CT scanning. CT images were obtained using multidetector-row helical CT scanners. The number of detec-
tors was either 16, 64, 128, or 320. CT images were acquired with the following protocol: spiral mode; slice thick-
ness and reconstruction interval, 1 to 3 mm; matrix, 512 × 512; matrix size, 0.33 × 0.33 mm to 0.64 × 0.64 mm 
(field of view, 170 × 170 mm to 330 × 330 mm); and kernel, suitable for interpreting soft tissues. All axial images 
were reconstructed with 3-mm slice thickness. 1.1 to 2.0 ml/kg of body weight (maximum 100 ml) of a 300 mg 
I/mL nonionic iodinated contrast material was injected into a peripheral vein at a rate of 1.1 to 2.0 ml/s, and 
images were obtained at delays of 70 to 120 s.

Image data analysis. We used 3D Slicer (Version 4.1; www.slice r.org), an open source software package. 
In each slice, a radiologist with 11  years of experience (M.O.) manually drew a region of interest (ROI) on 
the visible tumor on axial CECT images, referencing sagittal and coronal images and non-contrast CT images. 
Clinical and pathological data were blinded. The ROI was drawn as large as possible with enough distance 
from the tumor edge to avoid a partial volume effect and we excluded voxels containing obvious non-enhanced 
cystic and necrotic areas, artifacts related to beam hardening, air, and calcifications, in accordance with previous 
 studies7,13–15. Simply removing the slices with streak artifacts did not affect the performance of texture analysis 
in previous  studies16,17. Figure 1 is a representative case in which the ROI of the tumor was manually drawn. 
Texture features from ROI were extracted using an extension of 3D Slicer software called SlicerRadiomics (ver-
sion: 2.12; https ://githu b.com/Radio mics/Slice rRadi omics )8. This extension included with the “Pyradiomics” 
library can calculate a variety of texture features based on Imaging Biomarker Standardization Initiative (IBSI) 
 definitions18. In this software, an image pre-processing function is included. Hounsfield Unit values of voxels 
in CT images are used for calculations. Images were upsized to give symmetrical voxels of 1.5 mm using linear 

Figure 1.  Representative example of a patient with ONB. The manually drawn ROI (in yellow) is delineated on 
an axial CECT image.

http://www.slicer.org
https://github.com/Radiomics/SlicerRadiomics)
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interpolation, because matrix size resampling was reported to be an appropriate preprocessing step in order 
to normalize differences of image data sets depending on different CT scanners and reconstruction settings 
in previous  studies17,19,20. A total of 42 texture features for each tumor were extracted, applying the following 
criteria: first-order statistics (18 features) and Gray-Level Co-Occurrence Matrix (GLCM, 24 features). The first-
order statistics assess the distribution of CT numbers or voxel values, such as mean, median, standard devia-
tion, maximum, minimum, entropy, kurtosis, and skewness of the histogram. GLCM is a second-order statistic 
that assesses spatial relationships between adjacent voxels, providing measures of intra-lesion  heterogeneity8,14. 
GLCM evaluates how frequently a pair of intensity levels is identified in an orientation based on a specified angle 
and radius. The co-occurrence matrix was determined for a distance of 1 pixel over 13 angle directions in 3D 
data. The value of a feature was calculated for each angle, and the mean of these values was outputted. A fixed 
bin width was used for gray discretization level which is equally spaced from 0. Mathematical definitions of these 
features are described in https ://pyrad iomic s.readt hedoc s.io/en/lates t/featu res.html.

Radiologists’ interpretations. The CT images were reviewed by two radiologists (M.U. and T.K., both 
with 15 years of clinical experience), who were blinded to the pathologic and clinical information. The two radi-
ologists visually classified all cases as either ONB or SCC, based on tumor localization, degree of enhancement, 
and heterogeneity. Decisions were reached by consensus, in accordance with previous  studies8,13.

Statistical analysis. Statistical analyses were performed using R version 3.6.1 (R Foundation for Statistical 
Computing, Vienna, Austria) with glmnet and pROC packages. In univariate analysis, texture features for ONB 
and SCC were compared using Welch’s t test. To adjust for multiple comparisons, we performed a false discovery 
rate (FDR) correction using the Benjamini and Hochberg method and adjusted P values. P < 0.05 was considered 
indicative of a significant difference. The receiver operating characteristics (ROC) curve analysis was performed, 
calculating area under the curve (AUC) to assess the prediction capability.

In multivariate analysis, the elastic  net21 was applied to select useful texture features and to construct a 
texture-based prediction model based on them. Normalization of variables was necessary for the elastic net and 
was automatically performed. The optimal hyperparameters of the elastic net, which are the mixing parameter of 
 L1- and  L2-penalties and regularization parameter, were determined to minimize leave-one-out cross-validation 
(LOOCV) error using grid search. Although the features and their coefficients of the final prediction model were 
determined using all subjects by the elastic net with the optimal hyperparameters, in order to avoid overestimat-
ing the prediction accuracy, LOOCV was also used to evaluate the  performance22. As a similar regularization 
and automatic variable selection method, the least absolute shrinkage and selection operator (LASSO)23 was 
reported. However, if there is a group of variables among which the pairwise correlations are very high, the 
LASSO selects only one variable at random, and so it is inappropriate to identify multiple variables that contribute 
to  differentiation21. Also, the maximum number of predictors in the LASSO is equal to the number of samples, 
and high correlations between predictors cause degraded prediction performance even if the number of predic-
tors is smaller than the number of  samples21. We hypothesized that some features might be highly correlated to 
each other due to the similarity of mathematical expression. We therefore performed correlation analysis for the 
extracted texture features (Fig. 2), and highly correlated features were seen. We chose the elastic net to overcome 
these limitations of  LASSO21. Results of the correlation analysis were used as reference and we did not perform 
pre-selection of features. The accuracy between the texture-based prediction model and radiologist’s interpreta-
tions was compared using the McNemar test.

Results
The patient and tumor characteristics of ONB and SCC are summarized in Table 1. There were no significant 
differences in the tumor diameter (P = 0.33). The radiologists interpreted that 15 of 17 cases with ONB and 8 of 
26 cases with SCC were centered in the superior nasal cavity, ethmoid, or skull base.

In univariate analysis, significant differences were observed for 28 of the 42 texture features between ONB 
and SCC patients, with an AUC between 0.68 and 0.91 (median: 0.80). The P values, FDR-adjusted P values, AUC 
values, and cutoff point differentiating ONB from SCC for each feature are shown in Table 2.

In multivariate analysis, the optimal mixing and regularization hyperparameters were respectively determined 
to be 0.44 and − 2.488 (logarithmic value) by the LOOCV method, and the number of selections for each feature 
in the 43 cross-validation models was tabulated in Supplementary Table 1. The feature-similarity between the 
cross-validation models evaluated by average Hamming distance was 2.08. The elastic net with the optimal 
hyperparameters identified a final predictive model with 18 texture features that contributed to differentiation, of 
which 17 showed significant differences in the univariate analysis. The linear predictor of the final model showed 
an AUC of 0.83. The standardized regression coefficients for these features and intercept are shown in Table 2. 
Figure 3 displays these features weighted by absolute values of standardized regression coefficient. Regarding 
prediction accuracy, the elastic net model and radiologists’ interpretations correctly classified 37 (86%) and 
32 (74%) of the 43 cases, respectively. The elastic net model showed slightly higher predictive accuracy than 
radiologists’ interpretations, but there was no significant difference (P = 0.096). For SCC, the elastic net model 
also showed slightly higher accuracy than radiologists’ interpretations (96% and 77%, respectively), although 
the difference was not significant (P = 0.074). For ONB, both the elastic net model and radiologists’ interpreta-
tions showed accuracy rates of 71%. Detailed accuracy of the elastic net model and radiologists’ interpretations 
is shown in Table 3.

https://pyradiomics.readthedocs.io/en/latest/features.html
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Discussion
Our study demonstrated the utility of texture analysis on CECT images in differentiating ONB and sinonasal 
SCC. In univariate analysis, significant differences were observed in 28 texture features. In multivariate analysis, 
the elastic net model selected 18 texture features that contributed to differentiation, and the prediction accuracy 
was 86%. LOOCV was used to avoid overestimating the prediction accuracy in multivariate analysis. One of 
the 18 features selected in multivariate analysis did not show significant differences in univariate analysis, due 
to differences in the analysis methods. The texture features were composed of first-order statistics assessing the 
distribution of CT numbers or voxel values and second-order statistics assessing spatial relationships between 
adjacent  voxels8,14. Among several reported second-order statistic methods, we selected GLCM as it was the most 
frequently used in previous  studies6,7,9,13–15,19,22,24,25. One previous study reported that the detectability of image 
heterogeneity might be superior with GLCM compared to first-order  statistics25. Multiple features correlated 
to heterogeneity were included in the selected features, so uniform enhancement of ONB might be reflected. 
Nevertheless, it was difficult to discern how each mathematical texture feature was associated with the visual 
image pattern and underlying pathological tumor features. Especially in multivariate analysis, complicated rela-
tionships among each of the texture features make interpretation increasingly difficult, so detailed interpretation 
of the relationships between texture features and pathological features could not be made in many previous 
 studies6,8,9,13–15,20,22,24. Our texture analysis did not yield information about tumor localization, in contrast to the 
radiologists’ interpretations. Most ONBs were centered in the superior nasal cavity, ethmoid, or cribriform plate, 
as previously  reported1,3,4. Nevertheless, the texture-based prediction model showed high predictive accuracy, no 
less accurate than the radiologists’ interpretations, probably due to its objective assessment of the image pattern. 

Figure 2.  Cluster dendrogram (left) with heatmap (right) for 42 extracted texture features. Normalized 
Euclidean distance was used in hierarchical cluster analysis. More highly correlated clusters are located nearer to 
the bottom of the dendrogram. The features were sorted according to the result. Pearson correlation coefficients 
between respective features are shown in the heatmap; blue and red indicate negative and positive correlations, 
respectively. The heatmap and cluster dendrogram show a similar tendency.

Table 1.  Patient and tumor characteristics of olfactory neuroblastoma and squamous cell carcinoma. ONB 
olfactory neuroblastoma; SCC squamous cell carcinoma, SD standard deviation.

Total (n = 43) ONB (n = 17) SCC (n = 26) P-value

Age (mean ± SD), year 60 ± 14 54 ± 17 64 ± 11 0.10

Gender (male/female) 32/11 22/4 10/7 0.20

Longest diameter (mean ± SD), cm 4.5 ± 1.5 4.2 ± 1.3 4.6 ± 1.7 0.33

Centered in the superior nasal cavity, ethmoid, or skull base 23 15 8 0.18

Intracranial extension 9 7 2 0.01
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Texture analysis might therefore help radiologists more accurately differentiate ONB and SCC centered in the 
superior nasal cavity or ethmoid.

Other rare superior nasal or ethmoidal tumors include undifferentiated carcinomas, neuroendocrine carci-
nomas, and small-cell undifferentiated  carcinoma1,2. However, differentiation among ONB and these rare tumors 
is often difficult on conventional CT and MR images. In addition, the utility of advanced imaging is  unproven2. 
Further studies using a greater number and larger variety of nasal and ethmoidal tumors are warranted to evalu-
ate the possibility of differentiation among these tumors. As another differential diagnosis of sinonasal tumor, 
malignant lymphoma of the ethmoidal sinus is very  rare26. In two previous large studies (n = 78 and 220), no 
lymphoma was found among malignant tumors of the nasal cavity and paranasal  sinus26. Also, diagnosis of 

Table 2.  Texture features differentiating olfactory neuroblastoma from squamous cell carcinoma in univariate 
and multivariate analysis. FDR false discovery rate; AUC  indicates area under the curve. Significant FDR-
adjusted P values < 0.05 and non-zero standardized coefficients of the elastic net logistic regression are in bold.

Texture feature

Univariate analysis Multivariate analysis

P value FDR-adjusted P value AUC Value Cutoff point Standardized regression coefficient

InterquartileRange 0.001 0.003 0.77  < 19

Skewness 0.93 0.95 0.50

Uniformity 0.005 0.009 0.76  > 0.45

Median 0.000 0.001 0.84  > 93 0.19

Energy 0.030 0.045 0.78  < 2.3 × 106

RobustMeanAbsoluteDeviation 0.003 0.005 0.74  < 8.4

MeanAbsoluteDeviation 0.001 0.002 0.78  < 12 -0.071

TotalEnergy 0.049 0.066 0.78

Maximum 0.10 0.13 0.69

RootMeanSquared 0.000 0.001 0.84  > 93 0.17

X90Percentile 0.001 0.002 0.82  > 111 0.038

Minimum 0.000 0.001 0.91  > 52 0.36

Entropy 0.001 0.002 0.79  < 1.4 -0.13

Range 0.000 0.001 0.85  < 69 -0.12

Variance 0.001 0.002 0.79  < 188  − 0.14

X10Percentile 0.000 0.001 0.87  > 74 0.32

Kurtosis 0.18 0.23 0.61

Mean 0.000 0.001 0.84  > 92 0.19

GLCM_JointAverage 0.002 0.003 0.79  < 2.5

GLCM_SumAverage 0.002 0.003 0.79  < 5.0

GLCM_JointEntropy 0.001 0.002 0.81  < 2.2  − 0.026

GLCM_ClusterShade 0.69 0.79 0.56  − 0.26

GLCM_MaximumProbability 0.036 0.052 0.70

GLCM_Idmn 0.000 0.001 0.86  < 0.97  − 0.24

GLCM_JointEnergy 0.007 0.012 0.77  > 0.21

GLCM_contrast 0.63 0.73 0.55

GLCM_DifferenceEntropy 0.028 0.044 0.70  < 0.99

GLCM_InverseVariance 0.44 0.53 0.59

GLCM_DifferenceVariance 0.047 0.065 0.70

GLCM_Idn 0.001 0.002 0.79  < 0.92  − 0.17

GLCM_Idm 0.89 0.95 0.52

GLCM_Correlation 0.000 0.001 0.86  < 0.21

GLCM_Autocorrelation 0.002 0.004 0.80  < 6.2

GLCM_SumEntropy 0.000 0.001 0.84  < 2.0  − 0.10

GLCM_MCC 0.028 0.044 0.68  < 0.39

GLCM_SumSquares 0.001 0.002 0.79  < 0.41  − 0.005

GLCM_ClusterProminence 0.002 0.004 0.83  < 2.0  − 0.005

GLCM_Imc2 0.066 0.086 0.68

GLCM_Imc1 0.92 0.95 0.53

GLCM_DifferenceAverage 0.99 0.99 0.50

GLCM_Id 0.81 0.90 0.52

GLCM_ClusterTendency 0.000 0.001 0.82  < 0.89  − 0.042

(Intercept) – – –  − 0.45
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malignant lymphoma may not be difficult in most cases based on the typical image findings of strong diffusion 
restriction on MR images.

As a visual MR image feature, Som et al.5 reported that the finding of cysts along the intracranial margin of 
a tumor highly suggested ONB, although it was only seen in 3 of the 54 ONB cases. Texture analysis using MR 
images for other tumors was reported in a few  studies24,25, but establishing the clinical utility and general diagnos-
tic prediction model of MR texture features has been difficult in practice. The contrast, image noise, and artifacts 
of MR images are intricately affected by numerous factors: scan parameters, reconstruction parameters, differ-
ence between acquired and reconstructed matrix, hardware including multichannel coil, and vendor/version-
specific reconstruction algorithm. Also, for 2D sequences commonly used in scanning the head and neck, the 
slice thickness and slice-selected direction differ depending on tumor size, tumor shape, and scanning time. 3D 
sequences require a longer scan time and the image quality is more significantly affected by these factors. There 
is currently no way to standardize these image differences affecting MR texture analysis, so all images should be 
obtained using the same protocol and MR scanner, which could result in a small sample size. Radiomics studies 
generally require a large number of image samples, typically obtained using different scanners and  protocols19. In 
contrast, methods for standardizing differences of images for CT texture analysis were reported in previous stud-
ies: matrix size resampling and visual removal of slices with  artifacts16,17,19,20. Consequently, CT texture analysis 
can be retrospectively applied to various clinical images, and CT images are more appropriate for establishing 
the utility of texture analysis and a general diagnostic model than MR images.

Our study had a few limitations. First, the small sample size and large number of extracted texture features 
may lead to model overfitting, limiting the generalizability of the  results13. Nevertheless, ONB is very rare, so we 
used LOOCV for validation and the elastic net model to address this problem. The elastic net, an automatic vari-
able selection and continuous shrinkage method, is useful when a relatively large number of predictors is found 
compared to the number of  samples21. Also, our texture analysis method can be performed in other institutions 
for validation studies because we analyzed clinical images using an open-source software package based on IBSI, 

Figure 3.  In multivariate analysis, texture features contributed to differentiation between ONB and SCC 
weighted by absolute values of standardized regression coefficients according to the elastic net logistic 
regression.

Table 3.  Detailed accuracy of the elastic net model and radiologists’ interpretations.

Accuracy rate Elastic net

Radiologists (%) Elastic net (%) Correct Wrong

Total (n = 43) 74 86 Radiologists
Correct 30 2

Wrong 7 4

Olfactory neuroblastoma (n = 17) 71 71 Radiologists
Correct 10 2

Wrong 2 3

Squamous cell carcinoma (n = 26) 77 96 Radiologists
Correct 20 0

Wrong 5 1
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not a self-developed program. Second, the ROI in the tumors was manually drawn and voxels containing obvious 
non-enhanced cystic and necrotic areas were excluded. The presence of cysts is highly suggestive of  ONB3,5, so 
it may be desirable to include cysts in the ROI. However, it might be difficult to distinguish cysts and necrosis 
visually on CT images, so both cysts and necrosis were excluded in our texture study.

In conclusion, several texture features of CECT images contributed to differentiation between ONB and SCC. 
The texture-based prediction model using the elastic net tended to show better predictive accuracy than radiolo-
gist’ interpretations, although the model did not incorporate tumor localization into the analysis.

Received: 5 October 2020; Accepted: 11 February 2021
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