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A two‑tiered targeted proteomics 
approach to identify pre‑diagnostic 
biomarkers of colorectal cancer risk
Sophia Harlid1*, Justin Harbs1, Robin Myte1, Carl Brunius2,3, Marc J. Gunter4, 
Richard Palmqvist5, Xijia Liu6 & Bethany Van Guelpen1,7

Colorectal cancer prognosis is dependent on stage, and measures to improve early detection are 
urgently needed. Using prospectively collected plasma samples from the population‑based Northern 
Sweden Health and Disease Study, we evaluated protein biomarkers in relation to colorectal cancer 
risk. Applying a two‑tiered approach, we analyzed 160 proteins in matched sequential samples 
from 58 incident colorectal cancer case–control pairs. Twenty‑one proteins selected from both this 
discovery phase and the literature were then analyzed in a validation set of 450 case–control pairs. 
Odds ratios were estimated by conditional logistic regression. LASSO regression and ROC analysis 
were used for multi‑marker analyses. In the main validation analysis, no proteins retained statistical 
significance. However, exploratory subgroup analyses showed associations between FGF‑21 and 
colon cancer risk (multivariable OR per 1 SD: 1.23 95% CI 1.03–1.47) as well as between PPY and rectal 
cancer risk (multivariable OR per 1 SD: 1.47 95% CI 1.12–1.92). Adding protein markers to basic risk 
predictive models increased performance modestly. Our results highlight the challenge of developing 
biomarkers that are effective in the asymptomatic, prediagnostic window of opportunity for early 
detection of colorectal cancer. Distinguishing between cancer subtypes may improve prediction 
accuracy. However, single biomarkers or small panels may not be sufficient for effective precision 
screening.

Colorectal cancer is one of the most common causes of cancer-related deaths in the world, and mortality is 
highly dependent on stage at  diagnosis1. Early detection and treatment of colorectal cancer could therefore lead 
to decreased mortality rates world-wide. Many countries have implemented, or are in the process of implement-
ing, age-based general screening programs, typically using colonoscopy, or fecal tests followed by  endoscopy2,3. 
In addition to early detection, screening has major preventive and therapeutic effects, through the removal of 
precancerous and early malignant lesions. Improvements to general screening programs could, therefore, trans-
late into substantial reductions in colorectal cancer incidence and mortality.

Currently, efforts to supplement colorectal cancer screening programs with blood tests for sub-clinical disease 
presence are  ongoing4,5, including the FDA-approved test for Septin 9 DNA  methylation6. Such tests use diag-
nostic biomarkers, i.e. biomarkers of disease, as an acceptable, minimally invasive and resource-effective means 
of selecting screening participants for colonoscopy. Another approach to refining general screening programs 
is through population-based risk stratification, in the hope of identifying higher-risk groups for earlier and/or 
more frequent screening. Risk algorithms using personal data such as age, family history of cancer, genetic risk 
variants and lifestyle-related factors show some promise for improving risk  prediction7,8, but have not achieved 
sufficient accuracy to majorly impact general screening  programs9.

Blood-based biomarkers for risk prediction represent an enticing avenue in the ongoing effort toward effec-
tive risk stratification and personalized colorectal cancer screening. However, given the focus on diagnostic 
biomarkers, the bulk of research in the field has used samples collected in a clinical  setting5, from patients 
with existing colorectal cancer. Markers detected may, therefore, not be applicable in the pre-carcinogenic and 
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early-carcinogenic phases particularly relevant for risk stratification. Some studies have used a screening setting, 
in which individuals with colorectal adenomas and polyps, not just carcinomas, are compared to those individu-
als free of  neoplasms10,11, which may be a more promising approach. One venue that has shown some success is 
inflammation, a hallmark of cancer and an established etiological driver in colorectal cancer. A recent case-cohort 
study based in Japan, using a panel of 62 inflammatory biomarkers, identified a number of chemokines putatively 
related to subsequent colorectal cancer  risk12. However, these have not been replicated in an independent sample.

In the present study, we used a two-tiered approach to colorectal cancer biomarker discovery and validation. 
Our primary aim was to identify novel biomarkers using large panels of inflammatory and cancer-related markers 
in a unique set of colorectal cancer cases and controls with time-matched, repeated, prediagnostic  samples13, and 
to validate these in an independent sample from the same population. Our second aim was to validate findings 
reported in previous studies by incorporating them into a custom panel that also included our top findings.

Materials and methods
Study population. Participants were from the Västerbotten intervention programme (VIP)14 and the 
northern Swedish Monitoring of Trends and Determinants in Cardiovascular Disease (MONICA)15 cohort. The 
VIP is an ongoing preventive program (initiated in 1985) for cardiovascular disease and type-2 diabetes. All 
residents in Västerbotten County are invited for a primary health screening at 40, 50 and 60 years of age and at 
this time asked to fill out an extensive questionnaire covering lifestyle, diet and health as well as donate a blood 
sample for research purposes. The North Sweden MONICA project is part of the WHO MONICA and consists 
of cross-sectional questionnaire surveys and blood sample collections conducted in 1986, 1990, 1994, 1999, 
2004, 2009 and 2014 (with a new collection planned for 2021). MONICA participants are randomly selected 
from the inhabitants of Västerbotten and Norrbotten in Northern Sweden.

Blood samples for both VIP and MONICA are collected in EDTA and Heparin tubes and aliquots of plasma, 
buffy coat and erythrocytes are frozen within 1 h of collection. Samples are stored at − 80 °C at the Northern 
Sweden Biobank (Biobanken Norr) in Umeå, Sweden. All samples are collected in the morning and participants 
of both cohorts are asked to fast for at least 8 h prior to sampling. If for some reason the participant has not 
fasted, or fasted for a shorter time-period, this information is noted in the accompanying sample file. Both VIP 
and MONICA are part of the Northern Sweden Health and Disease Study (NSHDS)16.

The study was approved by the regional ethical review board at Umeå University, Umeå, Sweden (Ref number: 
2015/172-32 and 2015/391-32M). All study subjects provided written informed consent at recruitment, and the 
study was conducted in accordance with the Declaration of Helsinki.

Study design. The discovery set included only VIP participants, and all cases were selected based on the 
following strict criteria: A primary colorectal cancer diagnosis within 5 years after the most recent sampling 
(excluding the last 3 months before diagnosis), at least two available blood samples in the biobank collected at 
least 10 years apart, and no other primary cancer diagnosis, except non-melanoma skin cancer, at the final date 
of follow-up (Dec 31st 2014). Controls were matched to cases based on age (± 12 months), sex and sampling 
dates (+/− 12 months for both sampling occasions). Controls had to be cancer free for at least 5 years after the 
colorectal cancer diagnosis of their index case or at the end of follow up, whichever came first. Only samples 
collected after at least 8 h of fasting were included, and no samples had been thawed prior to aliquoting for analy-
sis. The original discovery sample set included 69 matched case–control pairs, all with time-matched repeated 
samples, and has been previously  described13. Nine individuals failed in the proteomics quality control and were 
excluded together with their matched cases or controls. Thus, the final study population in the discovery phase 
consisted of 120 participants, 60 cases and 60 controls, all with time-matched repeated, pre-diagnostic samples. 
Later DNA methylation array analyses in another study using the same  participants17 revealed identity mismatch 
between repeated samples of two individuals (one case and one control). Subsequent error analysis determined 
that the identity mismatch had occurred at the biobank, prior to sample shipment. Although the validation 
phase was already underway at that point, we reran the statistical analyses on the discovery set, excluding these 
case sets, for comparison.

The validation sample set was selected from a larger nested colorectal cancer case–control study, comprising 
1010 case–control pairs (matched on age at and year of sampling, sex, study cohort, freeze thaw cycles and fasting 
status) from the VIP and MONICA cohorts, described in detail  elsewhere18.

We selected 1000 samples from this nested case–control study, prioritizing sample plates to minimize the 
number of cases with peridiagnostic blood samples available in the related clinical colorectal cancer cohort, 
U-CAN19. This was done to reserve patients with both prediagnostic NSHDS and peridiagnostic U-CAN samples 
for possible future validation of potential novel diagnostic biomarkers. The final validation sample sent for analy-
sis included 461 matched colorectal cancer case–control pairs, of which 39 had time-matched repeated samples.

Outcome variables and covariates. Outcome data in both the discovery and validation phases were 
obtained by linkage to Swedish national registers (the Swedish Cancer Register, The Swedish Cause of Death 
Register and the Swedish Register of the Total Population). Colorectal cancer cases were identified using ICD-
10 codes (18.0 and 18.2–18.9 for colon cancer, 19.9 and 20.9 for rectal cancer) and verified by a gastrointestinal 
pathologist (Richard Palmqvist). Data on disease stage and anatomical location were retrieved from the Swedish 
Colorectal Cancer Register and, in cases of missing data, from patient records. Molecular tumor data (BRAF 
V600E and KRAS mutations) were generated in house, as previously  described18. Additional covariates were 
considered based on previously established associations with colorectal cancer risk and data availability. They 
included: age at sampling, sex, body mass index (BMI, based on height and weight measured by a health profes-
sional), self-reported smoking status, education, alcohol intake and physical activity.
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Sample collection and laboratory analysis. Blood samples were collected in EDTA tubes, centrifuged, 
aliquoted and frozen within 1 h of sampling. In the discovery phase of the study, plasma samples were analyzed 
for two panels of biomarkers using predesigned Proseek Multiplex immunoassays (Inflammation and Oncology 
II, Olink Proteomics, Uppsala, Sweden), as previously  described13. We selected the Inflammation panel based 
on the role of inflammation in colorectal cancer etiology and progression, leading to the hypothesis that inflam-
matory biomarkers may have merit as potential risk predictive and/or early diagnostic biomarkers of colorectal 
cancer. The Oncology II panel was added to capture additional markers associated with cancer and cancer devel-
opment but not included in the Inflammation panel. All proteins included in the commercially available Olink 
panels, including Oncology II and Inflammation, are pre-selected by Olink, and we thus had no influence on 
panel content. It is also worth noting that since our initial selection (performed in 2016), the number of available 
panels has increased substantially. The multiplex panels rely on Proximity Extension Assay (PEA) technology, 
which maintains specificity despite high multiplexing  levels20.

All sample processing and quality control was performed by Olink Proteomics. Data were delivered as 
Normalized Protein eXpression (NPX) values on a log2 scale and pre-processed as described in previous 
 publications13,21. Information about limits of detection (LOD) can be found online (http://www.olink .com). 
The full list of markers included in both panels, together with the percentage of samples that fell below the LOD, 
can be found in Supplementary Table S1.

For the validation phase of the study, we selected 21 biomarkers to be analyzed on a custom-made panel, 
designed for us by Olink proteomics (Supplementary Table S2). For the panel, we prioritized proteins from our 
own discovery phase that had an FDR of less than 0.25. Fifteen proteins passed this threshold and of these; three 
failed quality control in the multiplex design (TNFSF13, S100A4 and CEA). TNFSF13 and S100A4 were hence 
excluded from the validation phase. However, as CEA is a known, and used, colorectal cancer tumor marker 
we deemed it to be of strong interest and therefore decided to include it, but run the analysis as a single assay. 
Protein biomarkers selected from the literature filled the additional eight available spots on the custom panel, 
however there were several restrictions limiting our selection of markers from the literature. First, the markers 
had to be available on one of the pre-existing Olink panels, second, they had to pass quality control for multi-
plexing and third their concentration in plasma had to be in the right range as to not need dilution. The final 
selection of literature markers included eight proteins that fit these criteria and were selected from two previous 
 publications22,23.

Assay performance for the custom-panel was assessed by Olink proteomics during the design stage and 
continuously during sample runs. Briefly, three internal controls were added to each multiplex plate and two 
internal controls to each singleplex plate in order to monitor the quality of assay performance and the quality 
of individual samples. The standard deviation from the internal controls was evaluated for each sample plate; if 
the deviation was above 0.2 NPX values, the plate was rerun. Individual samples were evaluated by determining 
the deviation from the median value of the controls, if this exceeded 0.3 NPX values the sample was excluded 
from the analysis. Controls in triplicate were used for calculations of Inter- and Intra-Assay Coefficients of Vari-
ability (CV). In order to reduce the impact of batch effects to a minimum, cases and their matched controls were 
always placed on the same plate. After quality control and pre-processing, data were delivered as NPX values. 
All included proteins are presented in Supplementary Table S2.

Data pre‑processing. In the discovery dataset all individuals contributed two samples each. For those indi-
viduals lacking covariate data at one of the sampling occasions, information from the other occasion was used 
to complete the dataset. In the validation dataset, missing data were observed for BMI (N = 9), smoking status 
(N = 21), level of education (N = 13), alcohol consumption (N = 116) and physical activity (N = 116). As most par-
ticipants in the validation phase lacked repeated measures, we used multivariate imputation by chained equation 
(mice R-package), to replace the missing data, under the assumption that data were missing at  random18. For 
continuous variables (BMI) we used predictive mean matching, whereas for multi-categorical (N > 2) variables 
(smoking status and level of education) Bayesian polytomous regression was used. Predictors originally included 
age, sex, sampling year, smoking status, BMI, education level, alcohol consumption and cohort (MONICA or 
VIP). To assess the robustness of our imputation method, we repeated the imputation step multiple times with 
different random starting samples and compared the results to analyses in which observations with missing data 
were excluded.

To reduce the influence of extreme outliers, relative protein concentrations were winsorized to the 1st and 
99th percentile. To simplify comparisons between protein associations, the log2 NPX values were scaled to mean 
0 and SD 1 prior to data analysis. Proteins with > 50% of values below LOD were removed from the dataset (Sup-
plementary Table S1). For the remaining proteins, values below LOD were replaced by protein specific LODs 
(discovery data set) or individually reported and included in the analyses (validation data set).

Statistical analysis. For each protein, conditional logistic regression was used to calculate an odds ratio 
(OR) of colorectal cancer risk. Multivariable models included smoking status, BMI, and education level as covar-
iates. In the discovery phase, availability of repeated measurements for all participants allowed us to perform the 
analyses at two different time points. In the validation phase baseline values were used for all downstream analy-
ses, unless otherwise specified. Pre-defined subgroup analyses were performed based on tumor location (colon/
rectum), stage (I–II/III–IV), time to diagnosis (> 5 years/≤ 5 years after sampling) and molecular subtypes based 
on KRAS and BRAF mutations.

On the validation phase dataset, we applied logistic regression with Least absolute shrinkage and selection 
operator, LASSO, to identify a subset of informative features from 21 proteins. The penalty parameter was 
chosen using tenfold cross-validation with respect to predictive performance (area under the curve, AUC). 

http://www.olink.com
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Cross-validation was repeated 100 times with different training/test set partitions to accommodate for random-
ness in the partitioning. The lasso model was adjusted for age, sex, BMI, smoking status, and level of education 
which were therefore excluded from penalization. In order to evaluate our extended model, including covari-
ates and the additional proteins selected by LASSO, we compared it to a model containing only the risk factors 
included as covariates in the logistic regression (age, sex, BMI, smoking status, level of education) and performed 
a likelihood ratio test. We also compared our models by plotting receiver operator curves (ROCs) and calculat-
ing the AUCs.

For the individuals in the validation set that had repeated measures we also conducted a longitudinal analysis 
using linear mixed models for the top proteins associated with colorectal cancer. We included subject ID and 
case–control pair ID as random effects, and BMI, smoking status, level of education, and time to diagnosis as 
fixed effects parameters. An interaction term between case–control status and time until diagnosis was included 
to investigate changes in protein levels over time between cases and controls. Time until diagnosis was defined 
as time of sampling until time at diagnosis, for cases, and as time from sampling until time of diagnosis for their 
matched case, for controls. Models were fitted using the lme4 R-package and the degrees-of-freedom and p-values 
were estimated by Satterthwaite approximation.

All p-values in the discovery phase were adjusted for multiple comparisons using the false discovery rate 
(FDR), q-value  framework24. In the discovery phase of this study, q-values below 0.25 were considered for 
selection to the validation panel. In the validation phase, p values < 0.05 were considered statistically significant.

All computations were conducted in R v.3.6.0 (R Foundation for Statistical Computing, Vienna, Austria).

Results
Participant characteristics. Participant characteristics are shown in Table 1. Overall, there were no clear 
differences, in terms of baseline characteristics, between cases and controls. In the validation set, cases tended 
to have a higher BMI and lower education compared with controls. Neither smoking nor alcohol intake varied 
between cases and controls in either of the datasets. Age at baseline was approximately 10 years higher in the 
validation set (59.8 years) compared to the discovery set (49.9 years), due to the requirement of repeated sam-
ples (collected at 10 year intervals) in the discovery set. Also due to the study design, the mean age at colorectal 
cancer diagnosis was lower in the discovery set (60.6 years compared to 66.6 years in the validation set) (Table 1).

Tumor characteristics. Among the cases, there were some important differences between the discovery 
set and the validation set. First, in the discovery dataset almost half (46.6%) of the cases were rectal cancers 
compared to 34.7% in the validation set. In addition, a higher proportion of the discovery set cases were stage IV 
(22.4%) compared to 14.2% in the validation set (Supplementary Table S3).

Biomarker identification and selection. After preprocessing and exclusions of proteins not passing 
quality control, 160 proteins remained. In our initial analyses, 15 proteins were associated with colorectal cancer 
at an FDR cutoff of 0.25 (Fig. 1, Table 2). Of these, we selected 13 and excluded two proteins (TNFSF13 and 
S100A4). TNFSF13 was excluded in favor of MIC A/B based on literature review, and S100A4 was excluded as it 
failed quality control in the designing of the custom multiplex panel. We also included eight additional proteins 
previously reported to be associated with colorectal cancer risk in the prediagnostic  setting10,22,23,25.

In the discovery analysis, PPY showed the strongest overall association with colorectal cancer with an OR of 
1.79 (95% CI 1.29–2.48) per 1 SD. In total, seven proteins had higher levels in cases compared to controls and 
eight had lower levels (Fig. 1). Aside from PPY, top proteins included CEA (OR: 1.65, 95% CI 1.14–2.40) and 
5’NT (OR: 1.62, 95% CI 1.17–2.24). ESM1 was the protein with the strongest inverse association with colorectal 
cancer (OR: 0.59 95% CI 0.43–0.80), closely followed by HGF (OR: 0.60 95% CI 0.42–0.85).

In analyses rerun after excluding two case–control pairs with identity mismatch 12 out of the 13 originally 
selected proteins remained among the top hits, and an additional six potentially significant proteins were identi-
fied (Supplementary Fig. S1, Supplementary Table S4). Although the stage of the validation analyses prevented 
their inclusion in the custom panel, we chose to present the results for potential future replication.

Custom panel quality control. For the custom multiplex panel the average intra-assay CV was 7% and 
the average inter-assay CV was 12%. Three proteins had an intra-assay CV between 5–10%, no proteins had intra 
CV values above 10%. For the inter-assay CV, 17 proteins had an inter-assay CV value between 10 and 20% and 
one protein had inter-assay CV values between 20 and 30%. The singleplex CEA assay had an intra-assay CV of 
11% and inter-assay CV of 20%.

The 21 proteins included in the custom panel (Supplementary Table S2) were analyzed in a validation set 
consisting of 1000 samples from 461 case–control pairs (with 39 pairs including repeated samples from both 
cases and controls). Of these, 12 samples failed quality control and were excluded, together with their matched 
cases or controls, from downstream analyses (Supplementary Fig. S2). The final validation set thus included 450 
complete case–control pairs, of which 38 pairs had repeated measurements.

Main analyses in the validation set. No proteins were associated with colorectal cancer risk at signifi-
cance level p < 0.05. (Table 3). Out of the 13 proteins selected from the dicovery set, seven retained the same 
direction of association although with varying degrees of attenuation. The strongest positive association was for 
FGF-21 (OR: 1.14, 95% CI 0.99–1.30), followed by CEA (OR: 1.10, 95% CI 0.95–1.28) and PPY (OR: 1.08, 95% 
CI 0.93–1.26), all showing the same direction of association as previously identified. Only minimal differences 
in point estimates were observed when comparing models with imputed covariate data to models based only on 
collected data (data not shown).
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Subgroup analyses in the validation set. Stratified subgroup analyses were performed to take differ-
ences in tumor location, stage, time to diagnosis and molecular tumor subtypes into account. Results from these 
analyses are presented in Fig. 2 and Supplementary Table S5. In the subgroup analyses based on tumor site, 
FGF-21 (OR: 1.23, 95% CI 1.03–1.47) and 5’NT (OR: 0.86, 95% CI 0.79–0.99), were associated with colon but 
not rectal cancer, whereas PPY (OR: 1.47, 95% CI 1.12–1.92) was associated with rectal but not colon cancer. 
FGF-21 also retained statistical significance in stage I–II colorectal cancer and in cases with samples collected 
more than 5 years before diagnosis. No proteins showed statistical significance in the analyses including only 
stage III–IV colorectal cancer. In analyses stratified for molecular subtypes, MIC A/B was associated with a lower 
risk of KRAS-mutated colorectal cancer (OR: 0.66, 95% CI 0.47–0.93), no proteins were associated with the risk 
of BRAF-mutated or KRAS-BRAF-wild type colorectal cancer.

Table 1.  Participant characteristics. a Includes complete case–control sets. b Paired Wilcoxon signed rank test 
for continuous variables, Chi-Square tests for categorical variables. c Includes 38 case control pairs with follow 
up samples. d Missing category not included in the statistical comparisons.

Variable

Discovery set (n =  116a) Validation set (n =  900a)

Cases (n = 58) Controls (n = 58) pb Cases (n = 450) Controls (n = 450) pb

Cohort n (%) 1.0 1.0

VIP 58 (100) 58 (100) 417 (92.7) 417 (92.7)

MONICA 0 (0) 0 (0) 33 (7.3) 33 (7.3)

Repeated samples n (%)

Yes 58 (100) 58 (100) 1.0 38 (50) 38 (50)

Age median (range)

Baseline (years) 49.9 (39.5–52.5) 49.9 (39.7–52.4) 1.0 59.8 (29.7–74.5) 59.8 (29.8–74.9) 1.0

Follow up (years) 59.9 (49.9–60.5) 59.9 (49.9–60.6) 1.0 59.9 (39.9–73.0)c 60.0 (40.0–73.9)c 1.0

Diagnosis (years) 60.6 (50.2–65.1) N/A 66.6 (40.4–89.6) N/A

Sex n (%)

Men 32 (55.2) 32 (55.2) 1.0 240 (53.3) 240 (53.3) 1.0

Anthropometrics median (range)

Height (cm) 172.0 (157.0–195.0) 170.5 (157.0–191.0) 0.9 171.0 (150.0–201.0) 170.8 (150.0–194.0) 0.6

Weight (kg) 75.50 (51.0–123.0) 75.85 (52.0–128.0) 0.9 77.00 (48.0–143.0) 75.20 (45.0–132.0) 0.1

Body mass index median (range)

BMI (kg/m2) 25.32 (19.6- 37.8) 24.43 (18.8–41.3) 0.9 26.03 (17.78–43.04) 25.72 (17.15–44.62) 0.1

Body mass index groups n (%)

< 18.5 0 (0) 0 (0) 0.3 2 (0.5) 9 (2.0) 0.2

18.5–24.9 27 (46.6) 32 (55.2) 168 (37.3) 170 (37.8)

25–29.9 26 (44.8) 18 (31.0) 195 (43.3) 197 (43.8)

≥ 30 5 (8.6) 8 (13.8) 80 (17.8) 70 (15.6)

Missingd 0 (0) 0 (0) 5 (1.1) 4 (1.0)

Smoking n (%)

Current smoker 20 (34.5) 17 (29.3) 0.7 111 (24.7) 96 (21.4) 0.2

Former smoker 13 (22.4) 17 (29.3) 155 (34.4) 143 (31.8)

Never smoker 25 (43.1) 23 (39.7) 174 (38.7) 201 (44.6)

Missingd 0 (0.0) 1 (1.7) 10 (2.2) 10 (2.2)

Education n (%)

Elementary 26 (44.8) 26 (44.8) 0.8 332 (73.8) 307 (68.2) 0.1

Secondary 16 (27.6) 18 (31.1) 56 (12.4) 62 (13.8)

Post-secondary 16 (27.6) 13 (22.4) 55 (12.2) 76 (16.9)

Missingd 0 (0) 1 (1.7) 7 (1.6) 5 (1.1)

Alcohol intake median (range)

Grams/day 2.82 (0–17.9) 2.74 (0–19.2) 0.7 2.20 (0–30.6) 2.22 (0–27.9) 0.9

Missingd n (%) 7 (12.07) 7 (12.07) 59 (13.11) 57 (12.67)

Physical activity n (%)

Inactive 8 (13.79) 9 (15.52) 0.3 83 18.44 75 (16.67) 0.9

Moderately inactive 19 (32.76) 11 (18.97) 135 (30.00) 144 (32.00)

Moderately active 18 (31.04) 18 (31.03) 111 (24.67) 109 (24.22)

Active 8 (13.79) 14 (24.14) 63 (14.00) 64 (14.22)

Missingd 5 (8.62) 6 (10.34) 58 (12.89) 58 (12.89)
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Lasso regression in the validation set. In order to determine if any specific combination of proteins 
could predict colorectal cancer risk better than individual proteins, we used a Lasso logistic regression model. 
Models containing only the risk factors included as covariates in the conditional logistic regression analyses (age, 
sex, BMI, smoking status and level of education) were compared to our Lasso-generated protein models using 
ROC curves, both for the main analysis (Supplementary Fig. S3) and for the subgroup analyses (Fig. 3). In the 
main model, FGF-21 was the only protein with sufficient predictive ability to be included, increasing the AUC 
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Figure 1.  Volcano plot depicting results from the discovery phase of the study. Odds ratios were calculated 
using conditional logistic regression based on individuals’ baseline- and repeated values, separated in time. The 
model was adjusted for smoking status, BMI, and level of education. The dotted line represents FDR = 0.25.

Table 2.  Top 15 proteins identified in the discovery phase. *Adjusted for BMI, smoking and education and 
conditioned on matching criteria (age, sex and sampling date).

Protein OR (95% CI) 
Crude

OR (95% CI) 
Adjusted* FDR* Included in  

Validation phase

PPY 1.60 (1.20-2.12) 1.79 (1.29-2.48) 0.07 Yes
CEA 1.51 (1.10-2.07) 1.65 (1.14-2.40) 0.12 Yes
5’NT 1.56 (1.15-2.12) 1.62 (1.17-2.24) 0.12 Yes
VEGFR2 1.51 (1.10-2.07) 1.55 (1.10-2.20) 0.17 Yes
hK8 1.45 (1.13-1.86) 1.52 (1.15-2.00) 0.12 Yes
LIF-R 1.30 (1.00-1.68) 1.51 (1.11-2.05) 0.12 Yes
FGF-21 1.45 (1.11-1.89) 1.50 (1.12-2.02) 0.12 Yes
MIC A/B 0.75 (0.56-1.00) 0.69 (0.50-0.93) 0.19 Yes
TNFSF13 0.70 (0.52-0.95) 0.67 (0.49-0.92) 0.17 No
S100A4 0.71 (0.53-0.94) 0.65 (0.45-0.94) 0.12 No
S100A11 0.69 (0.48-0.97) 0.65 (0.45-0.94) 0.25 Yes
CXCL10 0.71 (0.55-0.93) 0.65 (0.48-0.88) 0.12 Yes
TRAIL 0.66 (0.49-0.89) 0.61 (0.43-0.86) 0.12 Yes
HGF 0.64 (0.47-0.88) 0.60 (0.42-0.85) 0.12 Yes
ESM1 0.62 (0.46-0.83) 0.59 (0.43-0.80) 0.07 Yes



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5151  | https://doi.org/10.1038/s41598-021-83968-6

www.nature.com/scientificreports/

slightly from 0.55 (95% CI 0.51–0.59) in the risk-factor-only model to 0.57 (95% CI 0.50–0.53). The likelihood 
ratio test indicated that the increase was borderline significant (p = 0.046). In the subgroup analyses (Fig. 3), the 
highest discriminative ability was seen for colon cancer, for which the AUC increased from 0.56 (95% CI 0.52–
0.61) in the risk-factor-only model to 0.63 (95% CI 0.59–0.68), p = 0.003 and for individuals with stage I–II colo-
rectal cancer, for which the AUC increased from 0.58 (95% CI 0.53–0.64) to 0.62 (95% CI 0.57–0.67), p = 0.002.

Linear mixed models. No statistically significant differences were found for either FGF-21 or PPY on the 
38 case sets with repeated samples (Supplementary Fig. S4).

Discussion
Utilizing a two-tiered approach with prospectively collected samples, we aimed to identify protein biomarkers 
related to colorectal cancer susceptibility or early diagnosis. In the discovery phase, we identified 15 proteins 
with significantly altered levels in colorectal cancer cases compared to controls, of which 13 were then selected 
for further analysis. None of the selected proteins retained statistical significance in the main validation analy-
sis, but two proteins of particular interest, FGF-21 and PPY, were identified when stratifying analyses by tumor 
location, stage and time to diagnosis.

Multiple studies have aimed to identify protein biomarkers that could be utilized for precision screening for 
early detection of colorectal  cancer5,12,23. However, the majority of these have used samples from either a clinical 
or a screening setting. These study designs, although successful in identifying biomarkers or biomarker combina-
tions with relatively good predictive ability (AUC > 0.7), may not be useful for identifying prospective patients 
years, or even months, before diagnosis. Clearly, identifying markers that are measurable before diagnosis, to 
be used for refined risk stratification or even early diagnosis has proven difficult. Very few studies have utilized 
prospectively collected samples, and results have proven hard to  replicate12. Because most previous studies did 
not include prospective samples, it is difficult to compare the results from our study to those of others. The 
importance of conducting additional studies in a prediagnostic, asymptomatic setting, and not only in cancer 
patients or screening participants therefore needs to be emphasized.

Table 3.  Proteins included in the validation phase main analysis. *Adjusted for BMI, smoking and education 
and conditioned on matching criteria (age, sex and sampling date).

Protein OR (95% CI) 
Crude

OR (95% CI) 
Adjusted* FDR*

FGF-21 1.17 (1.02-1.33) 1.14 (0.99-1.30) 0.91
CEA 1.15 (1.00-1.32) 1.10 (0.95-1.28) 0.91
PPY 1.11 (0.96-1.29) 1.08 (0.93-1.26) 0.91
MSLN 1.07 (0.94-1.23) 1.08 (0.92-1.26) 0.91
S100A11 1.11 (0.96-1.28) 1.07 (0.92-1.24) 0.91
IL8 1.07 (0.94-1.22) 1.06 (0.93-1.21) 0.91
CXCL10 1.06 (0.93-1.22) 1.06 (0.92-1.22) 0.91
HGF 1.11 (0.97-1.26) 1.05 (0.90-1.21) 0.91
LIF-R 1.04 (0.90-1.20) 1.04 (0.90-1.20) 0.91
hk8 1.02 (0.89-1.17) 1.04 (0.90-1.20) 0.91
ESM1 0.97 (0.85-1.12) 1.03 (0.89-1.20) 0.91
ENG 1.00 (0.87-1.15) 1.01 (0.87-1.18) 0.94
vWF 1.02 (0.88-1.20) 1.01 (0.87-1.19) 0.94
VEGFR2 1.05 (0.91-1.20) 1.01 (0.88-1.16) 0.94
IL6 1.06 (0.92-1.22) 1.00 (0.87-1.16) 0.97
EGFR 0.97 (0.84-1.13) 0.98 (0.84-1.14) 0.94
MIC A/B 0.98 (0.86-1.12) 0.98 (0.86-1.11) 0.94
TRAIL 1.00 (0.88-1.15) 0.95 (0.83-1.10) 0.91
IL6R 0.95 (0.82-1.10) 0.95 (0.82-1.10) 0.91
DKK1 0.95 (0.83-1.08) 0.94 (0.83-1.08) 0.91
5’NT 0.93 (0.81-1.06) 0.90 (0.79-1.04) 0.91



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5151  | https://doi.org/10.1038/s41598-021-83968-6

www.nature.com/scientificreports/

In our study, which focused mainly on inflammatory targets, FGF-21 was the protein that performed best 
throughout all stages. However, it did not reach significance in the full dataset combining both colon and rectal 
cancer cases. Interestingly, when stratifying by anatomical tumor sub-site, it became evident that the associa-
tion between FGF-21 and colon cancer was driving this association. FGF-21 remained associated with colon 
cancer after adjusting for BMI, education and smoking. Notably, FGF-21 was associated with early, but not late, 
stages of colorectal cancer. We previously identified FGF-21 as associated with colorectal cancer risk in a study 
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Figure 2.  Volcano plots for stratified analyses comparing Colon and Rectum (A,B), Stage I–II and Stage III–IV 
(C,D), proximity to diagnosis (E,F) and molecular subtypes (G–I). All models were adjusted for smoking status, 
BMI, and level of education. The dotted line marks a p value cutoff of 0.05.
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investigating potential protein biomarkers of metabolic  syndrome13, where we found it to be strongly associated 
with BMI and therefore of potential interest as a colorectal cancer screening biomarker. FGF-21 has since been 
shown to associate with colorectal cancer in at least one other  study26, where it was reported to be positively 
associated with both early and late stage colorectal cancers.

In the rectal cancer group, pancreatic prohormone (PPY), also known as pancreatic  polypeptide27, was 
the most prominent finding. This protein is mainly produced in the pancreas and secreted postprandially 
where it slows down the digestive  process28. PPY is a marker of some pancreatic tumors including pancreatic 

P† < 0.01

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1-Specificity

S
en

si
tiv

ity

Basic model: AUC = 0.56
Basic + 6 markers‡: AUC = 0.63

(282 cases / 282 controls)
Colon

A

P† < 0.01

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1-Specificity

Basic model: AUC = 0.57
Basic + PPY: AUC = 0.61

(161 cases / 161 controls)
Rectum

B

P† < 0.01

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1-Specificity

S
en

si
tiv

ity

Basic model: AUC = 0.58
Basic + FGF-21: AUC = 0.62

(213 cases / 213 controls)
Stage I-II

C

P† = 0.25

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1-Specificity

Basic model: AUC = 0.55
Basic + 6 markers‡: AUC = 0.60

(209 cases / 209 controls)
Stage III-IV

D

P† = 0.08

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1-Specificity

S
en

si
tiv

ity

Basic model: AUC = 0.55
Basic + 5 markers‡: AUC = 0.60

(366 cases / 366 controls)
> 5 Years until diagnosis

E

P† = 0.29

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1-Specificity

Basic model: AUC = 0.59
Basic + 21 markers‡: AUC = 0.73

(95 cases / 95 controls)
< 5 Years until diagnosis

F

P† = 0.06

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1-Specificity

S
en

si
tiv

ity

B. only: AUC = 0.59
B. + 6‡: AUC = 0.67

(97 cases / 97 controls)
KRAS

G

P† = 0.72

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1-Specificity

B. only: AUC = 0.58
B. + 21‡: AUC = 0.70

(75 cases / 75 controls)
BRAF

H

P† = 0.98

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1-Specificity

B. only: AUC = 0.55
B. + 21‡: AUC = 0.59

(275 cases / 275 controls)
Wild type

I

Figure 3.  ROC curves for stratified analyses comparing Colon and Rectum (A,B), Stage I–II and Stage III–IV 
(C,D), years until diagnosis (E,F) and molecular subtypes (G–I). All models were adjusted for smoking status, 
BMI, level of education, age and sex. For complete protein panels see Supplementary Table S5. †Based on the 
loglikelihood ratio test between the two models. ‡Selected proteins are listed in Supplementary Table S6.
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polypeptide-secreting tumor of the distal pancreas (PPoma) and Multiple endocrine neoplasia type 1 (MEN1) 
both of which are characterized by high serum levels of  PPY29. Few studies have specifically examined levels 
of PPY in colorectal cancer patients compared to healthy controls. One small-scale study from Poland, includ-
ing 60 colorectal cancer patients and 30 healthy controls, found elevated levels of PPY in colon cancer patients 
compared to rectal cancer patients and cancer free  controls30.

Despite being potentially predictive and possibly related to colorectal cancer etiology, neither FGF-21 nor PPY 
would be useful as standalone biomarkers of colon or rectal cancer. We therefore explored the possibility of com-
bining different protein markers in order to identify a panel with better discriminative capabilities, an approach 
that has been proven successful in similar study  designs10,11,31,32. However, the addition of the top markers selected 
by Lasso regression to conventional risk factors increased the predictive ability only modestly from an AUC of 
0.55–0.57, still far from clinically useful. Subgroup analyses resulted in larger improvements in discriminative 
ability, although all AUCs remained below 0.7. It should be noted that the predictive performance of our basic 
model was quite low compared to previous  studies10,11,23,32. Possible explanations may include lack of family 
history data in our study, and the low ages at sampling and at colorectal cancer diagnosis (mean of < 70 years 
in both data sets) due to the recruitment protocol with ongoing sampling at defined ages (40, 50 and 60 years).

Aside from the markers identified in our discovery phase the custom panel also included eight proteins 
selected from previous promising findings and available for Olink multiplexing, namely Cohen et al.22 and Rho 
et al.23. However, none were significantly associated with colorectal cancer in our study population. In Cohen 
et al. the authors developed a general blood based test for cancer detection, which was tested in a set of cancer 
patients and controls. Although the test does not target colorectal cancer specifically, potential colorectal cancer 
biomarkers were evaluated. Of the additional five markers from Cohen et al. selected for our study, none were 
included in the final CancerSEEK panel. The only colorectal cancer marker in the CancerSEEK panel was CEA, 
which also reached statistical significance in our discovery dataset and was thus already selected for our custom 
array. CEA is used in clinical practice to follow colorectal cancer  patients33.

In contrast to Cohen et al., and Rho et al.23 conducted a study using prediagnostic blood samples and four 
biomarkers of particular interest for early detection of colorectal cancer (BAG4, IL6R/ST, VWF and EGFR). One 
of our initial aims was to try to replicate all four of these markers, but we were limited by the proteins available 
on the Olink panels and therefore could not include BAG4. The lack of association with colorectal cancer for the 
other three markers in our study may be due to the longer time between sample donation and cancer diagnosis 
in our population compared to Rho et al. in which it was less than 3 years. Another reason may be that our study 
lacked power to detect small effect sizes, even if there were differences between prospective cases and controls 
more than 3 years before case diagnosis.

Our study has several strengths including the prospective approach, the two independent sample sets and 
the large size of the validation set. However, several limitations need to be addressed. First, the composition of 
the cases in the two datasets differed with respect to clinical characteristics. Rectal cancer and stage IV cancer 
were more common in the discovery set compared to the validation set. These discrepancies primarily reflect the 
small samples size in the discovery set, which was a conscious trade-off to allow the stringent selection of cases 
and controls with time-matched, repeated prediagnostic samples. The discovery data set is, therefore, not entirely 
representative of the site and stage proportions in the general population in Västerbotten, which is captured in 
the larger validation dataset. Since the result for FGF-21 was retained for colon cancer and stage I-II colorectal 
cancer in the validation dataset, the clinical differences between the two datasets do not seem to have affected 
the main findings. The comparatively low proportion of stage III-IV cancers in the validation set could probably 
explain, at least partly, why CEA did not reach significance despite being one of few commonly used biomarkers 
for colorectal cancer  monitoring34. In addition, we lacked information on family history, which is known to be 
one of the best predictors of future colorectal cancer  risk7 and likely would have improved clinical risk prediction 
models. Furthermore, we chose to rely mainly on statistical cut-offs for marker selection when proceeding from 
the discovery to the validation stage on the study. However, the small size of our discovery dataset may have 
hindered the identification of true colorectal cancer biomarkers. In hindsight an approach combining statistical 
cut-offs with biological relevance might have resulted in more markers being validated. Finally, for sample size 
reasons, Lasso regression to select protein markers was performed without dividing our dataset into a training 
and testing set and results are therefore in need of further validation.

Our findings highlight the challenge of identifying cancer biomarkers that can be used in the pre-diagnostic 
window of opportunity for early detection. For risk stratification, with the vision of achieving effective preci-
sion screening, single biomarkers or small marker panels may not be sufficient. Instead, we would advocate 
also attempting to identify patterns, based on panels of biomarkers, which might achieve more precise risk 
stratification. For translation to commercially viable blood tests, the composition and size of biomarker panels 
will require consideration of cost effectiveness, such as numbers needed to prevent one colorectal cancer case 
or colorectal cancer death.

In conclusion, we identified two markers (FGF-21 and PPY) that were associated with colon and rectal cancer 
respectively, suggesting a potential of biomarkers to discriminate between different subtypes of colorectal cancer. 
Approaches for future studies of colorectal cancer risk prediction and early detection biomarkers should probably 
focus on large collections of prospectively collected samples and deeply phenotyped colorectal cancer cases, and 
perhaps use machine learning on high-dimensional biomarker platforms to identify biomarker risk patterns.

Data availability
The datasets generated and/or analyzed during the current study are considered personal data, which prohibits 
us from storing them in a public depository. However, all data are archived at the Biobank Research Unit at 
Umeå University, and access for secondary use can be granted conditional upon meeting Swedish requirements 
for human research.
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