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Potential of spectroscopic analyses 
for non‑destructive estimation 
of tea quality‑related metabolites 
in fresh new leaves
Hiroto Yamashita1,2, Rei Sonobe1,3*, Yuhei Hirono3,4, Akio Morita1,3 & Takashi Ikka1,3*

Spectroscopic sensing provides physical and chemical information in a non‑destructive and rapid 
manner. To develop non‑destructive estimation methods of tea quality‑related metabolites in fresh 
leaves, we estimated the contents of free amino acids, catechins, and caffeine in fresh tea leaves using 
visible to short‑wave infrared hyperspectral reflectance data and machine learning algorithms. We 
acquired these data from approximately 200 new leaves with various status and then constructed the 
regression model in the combination of six spectral patterns with pre‑processing and five algorithms. 
In most phenotypes, the combination of de‑trending pre‑processing and Cubist algorithms was 
robustly selected as the best combination in each round over 100 repetitions that were evaluated 
based on the ratio of performance to deviation (RPD) values. The mean RPD values were ranged 
from 1.1 to 2.7 and most of them were above the acceptable or accurate threshold (RPD = 1.4 or 
2.0, respectively). Data‑based sensitivity analysis identified the important hyperspectral regions 
around 1500 and 2000 nm. Present spectroscopic approaches indicate that most tea quality‑related 
metabolites can be estimated non‑destructively, and pre‑processing techniques help to improve its 
accuracy.

Plants collectively produce many metabolites with estimates ranging from 100,000 to 1 million, and many 
metabolites are thought to play essential roles in resistance to biotic stresses and tolerance of abiotic  stresses1–5. In 
addition, natural products synthesized in plants provide indispensable resources for human health and  survival5. 
Given the importance of plant metabolites to plant development and adaptation, and for human health, various 
quantitative and qualitative analyses have been developed. The main examples are based on chromatography 
techniques such as gas chromatography or high-performance liquid chromatography (HPLC) with improved 
mass resolution and  sensitivity6,7. However, these analytical methods require the destructive collection and pre-
treatment of plant samples, which makes them slow in acquiring analytical data and unsuitable for real-time 
diagnosis of metabolite level.

Hyperspectral reflectance sensing is an established spectroscopic method that can provide rapid analysis 
without the need for sample pre-treatment. It is commonly applied to visible (VIS; 400–700 nm), near-infrared 
(NIR; 700–1000 nm), and short-wave infrared (SWIR; 1000–2500 nm) spectral ranges and has been used to 
estimate leaf pigments and water  contents8,9. The VIS is dominated by absorption of the photosynthetic pigments 
such as chlorophylls, carotenoids, and  anthocyanins8. On the other hand, NIR spectroscopy is directly relevant 
to the overtones and combinations of the fundamental C–H, O–H, and N–H bonds in organic  molecules10,11. 
Thus, NIR spectroscopy provides physical and chemical information and has shown good potential in estimat-
ing different parameters in biotic samples, including metabolites in plants, agricultural products, and  food12–14. 
In addition, machine learning techniques provide powerful tools for constructing regression or classification 
models in agricultural indices from hyperspectral reflectance  data15. The methodology of machine learning 
algorithms provides a flexible model not only for data-driven decision-making but also for capturing expertise 
into the  algorithms16. The technique shows good potential for analyzing hyperspectral reflectance data with all 
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spectral information based on a large number of  bands17. Machine learning techniques also enable the assessment 
of hyperspectral features that are informative for high accuracy predictive  modelling16,18.

Tea plants (Camellia sinensis L.) are mainly distributed and cultivated in Asia to produce several tea types, 
such as green tea, oolong tea, and black tea, which are popular non-alcoholic beverages consumed all over the 
world. Tea-drinking reportedly has numerous and diverse health  benefits19. Generally, tea quality and function 
are defined by the profile of various chemical components, such as catechins, caffeine, and theanine, which are 
characteristics to tea leaves. Tea catechins, which comprise a major class of polyphenols, contribute to the taste of 
astringency and bitterness of tea and have been studied for their health functions such as antibacterial  activities20 
and free radical scavenging  activities21. Free amino acids, especially glutamate (Glu) and theanine, contribute 
to the umami taste of green  tea22,23. In particular, theanine, a unique amino acid in tea plants, has the activities 
of promoting  relaxation24 and reducing blood  pressure25. Caffeine (1,3,7-trimethylxanthine) is a kind of purine 
alkaloid and its consumption may be associated with a reduced risk for type 2  diabetes26, but excessive intake of 
caffeine may cause inflammation of the digestive organs, insomnia, and  arrhythmia27. Thus, unique tea quality-
related metabolites are the most important agronomic traits targeted by modern and future tea cultivation and 
breeding. To evaluate the levels of these metabolites, many analytical tools have been employed to quantify tea 
quality-related metabolites including free amino acids, catechins, and caffeine contents in tea samples. Many ana-
lytical methods have been based on  HPLC28,29 and capillary  electrophoresis30,31, but these methods destructively 
use plant tissues and are time-consuming and expensive to perform. Therefore, a rapid and accurate method for 
the evaluation of quantitative traits in tea leaves is in high demand for tea cultivation management and breeding 
programs. The NIR-based estimation of some chemical components in ground tea leaves has been established 
by previous  studies32–34. Few studies have been reported in a non-destructive method for fresh  leaves35,36. Huang 
et al.35 have reported non-destructive estimation methods for four main catechins and caffeine in fresh green 
leaves based on VIS–NIR spectra (400–2498 nm) and partial least squares (PLS) model. However, the outcomes 
of this study were limited by fewer tea quality-related metabolites and the sample status from leaf positions and 
fewer tea quality-related metabolites, which cannot achieve robust results in actual agricultural management.

We have achieved the non-destructive estimation of chlorophyll and nitrogen contents in tea leaves by com-
bining the VIS–NIR–SWIR (400–2500 nm) hyperspectral reflectance data and machine learning  algorithms37. 
In the current study, we acquired the reflectance and 15 tea quality-related metabolites traits from the various 
nitrogen conditions, the leaf-stage, shading conditions, and albino tea leaves to construct the robust models. 
Pre-processing techniques and machine learning algorithms for hyperspectral data were used to perform regres-
sion modelling to non-destructively estimate the contents of free amino acids, catechins, and caffeine as tea 
quality-related metabolites in new fresh leaves. Our modelling indicated that most tea quality-related metabolites 
can be estimated by VIS–NIR–SWIR hyperspectral reflectance data and machine learning algorithms and that 
pre-processing techniques help to improve its accuracy. In particular, the combination of de-trending (DT) pre-
processing methods and Cubist algorithms showed the highest model performance for most tea quality-related 
metabolites.

Results
Data distribution of reflectance data and tea quality‑related metabolite contents. Original 
reflectance (OR) data were obtained at 1-nm steps across the 400 to 2500 nm wavelength from approximately 
200 leaves in four experiment conditions. Five pre-processing methods, namely first derivative reflectance 
(FDR), continuum-removed (CR), standard normal variate (SNV), multiplicative scatter correction (MSC), 
and DT, were applied to the OR data. Several spectral patterns were observed in OR and pre-processed reflec-
tance (Fig. 1). In the same leaves that were measured by reflectance, we analyzed catechins, caffeine, and FAAs 
as tea quality-related metabolites by HPLC and acquired 15 phenotypic traits. For catechins, the contents of 
(+)-gallocatechin (GC), (+)-catechin (C), (−)-epicatechin (EC), (−)-epigallocatechin (EGC), (−)-catechin gal-
late (CG), (−)-epicatechin gallate (ECG), (−)-epigallocatechin gallate (EGCG), (−)-epigallocatechin-3-O-(3-O-
methyl)-gallate (EGCG-3ʺMe), and total catechins were in the ranges of 3.4–64.6, 0.5–19.2, 1.1–25.3, 8.4–339.4, 
21.4–459.4, 46.8–1003.1, 91.0–619.8, 1.3–43.3, and 206.2–2528.7 μg cm−2, respectively (Fig. 2). For FAAs, the 
contents of aspartate (Asp), glutamate (Glu), arginine (Arg), theanine (Thea), and total FAAs were in the ranges 
of 1.6–59.3, 3.1–49.1, 0.9–346.4, 0.2–264.5, and 12.3–746.0 μg cm−2, respectively (Fig. 2). Caffeine content was 
in the range of 1.8–393.1 μg cm−2 (Fig. 2). The coefficient of variation (CV) in 15 phenotypes was in the range 
of 33.7%–138.6% (Fig. 2).

Best combination of pre‑processing and machine learning algorithms in regression model per‑
formance. Using six spectral patterns (OR, FDR, CR, SNV, MSC, and DT) and five machine learning algo-
rithms, Random Forest (RF), Support Vector Machine (SVM), Cubist, Stochastic Gradient Boosting (SGB), and 
Kernel-based Extreme Learning Machine (KELM), we performed regression modelling for 15 phenotypes of tea 
quality-related metabolites (Supplementary Fig. S1). Model performances in the combination of pre-processing 
and machine learning algorithms were evaluated based on the ratio of performance to deviation (RPD) values 
and robustness over 100 repetitions (Supplementary Table  S2). In most phenotypes, the combination of DT 
and Cubist (DT-Cubist) was selected most often as the best performing combination in each round among the 
100 repetitions (Table 1, Supplementary Table S2). The model performance based on DT-Cubist was different 
between the 15 phenotypes (Fig. 3A; two-way ANOVA, P < 0.001). Except for CG and EGCG-3ʺMe, the mean 
RPD values in most of them were above the acceptable threshold (RPD = 1.4)38. In GC, EC, ECG, EGC, total 
catechins, Asp, and total FAAs, the mean RPD values were above the accurate threshold (RPD = 2.0)38. The mod-
elling based on DT-Cubist significantly increased model performance over that based on OR-Cubist (Fig. 3A; 
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two-way ANOVA, P < 0.001). These results were also supported by the root-mean-square error (RMSE) values 
and the coefficient of determination  (R2) values as a model performance index (Fig. 3B, Table 2).

Detection of important hyperspectral regions by DSA. Data-based sensitivity analysis (DSA) was 
performed to detect important hyperspectral regions in models to estimate tea quality-related metabolites, and 
their results based on OR-Cubist and DT-Cubist were visualized at 50-nm intervals (Fig. 4). Different shapes of 

Figure 1.  Pre-processing spectral patterns of original reflectance (OR) in tea leaves. Five pre-processing 
techniques were applied to the OR (A) base: first derivative reflectance (FDR, B), continuum-removed (CR, C), 
de-trending (DT, D), multiplicative scatter correction (MSC, E), and standard normal variate transformation 
(SNV, F). Colors in spectra (Exp. 1, light blue; Exp. 2, blue; Exp. 3, green; Exp. 4, yellow) and gray indicate mean 
and standard deviation, respectively. Figures were visualized by the R package “ggplot2” ver. 3.3.2.
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DSA plots were observed for caffeine and individual catechins and amino acids (Fig. 4). For catechins without 
CG and EGCG-3ʺMe that showed poor prediction performance, the peak region consisting of high importance 
values was observed around 2000 nm (Fig. 4). For amino acids, the peak region of high importance values was 
around 1500 nm and 2000 nm (Fig. 4), and that for caffeine was around 750 nm and 1350 nm (Fig. 4).

Discussion
To enable the non-destructive estimation of FAAs, catechins, and caffeine as tea quality-related metabolites, we 
performed regression modelling by combining the VIS–NIR-SWIR (400–2500 nm) hyperspectral reflectance data 
and machine learning algorithms. Datasets of hyperspectral data and tea quality-related metabolite contents were 
obtained from approximately 200 new leaves grown under different N conditions in hydroponics or from shading 

Figure 2.  Data distribution of 15 phenotypes for tea quality-related metabolites. Number of samples: 201, 201, 
and 215 for catechins, caffeine and free amino acids (FAA), respectively. Coefficient of variation (CV) value for 
each metabolite is included on the Figure. Figures were visualized by the R package “ggplot2” ver. 3.3.2.

Table 1.  Best combination of pre-processing and machine learning algorithms after 100 repetitions. 
Combination of pre-processing and machine learning algorithms were evaluated based on RPD values.

Phenotypes Most selected pre-processing and models
Frequency
(100  repeat−1)

Catechins

GC DT-cubist 32

C SNV-cubist 17

CG DT-RF, OR-cubist 8

EC DT-cubist 18

ECG DT-cubist 23

EGC DT-cubist 65

EGCG DT-cubist 37

EGCG3Me DT-cubist 23

Total DT-cubist 42

FAAs

Asp DT-cubist 23

Glu DT-cubist 50

Arg DT-cubist 25

Thea DT-cubist 27

Total DT-cubist 34

Caffeine DT-cubist 20
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cultivations. The data showed wide variation that the CV in 15 phenotypes was in the range of 33.7%–138.6% 
(Fig. 2). The CV of EGCG (33.7%), ECG (64.7%), EGC (66.8%), EC (78.8%), caffeine (37.4%) in this study were 
higher than these (EGCG, 24.2%; ECG, 24.3%; EGC, 34.7%; EC, 14.0%; caffeine, 16.7%) in the previous  study35. 
These results indicate that present datasets are suitable for robust regression modelling.

Figure 3.  Model performance and robustness based on OR-Cubist and DT-Cubist for tea quality-related 
metabolites. The ratio of performance to deviation (RPD, A) and coefficient of determination  (R2, B) were 
applied to evaluate the accuracy of each model. A stratified sampling approach for modelling was repeated 100 
times to obtain robust results. Figure are plots of the RPD and  R2 values in each repeat. Orange and blue lines 
indicate RPD values of 1.4 and 2.0, respectively, as accuracy thresholds. Statistical tests for significant differences 
by two-way ANOVA are shown on the right side of the Figure. Figures were visualized by the R package 
“ggplot2” ver. 3.3.2.
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We applied five pre-processing techniques (Fig. 1; FDR, CR, DT, MSC, and SNV) to the OR data to enhance 
the more chemically associated peaks by reducing noise from spectral data and the effects of baseline shifts and 
overall curvature over the OR. Then we compared the model performance in the combination of six spectral 
patterns (OR, FDR, CR, SNV, MSC, and DT) and five machine learning algorithms (RF, SVM, Cubist, SGB, 
and KELM) based on the RPD values and robustness over 100 repetitions (Supplementary Table S2). In most 
phenotypes, the combination of DT and Cubist (DT-Cubist) was selected most often as the best performing 
combination in each round among the 100 repetitions (Table 1, Supplementary Table S2). DT has been used 
to correct wavelength-dependent scattering effects and to account for the variation in baseline shift and cur-
vilinearity by fitting a second-degree polynomial through each  spectrum39. Therefore, these results suggest 
that pre-processing based on DT was effective in improving accuracies when VIS–NIR–SWIR (400–500 nm) 
hyperspectral reflectance data from plant leaves were applied to the regression modelling. Cubist algorithms 
can generate so-called committee models that consist of a set of consecutive rule-based models to correct the 
predictions of previous member  models40; this approach is computationally efficient and well suited to big data 
 analytics40. Cubist is better equipped to handle extrapolations out of range of the training target data by relying 
on a rule-based multivariate linear regression model rather than an ensemble of decision trees with intercon-
nected leaves associated with rigid target  predictions41. Furthermore, Cubist algorithms achieved the best perfor-
mance in a comparison of a large collection composed of 77 popular regression  models42. Previous studies also 
showed that the Cubist algorithm had the potential of an efficient model algorithm for various plant traits using 
reflectance data such as leaf area  index43. Our previous study also showed that the Cubist algorithm had the best 
regression performance with VIS–NIR–SWIR (400–2500 nm) hyperspectral reflectance data and the contents 
of N and chlorophyll in tea  leaves37. These results and previous studies strongly show that the combination of 
the pre-processing technique based on the DT-Cubist algorithm was suitable for regression modelling of the 
VIS–NIR–SWIR reflectance data in plants.

These regression models based on DT-Cubist archived that the mean RPD values in most of the 15 phenotypes 
were above the acceptable threshold (RPD = 1.4)38 except for CG and EGCG-3ʺMe (Fig. 3A). For catechins and 
caffeine, the mean RPD values of GC, EC, ECG, EGC, and total catechins were above the accurate threshold 
(RPD = 2.0)38, but those of EGCG and caffeine were not (Fig. 3A). A previous study based on NIR analysis of 
ground tea leaves indicated that the calibration models for caffeine, EGC, C, EGCG, EC, ECG, and total catechins, 
except for GC and EGCG-3ʺMe, had high performance with high R2 (more than 0.90)34. The model’s perfor-
mance for EGCG and caffeine differs from that of other catechins in this study, and these may not be caused by 
chemical properties. In the dataset for our modelling, the CV values of EGCG and caffeine were drastically lower 
than those for other catechins (Fig. 2). These low variations in the reference dataset of EGCG and caffeine could 
have affected the regression modelling performance. Our model performance (R2 = 0.50 − 0.86) was inferior 
to that (R2 = 0.89 − 0.94) of the report of Huang et al.35 that also performed the regression modelling based on 
400 − 2498 nm reflectance for some catechins and caffeine content in fresh tea new leaves. Although Huang et al.35 
acquired the reflectance data using a near-infrared spectrometer under a dark environment in the room, we 
non-destructively did use a leaf clipping unit on the site under a field condition that could also cause some effect 
of spectral noise. These differences in measurement methods may affect the prediction performance. However, 
our measurement method was more designed to be applied in actual agricultural fields. In the previous work of 
Lee et al.34 and in this study, the estimation of EGCG-3ʺMe was low (Fig. 2). The EGCG-3ʺMe content in the 
cultivars, Benifuuki, Benifuji, and Benihomare was drastically higher than the other tea  cultivars44, including 
Yabukita, which was used in this study. Adding these data for high-EGCG-3ʺMe-content cultivars to the refer-
ence data would expand the data variation and possibly improve model performance.

Table 2.  Summary of validation and prediction performance based on DT-Cubist in 15 phenotypes for 
tea quality-related metabolites. “v” and “p” in each index means validation and prediction, respectively. 
a Prediction performance is represented as described by Chang et al., (2001); RPDp > 2.0, accurate prediction; 
1.4 < RPDp < 2.0, acceptable prediction; RPDp < 1.4, poor prediction.

Phenotypes Observed values (mg  cm−2)

DT-cubist
Model 
 performanceaRPDv R2v RMSEv (mg  cm−2) RPDp R2p RMSEp (mg  cm−2)

Catechins

GC 21.2  ± 13.7 2.22  ± 0.30 0.79  ± 0.06 5.96  ± 1.01 2.10  ± 0.30 0.78  ± 0.06 6.70  ± 0.90 Accurate

C 5.3  ± 3.3 1.56  ± 0.20 0.59  ± 0.11 2.20  ± 0.43 1.50  ± 0.20 0.58  ± 0.10 2.10  ± 0.30 Acceptable

CG 7.5  ± 4.2 1.18  ± 0.11 0.29  ± 0.12 3.56  ± 0.56 1.10  ± 0.10 0.21  ± 0.09 3.80  ± 0.50 Poor

EC 67.4  ± 53.2 2.23  ± 0.38 0.80  ± 0.07 23.86  ± 4.80 2.00  ± 0.30 0.77  ± 0.06 27.70  ± 4.70 Accurate

ECG 119.3  ± 77.2 2.17  ± 0.29 0.79  ± 0.06 33.66  ± 5.82 2.00  ± 0.20 0.77  ± 0.06 40.00  ± 5.30 Accurate

EGC 317.6  ± 212.1 2.80  ± 0.37 0.87  ± 0.04 75.34  ± 10.80 2.70  ± 0.40 0.86  ± 0.03 80.70  ± 10.00 Accurate

EGCG 320.6  ± 107.9 1.50  ± 0.19 0.55  ± 0.11 71.87  ± 10.26 1.50  ± 0.20 0.54  ± 0.09 72.80  ± 8.70 Acceptable

EGCG3Me 10.8  ± 7.4 1.44  ± 0.17 0.54  ± 0.11 5.08  ± 0.78 1.40  ± 0.10 0.47  ± 0.11 5.70  ± 0.70 Poor

Total 869.7  ± 423.2 2.46  ± 0.46 0.83  ± 0.06 171.14  ± 30.96 2.50  ± 0.40 0.84  ± 0.05 175.70  ± 28.30 Accurate

FAAs

Asp 15.4  ± 10.7 2.18  ± 0.31 0.80  ± 0.06 5.02  ± 0.62 2.20  ± 0.30 0.81  ± 0.05 4.80  ± 0.50 Accurate

Glu 17.6  ± 8.8 1.70  ± 0.18 0.66  ± 0.07 5.10  ± 0.54 1.70  ± 0.20 0.68  ± 0.07 5.20  ± 0.50 Acceptable

Arg 51.1  ± 70.9 1.88  ± 0.32 0.71  ± 0.10 39.16  ± 7.60 1.80  ± 0.30 0.67  ± 0.11 41.00  ± 7.30 Acceptable

Thea 69.9  ± 65.3 1.98  ± 0.26 0.74  ± 0.07 33.52  ± 4.89 2.00  ± 0.30 0.74  ± 0.08 34.10  ± 4.70 Acceptable

Total 181.2  ± 171.7 2.25  ± 0.34 0.80  ± 0.06 78.23  ± 11.12 2.20  ± 0.30 0.78  ± 0.06 81.00  ± 11.00 Accurate

Caffeine 183.4  ± 68.7 1.39  ± 0.19 0.48  ± 0.13 49.58  ± 8.35 1.40  ± 0.20 0.50  ± 0.11 51.80  ± 6.90 Acceptable
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Figure 4.  Detection of important hyperspectral regions by data-based sensitive analysis (DSA). Importance 
values, which were averaged over 100 replicates and accumulated at 50-nm intervals, were visualized as DSA 
results based on OR-Cubist (A) and DT-Cubist (B) treatment. Figures were visualized by the R package 
“ggplot2” ver. 3.3.2.
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The contributions of hyperspectral regions to generate the regression models for tea quality-related metabolite 
contents were detected using DSA. The different shapes of DSA plots based on OR-Cubist and DT-Cubist were 
observed for caffeine and individual catechins and amino acids (Fig. 4). These results suggest that the machine 
learning algorithms separately determine the variable contributions of important spectral regions to estimate 
each metabolite. In most catechins, the peak region consisting of high importance values was observed around 
2000 nm by DSA (Fig. 4). These results overlapped with spectral regions of known absorption features associated 
with phenolic compounds and the bending and stretching of C–H and O–H  bonds45–47. In amino acids, the peak 
regions of high importance were observed around 1500 nm and 2000 nm by DSA (Fig. 4). These results were 
also consistent with previously reported spectral regions (e.g., 1520–1523 nm) for amino acid  estimation45. DSA 
based on DT reflected the importance of these regions more than the other pre-processing patterns (Fig. 4, Sup-
plementary Fig. S2). NIR and SWIR spectra in fresh leaf exhibit confounding factors in water absorption regions 
(approximately 1350–1450 and 1850–1975 nm) that may mask optical chemical  features48–50. Our dataset also 
indicated that many catechins and FAAs contents were negatively and positively correlated with water content, 
respectively (Supplementary Figs. S3, S4). Although each metabolite in fresh tea leaves may be affected by the 
water content, the relationship between the model performance and the correlation of each metabolite and the 
water content was inconsistent (Fig. 3, Supplementary Figs. S3, S4), which indicates that the prediction model in 
this study has been constructed with an optimized model that takes into account the water content in fresh leaves.

The results of the present study suggest that spectroscopic analyses based on VIS–NIR–SWIR (400–2500 nm) 
hyperspectral reflectance data and machine learning algorithms have good potential to non-destructively estimate 
the contents of FAAs, catechins, and caffeine as tea quality-related metabolites in new fresh leaves (Table 2). 
Our modelling approaches also indicate that pre-processing techniques help to improve the accuracy of model 
performance. In particular, the combination of DT pre-processing methods and Cubist algorithms showed 
the highest model performance for most tea quality-related metabolites. These findings will contribute to the 
non-destructive real-time diagnosis of metabolite levels in tea cultivation management and breeding programs.

Methods
Plant materials. To obtain the dataset of tea quality-related metabolites contents with variations, a series of 
four experiments (Exp. 1 to Exp. 4) were conducted as described by Yamashita and Sonobe et al.37. New leaves 
were plucked from each experiment, and its reflectances were measured in site under a field condition. The 
reflectance datasets of these experiments were also used in our previous  study37.

Exps. 1 and 2 were conducted based on hydroponic nutrient tests. One-year-old rooted tea cuttings of cv. 
Yabukita, a popular and leading Japanese cultivar for green tea, were used in the hydroponic cultures that were 
conducted under ambient light conditions in an unheated greenhouse (120  m2) at Shizuoka University (Shi-
zuoka, Japan). A minor modification of the culture method described by Konishi et al. (1985) was used. Exp. 
1 was conducted based on different six nitrogen (N) nutrient amount conditions using three to five biological 
replicates: 0 × N, 0.01 × N, 0.1 × N, 1 × N (40 mg  L−1), 2 × N, 4 × N. After approximately 6 months of treatment, 
one or two new leaves were plucked from one individual. Exp. 2 was conducted based on low-light conditions 
(85% shading) and different four N nutrient amount conditions using three biological replicates: 0 × N, 0.1 × N, 
1 × N, 4 × N. After 23 days for treatment, one or two new leaves were plucked from one individual.

Exp. 3 was conducted using mature tea plants (ridges) of cv. Yabukita at Shizuoka University (Shizuoka, Japan) 
based on low-light conditions (85% shading). New leaves in each leaf-stage were plucked from approximately 
random 15 shoots in sunlight and shaded tea ridges, and a total 87 leaves In Exp. 4, new leaves in each leaf-stage 
were plucked from approximately 20 shoots in a 7-year-old rooted tea cutting of a Japanese albino cultivar cv. 
Koganemidori, which had been bred from the natural etiolated bud sport, in hydroponics.

Finally, 215, 201, and 201 leaves samples in each experiment were freeze-dried, grounded into a fine powder, 
and then analyzed for free amino acids (FAAs), catechins, and caffeine, respectively.

Reflectance measurements and pre‑processing. Reflectance data in new leaves was measured by an 
ASD FieldSpec4 unit (Analytical Spectral Devices, Boulder, CO, USA) with a leaf clipping (diameter 20 mm) 
(Supplementary Fig. S5). The widest part in the center of the leaf was measured three times so that a leaf clipping 
could fit inside the leaf and the average value of that was taken as the representative for each leaf. This spectros-
copy contained three detectors, visible (VIS) and near-infrared (NIR), short-wave infrared (SWIR), and SWIR 2. 
ViewSpec Pro Software (Analytical Spectral Devices) was used to correct differences in the spectral drifts at 1000 
and 1800 nm caused by inherent variation in these detector sensitivities. Finally, OR data were recorded with a 
sampling resolution of 1 nm steps across the entire wavelength domain from 400 to 2500 nm. Five pre-process-
ing methods were also tested based on their success in previous studies, namely first FDR, CR, SNV, MSC, and 
DT. FDR is effective in reducing baseline variation and increasing the resolution of spectral peak  features51,52. 
CR is a brightness normalization technique that has been applied to enhance related  changes53. MSC and SNV 
have also been used to eliminate the effect of noise, baseline drift, and light scattering of the  spectrogram54–56. DT 
has been used to correct wavelength-dependent scattering effects and accounts for the variation in baseline shift 
and curvilinearity by fitting a second-degree polynomial through each  spectrum39. All methods were performed 
using R version 3.6.3 and the R package “prospectr” ver. 0.2.0.

Measurement of tea quality‑related metabolites. Catechins and caffeine contents were measured 
according to the methods described by Horie et al.57 and Yamashita et al.58. Dry ground leaf tissue (25 mg) was 
added to 5 mL of 50% (v/v) acetonitrile and shook with 130 strokes  min−1 for 60 min at room temperature. The 
suspended samples were centrifuged at 2000×g for 15 min at 4 °C, and then the supernatants were individually 
passed through 0.45-µm polytetrafluoroethylene filters (Advantec, Tokyo, Japan). The resulting solutions were 



9

Vol.:(0123456789)

Scientific Reports |         (2021) 11:4169  | https://doi.org/10.1038/s41598-021-83847-0

www.nature.com/scientificreports/

stored at − 30 °C until they were analyzed by HPLC as described by Yamashita and Uchida et al.58. The eight cat-
echins, GC, C, CG, EC, ECG, EGC, EGCG, EGCG-3ʺMe, and caffeine were quantified. Their total value without 
caffeine was also expressed as total catechins.

The FAAs contents were measured according to the method described by Goto et al.59 and Yamashita et al.58. 
Dry ground leaf tissue (10 mg) was added to 10 mg of polyvinylpolypyrrolidone and 5 mL of ultra-pure water 
and was shook with 130 strokes  min−1 for 60 min at room temperature. The suspended samples were centrifuged 
at 2000×g for 15 min at 4 °C, and then the supernatants were individually passed through 0.45-µm cellulose 
acetate filters (Advantec). The resulting solution was stored at − 30 °C until analysis by HPLC as described  by58. 
Nine amino acids [Asp, asparagine (Asn), Glu, glutamine (Gln), serine (Ser), Arg, alanine (Aln), Thea, and 
γ-aminobutyric acid (GABA)] were quantified. Their total value was also expressed as total FAAs.

Regression models based on machine learning algorithms. The regression modelling was con-
ducted as described by Yamashita and Sonobe et al.37 with minor modification and its flow chart was shown 
in Supplementary Fig. S1. For modelling, a stratified random sampling approach was applied, for which strata 
were formed based on experiments and treatments, and then all measurements were divided into three dataset 
groups as follows; a training set (50%), which was used to fit the models; a validation set (25%), which was used 
to estimate the prediction error for model selection; and a test set (25%), which was used for assessing the gener-
alization error in the final selected model. To evaluate the robustness of models, this flow was repeated 100 times 
before pre-processing the OR and generating regression models.

When performing regression modelling based on machine learning algorithms, a genetic algorithm (GA)-
based approach was applied to select wavelengths using the “ga_pls” function (with the parameter “GA.threshold” 
and others set as 50 and default values, respectively) of the R package “plsVarSel” ver. 0.9.6. and R ver. 3.6.3. GA 
were effective for removing noninformative wavelengths to construct simpler and better prediction models. 
Regression models were then constructed from the selected wavelengths using the following representative five 
algorithms: RF, SVM, Cubist, SGB, and KELM. The overviews of these five algorithms were described in Sup-
plementary Table S1.

RF was performed and optimized with the five hyperparameters by the R package “randomForestSRC” ver. 
2.9.3. SVM was performed with the Gaussian radial basis function kernel and optimized with the two hyperpa-
rameters by the R package “e1071” ver. 1.5-8. Cubist was performed and optimized with the two hyperparameters 
by the R package “Cubist” ver. 0.2.3. SGB was performed and optimized with the four hyperparameters by the R 
package “gbm” ver. 2.1.5. KELM was performed and optimized with the two hyperparameters by the MATLAB 
and Statistics Toolbox Release 2016a (MathWorks, Natick, MA, USA; source code downloaded from https ://www.
ntu.edu.sg/home/egbhu ang/). The optimizations in the hyperparameters of these machine learning algorithms 
were conducted based on the Bayesian optimization approach that was applied with the Gaussian  process60,61 
using the R package “rBayesianOptimization” ver. 1.1.0. The hyperparameters information of these algorithms 
is shown in Supplementary Table S1.

The validation (v) and prediction (p) accuracy of constructed models was assessed based on the follow-
ing three indexes: the ratio of performance to deviation (RPD), the coefficient of determination  (R2), root-
mean-square error (RMSE). The performance of the prediction model was assessed according to the following 
three classes of  RPD38,62,63: RPD > 2, accurate prediction; RPD of 1.4–2, acceptable prediction; RPD < 1.4, poor 
prediction.

Data‑based sensitivity analysis (DSA). To extract human-understandable knowledge from supervised 
learning black box data mining models, we performed the  DSA64,65 by using the “Importance” function of the R 
package “rminer” ver. 1.4.5, as previously described by Yamashita and Sonobe et al.37. Although DSA is similar 
to a computationally efficient one-dimensional sensitivity  analysis64, this method uses several training samples 
instead of a baseline  vector65 and it could be applied to black-box functions by querying the fitted models with 
sensitivity samples and recording their responses.
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