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Systematic and computational 
identification of Androctonus 
crassicauda long non‑coding RNAs
Fatemeh Salabi1*, Hedieh Jafari1, Shahrokh Navidpour2 & Ayeh Sadat Sadr3

The potential function of long non‑coding RNAs in regulating neighbor protein‑coding genes has 
attracted scientists’ attention. Despite the important role of lncRNAs in biological processes, a limited 
number of studies focus on non‑model animal lncRNAs. In this study, we used a stringent step‑by‑step 
filtering pipeline and machine learning‑based tools to identify the specific Androctonus crassicauda 
lncRNAs and analyze the features of predicted scorpion lncRNAs. 13,401 lncRNAs were detected 
using pipeline in A. crassicauda transcriptome. The blast results indicated that the majority of these 
lncRNAs sequences (12,642) have no identifiable orthologs even in closely related species and those 
considered as novel lncRNAs. Compared to lncRNA prediction tools indicated that our pipeline is a 
helpful approach to distinguish protein‑coding and non‑coding transcripts from RNA sequencing data 
of species without reference genomes. Moreover, analyzing lncRNA characteristics in A. crassicauda 
uncovered that lower protein‑coding potential, lower GC content, shorter transcript length, and less 
number of isoform per gene are outstanding features of A. crassicauda lncRNAs transcripts.

The number of non-coding RNAs (ncRNAs) has significantly increased in recent years due to rapid development 
of RNA Sequencing (RNA-Seq), databases such as GENCODE, NONCODE, and RNAcenrtal and bioinformatics 
algorithms-free  tools1. Many types of ncRNAs grouped due to their function, localization, and length, includ-
ing transfer RNAs (tRNA), transfer-messenger RNA (tmRNA), ribosomal RNA (rRNA), small nucleolar RNAs 
(snoRNAs), small nuclear RNAs (snRNAs), small interfering RNAs (siRNAs), PIWI-interacting RNAs (piRNAs), 
promoter-associated RNAs (pRNAs), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs 
(circRNA), signal recognition particle RNAs (SRP RNA),  etc2,3. LncRNAs are a new and critical class of ncRNAs 
with a series of unique features. Compared to protein-coding mRNAs, a majority of lncRNAs have a shorter 
transcript size and lower GC content. Furthermore, LncRNAs are generally functional molecules transcribed 
from invertebrate to mammalian genomes but lack protein-coding  ability4–6.

Currently, due to lncRNAs functionality in regulating neighbor protein-coding genes expression, mRNAs sta-
bility, post-translational modifications, translation, epigenetic modifications, DNA methylation, and their ability 
to interact with diverse macro-molecules3, 5, 7, they attracted the attention of scientists. Despite the important role 
of lncRNAs in biological processes, a limited number of studies focus on non-model animal lncRNAs. Various 
studies about insects investigated the transcriptome in the last decade, with lessened attention to  lncRNAs8–11. 
Using deep RNA-seq technology, many lncRNAs were identified in several insects including 8096 putative 
lncRNAs in Plutella xylostella4, 11,810 lncRNAs in Anopheles gambiae12, 2949 lncRNAs in Gambiae complex12, 
4689 novel lncRNA transcripts in Ae. aegypti and 6863 novel lncRNAs in the honey  bee13. Roughly forty-three 
thousand known lncRNAs of the fruit fly have been registered in the NONCODEv4 database but have yet to be 
identified in other insects. Beyond those mentioned, more knowledge about scorpion venom compositions were 
achieved by high-throughput transcriptomic analyses of scorpion venom  glands9,14; however, regulatory RNAs 
of venom gland biological processes have remained unknown. The employment of lncRNAs identification in 
scorpion adds new insights about the biological processes of the venom gland and facilitates the identification 
of regulatory factors. Nevertheless, no studies were conducted to predict the scorpion lncRNAs to date; there-
fore, to overcome these limitations, we used RNA sequencing (RNA-seq) to de novo assembled the scorpion 
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transcriptome following by discovered specific Androctonus crassicauda lncRNAs using a stringent step-by-step 
filtering pipeline due to the main route of pipelines modeled for other species.

Moreover, we employed machine learning classifiers and alignment-free software not only to obtain high-
confidence predictions of lncRNAs/mRNAs but also to validate our pipeline. For this purpose, several lncRNA 
prediction software were tested on the scorpion and fruit fly data sets to distinguish lncRNAs from protein-coding 
RNAs, including Coding Potential Calculator 2 (CPC2)15, Coding-Non-Coding Identifying Tool (CNIT)16, and a 
predictor of long non-coding RNAs and messenger RNAs due to improved k-mer scheme (PLEK)17. In general, 
we provide a powerful pipeline to predict lncRNAs in the scorpion and closely related species and describe the 
best lncRNA prediction tool tested on the scorpion dataset. Besides, our filtering pipeline combined with machine 
learning-based tools, helps researchers focus their efforts on highly validated known and novel lncRNAs in 
the scorpions. This study is the first comprehensive analysis and characterization of lncRNAs in the scorpions.

Results
To predict lncRNAs in A. crassicauda, we collected samples from six male and female scorpions of varying age 
categories (mature and immature), and for identifying high confident lncRNA, generated paired-end RNA-seq 
libraries were analyzed. The sequence quality assay of male/female data of mature/immature scorpions is reported 
in supplementary figures F1–F6. 472 million clean reads were assembled into 952,725 transcripts (585,177 genes) 
by Trinity tool using default  parameters18,19.

Development of pipeline for identification of lncRNAs in scorpion transcriptome. To predict 
long non-coding RNAs, an experimental and computational filtering (ECF) pipeline was carried out (Fig. 1). The 
main steps of the ECF pipeline are similar to previously reported  procedures20,21. LncRNA discovery approaches 
show similarities among different studies (Additional file 1). The procedure is as follows:

1. CPC2 software was used to score for coding  potential22. Besides, this tool searches the sequences against the 
protein database and distinguishes protein-coding from non-coding RNAs. The CPC2 was tested on its web 
server because the web server usually performs better (Additional file 2). In the CPC2 tool, lncRNAs were 
shown as non-coding RNAs longer than 200 nt. Out of 952,725 transcripts, 47,982 were shown to be coding 
by CPC2, and they were removed.

2. The remaining 904,743 transcripts were then filtered due to coding potential. The CP threshold used for the 
scorpion dataset was 0.4. Scorpion transcripts with CP ≥ 0.4 were declared putatively coding and discarded, 
while those with CP score < 0.4 were retained as noncoding candidates.

3. To eliminate transcripts harboring any protein domains, we implemented various blast search methods; at 
first, remaining 901,937 transcripts were exposed to Swissprot database, NCBI non-redundant (Nr), and 
Pfam protein domain databases to find protein-coding transcripts. Blastx was used to search against non-
redundant (Nr) and Swissprot databases with an E-value threshold of  10−3. Moreover, remaining scorpion (A. 
crassicauda) transcripts were searched for sequence similarity with Uniprot scorpion, tick, and spider pro-
tein sequences using blastx (E-value 1e−3). On the other hand, manually generated protein-toxin database, 
which includes all venom proteins and toxins sequence of venomous animal reviewed in Uniprot was used 
against remaining transcripts (E-value 1e−3). All 202,064 transcripts which returned at least one hit by one 
of used search procedures were discarded. So, 745,889 transcripts without coding potential was considered 
as ncRNA candidates for subsequent analyzes.

4. Three certain sequential stringent filters were performed to predict lncRNA candidates which included 
filtering due to transcript length, ORF size, and type of ncRNAs (e.g., housekeeping ncRNAs, microRNAs, 
etc.). For further details, transcript sequences shorter than 300 nucleotides were filtered out. Subsequently, 
for ORF determination, the remaining transcripts of this step, 387,637 ncRNA were loaded to the getorf 
website. Since known eukaryotic proteins have a length of more than 100 amino acids, this study similar 
to other studies, transcripts with an ORF of less than 300 nt have been classified as non-coding  RNAs23–25. 
Ultimately, obtained transcripts were subjected to Rfam and RNACentral v14 databases.

In more precisely, all obtained ncRNAs were classified into two categories: housekeeping and regulatory 
ncRNA transcript. The regulatory ncRNA also can be grouped as small non-coding RNAs and long non-coding 
 RNA26,27. The list of housekeeping and regulatory ncRNAs obtained in this analysis is shown in Fig. 2. All dis-
covered housekeeping ncRNAs and small ncRNAs from mentioned databases were removed from the dataset in 
this step. Therefore, a total of 367,332 transcripts were distinguished and introduced as the scorpion lncRNAs.

Extract of known lncRNAs. To avoid loss of known lncRNAs, all identified scorpion lncRNAs were ini-
tially aligned with known lncRNA sequences of diverse species in RNACentral v14 and NONCODE v3.0 data-
bases using  blastn28. Any transcript with blast algorithm results in these databases with an E-value less than 
0.00001 was considered known lncRNAs, and 368,991 retained lncRNAs were passed to the next filtering steps. 
The overlapping results indicated that despite the majority of predicted scorpion lncRNAs sequences (12,642 out 
of 13,401 transcripts) have no identifiable orthologs even in closely related species, 759 (5.7%) of these lncRNAs 
have homologs in other species. This result has been observed in other  species29. The matching RNACentral v14 
IDs and NONCODE IDs for each distinguished scorpion lncRNAs are listed in Additional file 3 and Additional 
file 4, respectively.
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Figure 1.  Overview of experimental and computational filtering pipeline (ECF). ECF pipeline is composed of computational and 
experimental steps: (1) Identification of ncRNAs, (2) Annotation and classification of ncRNAs, (3) Prediction of high reliable lncRNAs. 
Briefly, the cleaned reads were assembled using Trinity and then evaluated for protein coding portability with coding potential 
calculator 2 (CPC2). A series of protein annotations were performed using BLASTX and Pfam. The remaining ncRNA transcripts 
were filtered based on coding probability ≥ 0.4, transcript length ≤   300 nt and, open reading frames (ORFs) ≥ 300nt. INFERNAL and 
RNACentral were used to classify ncRNAs into various ncRNA families. The housekeeping ncRNAs also were removed. Transcripts 
that passed all criteria steps of ECF pipeline were classified as lncRNAs. In addition, RNACentral and NONCOD databases were used 
to predict the known lncRNAs. Finally, transcripts remaining after application of various filtering steps based on FPKM < 1 and PLEK, 
were known as novel set of high confidence transcripts.



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:4720  | https://doi.org/10.1038/s41598-021-83815-8

www.nature.com/scientificreports/

LncRNA expression in scorpion venom gland. We calculated the expression values of lncRNAs in 
the scorpion venom glands using RSEM software. As shown by previous studies, lncRNAs are typically lower 
in expression level than protein-coding  genes30,31; however, to exclude any transcriptional noise, lncRNAs with 
FPKM of less than 1 were dropped out. Using these steps, 131,311 putative scorpion-specific lncRNAs were used 
for further analysis.

Evaluation of ECF pipeline predictive reliability. Finally, an efficient alignment-free computational 
tool named PLEK with default pre-built models was employed to increase the reliability of lncRNAs prediction, 
and only transcripts which were labeled as noncoding in output were remained with high confidence to be novel 
scorpion-specific lncRNAs. We ultimately got a set of 12,642 novel lncRNA transcripts corresponding to 11,039 
genes. Current annotation listed 759 lncRNA transcripts; hence, the total number of lncRNAs in A. crassicauda 
was 13,401 transcripts. This Targeted Locus Study (TLS) project was deposited at DDBJ/EMBL/GenBank under 
the accession KEPY00000000, associated with the BioProject PRJNA687110 and biosample SAMN17133090. 
The version described in this paper is the first version, KEPY01000000.

Performance of computational approaches on scorpion datasets. This study aims to introduce 
the best tool to predict ncRNAs and mRNAs. Due to the insufficient amount of experimentally validated ncR-
NAs in arachnida, there is no specific computational program to stimulate ncRNAs in these species. To find the 
best software, four computational programs, PLEK, CNIT, CPC, and Annocript, were implemented using total 
assembled scorpion transcripts, and their results were compared.

CPC2 is a fast predictor of coding potential which uses a support vector machine due to ORF length, Fickett 
score, ORF integrity, and isoelectric point to differentiate coding and noncoding  RNAs32. Using CPC2 web server 
for ncRNA prediction, we select the fruit fly as the appropriate species model. Using 952,725 de novo assembled 
transcripts, 904,743 ncRNAs and a set of 47,982 protein-coding transcripts were obtained.

PLEK uses a computational pipeline due to SVM algorithm and an improved k-mer scheme to distinguish 
ncRNAs from  mRNAs17. It employed the model trained on the human database to predict the sequences of 
invertebrates. In this work, 911,471 and 40,503 transcripts were identified to be noncoding and mRNA in PLEK 
algorithms, respectively.

Figure 1.  (continued)
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Annocript, a pipeline for annotating de novo assembled transcriptome, is established to combine the annota-
tion of protein-coding transcripts with predicting putative lncRNAs. Although it has a model for all organisms 
in Uniprot, which can be customized by users, all organisms were definitely chosen. This program executes 
following analysis: Blastx against TrEMBL/UniRef and Swissprot, RPSBLAST against CDD profiles, BLASTN 
against Rfam and rRNAs, dna2pep and Portrait software to extract many features and classified the transcripts as 
lncRNA due to transcript length (> 200 nt), ORF (< 300 nt), non-coding potential score (≥ 0.95) and transcripts 
with no match in public  databases33. We predicted a set of 122,421 mRNA and 5955 known lncRNAs using the 
Annocript platform.

CNIT (Coding-Non-Coding Identifying Tool) software is a powerful tool to effectively distinguish between 
protein-coding and non-coding sequences by profiling adjoining nucleotide triplets ANT due to sequence intrin-
sic composition. CNIT has models for animals and plants. Among all assembled transcripts, 904,112 transcripts 
were classified as non-coding RNAs, while 48,613 transcripts were protein-coding. The overall performance of 
ECF pipeline and four ncRNA prediction tools are displayed in Table 1.

Due to Table 1, Annocript, despite having a long wait presented the best result than CPC, CNIT, and PLEK. 
During comparing results, we realized that CPC2 and CNIT software had almost the same results and enabled 
to predict lncRNAs the same as the PLEK, while ECF pipeline and Annocript display reasonable results with 

Figure 2.  List of housekeeping and regulatory non-coding RNAs.

Table 1.  Performance of lncRNA identification tools and ECF pipeline on whole Androctonus crassicauda 
dataset.

Programs

Protein coding Non coding Known lncRNA Novel lncRNA

Isoform Gene Isoform Gene Isoform Gene Isoform Gene

PLEK 40,503 25,814 911,471 570,142 – – – –

CPC2 47,982 17,141 904,743 579,021 – – – –

Annocript 122,421 53,227 15,467 10,560 5955 5161 – –

CNIT 48,613 20,058 904,112 575,634 – – – –

ECF pipeline 202,064 92,031 13,399 11,724 759 687 12,642 11,039
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lncRNA prediction. The initial comparison (Table 1) shows that the highest protein values were identified by the 
ECF pipeline, followed by Annocript, while the lowest predicted protein values were obtained by PLEK software, 
compared to noncoding results. Annocript exhibited much higher known lncRNAs prediction.

Furthermore, Venn diagrams (http://bioin forma tics.psb.ugent .be/webto ols/Venn) were utilized to plot the 
performance of lncRNA prediction tools visually (Fig. 3). Venn diagram exhibit that not only all the mRNAs 
predicted with Annocript overlap with other approaches, almost 98% of its predicted lncRNAs also overlap 
with others (Fig. 3). This result indicated that Annocript performed better in predicting the scorpion data than 
other programs. Besides, due to Fig. 3, it seems that there is a significant coding or non-coding PLEK misclassi-
fied transcripts. Although there is a high overlap between the ECF pipeline and other tools, the highest unique 
mRNA and the lowest unique lncRNA have appeared in the ECF pipeline. This observation suggests that never-
theless ECF approach performed very strict to identify novel lncRNAs; it is able to detect more proteins-coding 
sequences, it means ECF pipeline presents an outstanding performance on the scorpion data set which offers a 
great application prospect to the analysis of arthropods transcripts.

Comparison of predicted coding probability, it can be a good assessment of lncRNA prediction tool perfor-
mance. This comparison indicates that novel lncRNAs predicted using the ECF pipeline have a lower coding 
probability threshold, even slightly lower than predicted known lncRNAs. In contrast, PLEK and CNIT, followed 
by Annocript (Fig. 4), exhibited the highest CP score. Annocript was executed with default parameters; thus, the 
0.95 coding probability thresholds were used as cut-off which can be changed by user.

Evaluation of the sensitivity and the specificity. To evaluate the sensitivity and specificity of the ECF 
pipeline and four popular lncRNA prediction tools on the scorpion dataset, as a model of arachnida species, once 
again, PLEK, CNIT, CPC2, and ECF pipeline were done by utilizing the 131,311 lncRNAs and 202,064 mRNAs 
scorpion dataset of this study. Furthermore, we compared ECF pipeline’s performance with that of PLEK, CNIT, 
and CPC using a test dataset, which includes 3976 lncRNAs and 30,588 mRNAs of the fruit fly. Detailed infor-
mation of datasets was summarized in the methods section. Figure 5 showed that using lncRNAs prediction 
tools in species without closely related organisms to build ncRNA/mRNA distinguishing model increases the 
false positive rate compared to database derived dataset. As a comparison, at least 6.19, 8.07 and 9.45% of fruit 
fly non-coding dataset were misclassified as coding by CPC, CNIT and PLEK respectively (Fig. 5B), while the 
scorpion dataset were used, 1.03, 0 and 15.91% of non-coding transcripts were misclassified as coding by CNIT, 
CPC, and PLEK, respectively (Fig. 5D).

For data collected from the database, CPC and CNIT showed good performance as compared with PLEK 
(Table 2). In contrast, predicted results for the scorpion dataset are not satisfactory and almost similar compared 
to each other (Table 3). From Tables 2 and 3, we can find that the ECF pipeline achieved a balanced overall result 
with high accuracy. In detail, CPC2 achieved a satisfactory result (sensitivity: 0.94, specificity: 0.95, accuracy: 
0.95) on the fruit fly dataset (Table 2), which was higher than that of CNIT (sensitivity: 0.92, specificity: 0.94, 
accuracy: 0.94) and PLEK (sensitivity: 0.87, specificity: 0.60, accuracy: 0.63). CPC2 indicated high positive and 
negative predictive values 0.71 and 0.99, respectively, on fruit fly dataset. Nonetheless, PLEK had relatively better 
NPV 0.98 but poor PPV 0.18. ECF pipeline achieved the highest accuracy of 0.99, specificity 1, sensitively 0.91, 
PPV 1, and NPV 0.99 on the fruit fly dataset. Moreover, the ECF pipeline correctly predicts 92.38% (3673/3976) 

Figure 3.  Performances of PLEK, CPC, CNIT and Annocript on scorpion dataset. (A) The fraction of scorpion 
dataset classified as protein-coding transcripts. (B) The fraction of scorpion dataset classified as non-coding 
transcripts.

http://bioinformatics.psb.ugent.be/webtools/Venn
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Figure 4.  Coding probability distribution of predicted ncRNAs using CPC2, PLEK, CNIT, Annocript and, ECF 
pipeline.

Figure 5.  Results of computational approaches on fruit fly and scorpion datasets. (A,B) Classification of 
protein-coding and non-coding transcripts of fruit fly using CNIT, CPC2 and, PLEK tools. (C,D) Classification 
of protein-coding and non-coding transcripts of scorpion using CNIT, CPC2 and PLEK software programs.

Table 2.  Performance of lncRNA identification tools and ECF pipeline on Drosophila melanogaster dataset.

Programs Sensitivity Specificity Accuracy PPV NPV

PLEK 0.87 0.60 0.63 0.18 0.98

CPC2 0.94 0.95 0.95 0.71 0.99

CNIT 0.92 0.94 0.94 0.66 0.99

ECF pipeline 0.91 1 0.99 1 0.99
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lncRNAs and 100% (30,588/30,588) mRNAs for fruit fly testing dataset. While, CPC2, PLEK and CNIT were 
applied on the scorpion dataset, the accuracy values are 0.53, 0.49, and 0.52, respectively (Table 3).

Finally, we generate a ROC curve to visualize the classification performances of four approaches further 
(Fig. 6). From Fig. 6A, we note that the ECF pipeline, CPC2, and CNIT struck a good balance between sensitivity 
and specificity as well as obtaining a reasonable result. Nonetheless, the PLEK tool presented a sharp decline in 
specificity. An area under the receiver operating characteristic (AUC) curve visualized in Fig. 6 indicates better 
insight into the performance of approaches to separate two classes. From the fruit fly and scorpion datasets, a 
higher AUC was observed for ECF pipeline and CPC2 respectively.

Characterization analyses of lncRNA. To analyze whether the main characteristics of A. crassicauda 
lncRNAs typical exhibit features observed in previous  studies12,27,34, the features of predicted lncRNAs transcripts 
were compared to protein-coding transcripts, isoform per gene, coding probability, GC content and sequence 
length (Fig. 7). We realized that almost all known and novel lncRNAs had an average of 1.1 isoforms per gene, 
while protein coding genes having more than 2 isoforms per gene (Fig. 7A). Similar to previous reports, lncRNA 
transcripts harbored a lower isoforms than protein-coding  gene21,34.

In agreement with the main characteristics described in the studies done in other  species21,34–37, our data sug-
gested that lncRNA transcripts were on average shorter than protein-coding RNAs (Fig. 7B). Novel and known 
lncRNAs had a mean length of 762.2 bp and 504.15 bp respectively, while the average length of protein-coding 
transcripts was 871.9 bp.

Early studies have strongly emphasized the inability of lncRNA to code the  proteins38, so we evaluated the cod-
ing probability of our identified lncRNAs and compared them with protein coding transcripts. We found that, our 
predicted lncRNA transcripts exhibited lower coding probability than that of protein-coding transcripts (Fig. 7C). 
Moreover, analysis of the novel lncRNAs indicated a low GC content (42.6%), similar to what was observed in 
known lncRNAs (43.4%), which is significantly lower than protein coding sequence (50.8%) (Fig. 7D).

Table 3.  Performance of lncRNA identification tools and ECF pipeline on selected Androctonus crassicauda 
dataset. Sensitivity, specificity and accuracy were calculated using the formulae mentioned in methods and 
listed in this table.

Programs Sensitivity Specificity Accuracy PPV NPV

PLEK 0.98 0.17 0.49 0.44 0.94

CPC2 1 0.22 0.53 0.45 1

CNIT 0.99 0.22 0.52 0.45 0.97

ECF pipeline 1 1 1 1 1

Figure 6.  Sensitivity and specificity comparison of ECF pipeline with software programs (CNIT, CPC2 and 
PLEK) on: (A) Drosophila melanogaster datasets (B) Androctonus crassicauda RNA-seq datasets. The Area 
Under the Curve (AUC) measures the performance of an algorithm under different thresholds.
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Discussion
By the special role of lncRNAs in regulating gene expression, controlling various biological processes, and cel-
lular  functions3,5,7, their identification which leads to the discovery of many sophisticate mechanisms of gene 
regulation has become important in different species. Development of high-throughput sequencing cooperated 
with bioinformatics tools, has aid lncRNAs uncover in many insect  species4,12,13.

Various lncRNA prediction pipelines were described in detail in non-model animals; while the predictions 
of lncRNAs of the vast majority of arthropods remain  elusive20,21. To date, many studies were done on scor-
pion  transcriptomes9,14,39; however, none of them identified the scorpion-specific lncRNA. The present work 
provided the analysis on scorpion venom gland lncRNAs which have not been studies to date. This study used 
high-throughput sequencing technology combined with bioinformatics for detection of lncRNA transcripts in 
scorpion venom gland. In addition to high accuracy lncRNA prediction pipeline, we provided most comprehen-
sive dataset of scorpion lncRNAs, which is consist of multiple information of scorpion lncRNAs, like expression 
profile, coding probability distribution, features of predicted lncRNAs, annotation, etc.

Currently, identifying lncRNAs from mRNAs in arthropod, especially in species without a reference genome 
faces various challenges. To overcome this problem, we tried two methods of predicting lncRNAs. (1) We tested 
various developed machine learning-based tools to detect the scorpion lncRNAs. (2) We designed a filtering 
pipeline to identify novel and known lncRNAs.

Nowadays, various machine learning-based approaches were developed to facilitate and speed up the lncRNA 
 prediction15–17,33.

Following trained PLEK, CNIT, Annocript, and CPC2 approaches in scorpion data set, we evaluated the 
performance of approaches. Due to insufficient scorpion lncRNAs, the predicted scorpion data set along with 
fruit fly lncRNA/mRNA data set were used to evaluate the sensitivity and specificity of approaches.

In this work have shown that Annocript be a powerful platform for the identification of scorpion lncRNA 
transcripts in high-throughput sequencing data. In Annocript, users can easily customize lncRNAs features 
to enhance the sensitivity and specificity of lncRNAs prediction models on different species. Although the 

Figure 7.  Characterization of A. crassicauda lncRNA. (A) Number of isoforms per gene (B) Length distribution 
of known lncRNA, novel lncRNA and, mRNA transcripts (C) Coding probability of known lncRNAs, novel 
lncRNAs and, mRNAs (D) GC content of known lncRNA, novel lncRNA and, mRNA transcripts.
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performance of other examined tools in the scorpion-specific data set was not satisfactory, the predictive perfor-
mance of CPC2 was higher over other approaches. Due to the results of previous  experiments1,40 and this study 
obtained results, we conclude that computational lncRNA prediction tools are not the specific tool to predict 
lncRNAs in species without reference genomes or with insufficient annotated protein-coding sequences. Part 
of the reasons for these outcomes are the lack of conservation among lncRNA primary sequences, insufficient 
lncRNA information of many species, and relatively low association of computational analysis tools to diverse 
databases dedicated to lncRNA  research1,41–43. Moreover, most machine learning-based tools for lncRNAs predic-
tion often utilize only animal training data sets and cannot be user-adjustable for different  species43,44.

More detection of invertebrate lncRNAs through targeted experiments, it eventually enhances the predictive 
performance of lncRNAs tools. Therefore, judging the performance of software based only on a few data collected 
from databases is not justifiable because working with large-scale data, especially for species without refer-
ence genomes or closely related organisms to build models to distinguish their ncRNA and mRNA transcripts, 
changes all  equations1. It is now highly recommended to use step-by-step filtering pipeline instead of lncRNA 
computational prediction programs to identify the lncRNAs of these organisms.

Nevertheless, to reduce the false-positive rate by improving the specificity and sensitivity, we performed a 
ECF pipeline to identify novel and known lncRNAs that simultaneously uses two lncRNA prediction tools to 
calculate the coding probability of protein (CPC2) and assess whether the predicted transcripts are indeed likely 
to be non-coding RNAs (PLEK). The obtained results indicated that the ECF pipeline is suited for de novo assem-
bled data sets from scorpion species. Thus, this ECF pipeline helps distinguish protein-coding and non-coding 
transcripts from RNA sequencing data of many arthropod species without reference genomes. Identifying novel 
lncRNAs greatly increases the knowledge of arthropod ncRNAs.

Aside from identifying the scorpion lncRNAs, ECF pipeline will be useful to characterize lncRNAs from deep 
sequencing data. As shown in previous reports, this type of studies revealed fundamental features of lncRNAs in 
vertebrate and invertebrate animals, including their low GC content as well as coding probability, shorter length 
sequence, and less number of isoform per  gene21,36,45–47. Numerous studies have reported that lncRNAs play a 
wide range of structural and regulatory roles in key biological processes. Accumulating evidence suggests that 
some aspects of lncRNA function depend on the structural properties of RNA molecules; hence it is important 
to indicate the sequence properties of lncRNAs. The unveiling of distinctive features of lncRNA not only serves 
to distinguish lncRNAs from other RNAs in non-model species but may also help to improve predictions of 
their functional mechanisms in the future. Interestingly, Previous published studies have suggested that the short 
length, lower GC content, lower average level of expression, and lower cellular level of lncRNAs compared with 
the protein-coding RNAs, could potentially mean that lncRNAs sequences are less stable than protein-coding 
mRNAs, which this, in turn, may explain some aspects of lncRNA function, such as their ability to fold into 
different structures and to conduct molecular interactions with other cellular  factors47–50.

Similar to previous studies, analysis of lncRNA characteristics in A. crassicauda uncovered that lncRNAs 
shared strikingly similar features with other species. The trend of lower protein-coding potential, lower GC 
content, shorter transcript length, and less number of isoform per gene in lncRNAs sequence over protein-coding 
transcripts are outstanding features of A. crassicauda lncRNAs transcripts that mean these sequences contain 
lower stably base-paired structures and therefore, it is more possible to interact with other cellular  factors21,37,45–47.

Materials and methods
RNA extraction and de novo transcriptome assembly. The A. crassicauda specimens were collected 
from Baghmalek, Khozestan providence southwest of Iran. All captured scorpions were taxonomically identi-
fied according to  Koch51, quickly milked and maintained in a plastic box with water and crickets ad libitum for 
3 days. subsequently, scorpions venom gland were powdered with a porcelain mortar and pestle under liquid 
nitrogen and total RNA extraction was performed using RNeasy Animal Mini Kit (Qiagen, Valencia, CA, USA) 
according to the manufacturer’s instructions. Finally, all samples were sequenced with 150 bp paired-end reads 
at Macrogen Co (Macrogen, Seoul, South Korea) using Illumina HiSeq 2000 sequencing platform (Illumina, 
San Diego, CA, USA). The raw sequences and clean data were subjected to FastQC for quality assessment of 
sequences (Supplementary figures F1–F6).

After filtering, cleaning and trimming of the raw reads generated from Illumina sequencing platform, clean 
reads were de novo assembled into contigs using Trinity software (v. 2.0.3)18 with optimized parameters.

Pipeline for identification of lncRNAs. Step-by-step experimental and computational filtering (ECF) 
pipeline was used to minimize the false positives rate of lncRNAs prediction. Also additional annotation pro-
grams including CPC2 (coding potential calculator software based on alignment-based algorithms, version 2.0) 
and PLEK (predictor of long non-coding RNAs and messenger RNAs based on an improved k-mer scheme, ver-
sion 1.2) were employed. Both of these techniques make it possible to identify more accurate lncRNAs (Fig. 1).

Computational identification of protein‑noncoding transcripts using CPC2. Initially, all assem-
bled transcripts were subjected to CPC2 to evaluate their coding  potential32. Then in order to distinguish ncR-
NAs from protein-coding transcripts, we focused on transcripts labeled as “noncoding” in the output and filtered 
out any transcripts that had higher coding probability. As suggested in recent studies, the optimum cut-off for 
protein coding probability (CP) varies depending on the  species22 and setting a high coding probability thresh-
old, leads to increase the misclassified transcripts as non-coding or  coding52. Therefore, in species with no speci-
fied coding threshold such as scorpion, it is best to use studies of closely related species.

In this regard, to make error probability as small as possible, coding probability threshold of ECF pipeline 
was set at ≥ 0.4, based on the specified CP threshold of fruit  fly22. ECF pipeline basically filters out any transcript 
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with high coding potential, which estimated with CPC2. The transcripts scored with a probability less than 0.4 
were considered noncoding-RNA candidates.

Annotation of all non‑redundant transcripts. For annotation of assembled transcripts, the remaining 
ncRNA candidates were submitted to blastx search with an E value threshold le−3 against the following data-
bases: Swissprot (A manually annotated and reviewed protein sequence database); Nr (NCBI non-redundant 
protein sequences); UniProtKB/TrEMBL and, Pfam (Protein family). In purpose of discarding any known pro-
tein domain, we employed species-specific annotation. In summary, scorpion-specific annotation consists of 
three steps: (1) Downloading the specific sequences of scorpion, tick, spider (https ://www.unipr ot.org/) and, all 
manually reviewed venom proteins and toxins from the venomous animals (https ://www.unipr ot.org/progr am/
Toxin s) in fasta format. (2) Building customized databases with local sequences by means of the makeblastdb. (3) 
Annotation using blastx. Thereafter, all positively annotated transcripts were discarded from lncRNA candidates.

Filtering and classification of putative ncRNAs transcripts. To extract reliable putative ncRNAs, we 
set the minimum assembled transcript length to longer than 300 bp and those that were ≤ 300 bp in length were 
removed. After that, the remaining transcripts were subjected to getorf website (http://www.bioin forma tics.nl/
cgi-bin/embos s/getor f) to find longest ORFs, and those transcripts with ORF longest than ≥ 300 nt were also 
discarded.

The remaining transcripts were then subjected to a Rfam database to exclude any housekeeping and small 
RNAs, such as tRNAs, rRNAs, snRNAs, snoRNAs, micro-RNA, piRNA, siRNA and, other RNAs (E-value < 0.001) 
using BLASTN. To ensure that housekeeping and small RNAs were removed from the putative ncRNA dataset, 
we performed blastn against RNACentral db (http://rnace ntral .org) to find and discard housekeeping RNA 
residuals. The remaining transcripts were considered as large non-coding RNAs.

Novel lncRNA prediction. Known lncRNA sequences including all validated lncRNAs were downloaded 
from two lncRNA databases: (1) NONCODE database (http://www.nonco de.org/). (2) RNACentral release 14 
(http://rnace ntral .org). Overlap of scorpion lncRNAs with these lncRNA database sources was determined using 
blastn with a cut-off E-value of  10–3. Then, known lncRNAs were extracted from whole lncRNAs list and the 
analysis was continued with the novel lncRNAs.

Transcript expression. Gene expression levels in terms of FPKM were quantified using RSEM  software53. 
Extremely low gene expression is generally considered to be transcriptional  noise54. To enhance the reliability of 
our prediction, we set an FPKM (fragments per kilobase of transcript per million fragments assembled) value 
of 1 as the lower bound in subsequent analyses and any input transcripts with FPKM value greater than 1 were 
included in high reliable lncRNA list.

Prediction of high reliable novel lncRNA. To detect high reliable novel lncRNAs, the remaining tran-
scripts were subjected to PLEK  tool17. PLEK is a developed computational software to distinguish lncRNAs from 
mRNAs in RNA-seq transcriptomes of species lacking reference genomes (https ://sourc eforg e.net/proje cts/plek/
files /).

Computational identification of lncRNA in scorpion datasets. In addition to using ECF pipeline 
for predicting scorpion lncRNAs, we tested various lncRNA prediction tools on whole assembled scorpion data-
set which include, CPC2, PLEK, CNIT (http://cnit.nonco de.org/CNIT/) and Annocript (https ://githu b.com/
frank Musac chia/Annoc ript) with the default parameters. Venn diagram (http://bioin forma tics.psb.ugent .be/
webto ols/Venn/) was used to visualize the resulting data. Coding potential assessment was performed for all 
approaches and the scatter curve was drawn to compare the coding probability of identified ncRNAs, known 
lncRNAs and novel lncRNAs.

Data collection and description. We finally compared ECF pipeline with lncRNA prediction tools using 
data sets of scorpion and fruit fly. Considering lack of lncRNA genomic coordinates for scorpion, the approaches 
were trained and tested on drosophila melanogaster dataset retrieved from NONCODE and Ensamble databases, 
which contains 3976 lncRNAs and 30,588 mRNA sequences. In addition, scorpion lncRNAs and mRNA tran-
scripts that were predicted in this study were used to assess the programs performance on scorpion dataset, 
which contains 131,311 lncRNAs and 202,064 mRNAs.

Comparative analysis. Sensitivity, specificity, accuracy (ACC), positive predictive value (PPV) and, nega-
tive predictive value (NPV) metrics were used to assess classification performance of the computational pro-
grams on drosophila melanogaster and Androctonus crassicauda datasets. In order to intuitively measure the 
performance, the ROK curves were employed.

Accuracy =
TP + TN

TP + FP + FN + TN

Specificity =
TN

FP + TN

https://www.uniprot.org/
https://www.uniprot.org/program/Toxins
https://www.uniprot.org/program/Toxins
http://www.bioinformatics.nl/cgi-bin/emboss/getorf
http://www.bioinformatics.nl/cgi-bin/emboss/getorf
http://rnacentral.org
http://www.noncode.org/
http://rnacentral.org
https://sourceforge.net/projects/plek/files/
https://sourceforge.net/projects/plek/files/
http://cnit.noncode.org/CNIT/
https://github.com/frankMusacchia/Annocript
https://github.com/frankMusacchia/Annocript
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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TP means true positive, FN refer to false negative, FP is false positive, and TN represents true negative.

Characterization analyses of lncRNA. Characterization of coding and long non-coding RNAs was 
determined using number of isoform per gene, protein coding probability, length, and, GC content assays. 
Meanwhile, GC content of each sequence was evaluated using EMBOSS geecee program. Ultimately, Sequence 
length, GC content and CP distribution of lncRNA and mRNA were plotted.

Ethical statement. The manuscript and data were not previously or simultaneously submitted elsewhere. 
All experiments in this paper were carried out under the standard procedures of scientific ethics, including the 
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