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Brain network analysis reveals 
that amyloidopathy affects 
comorbid cognitive dysfunction 
in older adults with depression
Suji Lee1,11, Daegyeom Kim2,11, HyunChul Youn3, Won Seok William Hyung4, Sangil Suh5, 
Marcus Kaiser6,7,8,9, Cheol E. Han2,10* & Hyun‑Ghang Jeong1,4*

Late-life depression (LLD) may increase the risk of Alzheimer’s dementia (AD). While amyloidopathy 
accelerates AD progression, its role in such patients has not yet been elucidated. We hypothesized 
that cerebral amyloidopathy distinctly affects the alteration of brain network topology and may 
be associated with distinct cognitive symptoms. We recruited 26 and 27 depressed mild cognitive 
impairment (MCI) patients with (LLD-MCI-A(+)) and without amyloid accumulation (LLD-MCI-A(−)), 
respectively, and 21 normal controls. We extracted structural brain networks using their diffusion-
weighted images. We aimed to compare the distinct network deterioration in LLD-MCI with and 
without amyloid accumulation and the relationship with their distinct cognitive decline. Thus, we 
performed a group comparison of the network topological measures and investigated any correlations 
with neurocognitive testing scores. Topological features of brain networks were different according 
to the presence of amyloid accumulation. Disrupted network connectivity was highly associated with 
impaired recall and recognition in LLD-MCI-A(+) patients. Inattention and dysexecutive function 
were more influenced by the altered networks involved in fronto-limbic circuitry dysfunction in LLD-
MCI-A(−) patients. Our results show that alterations in brain network topology may reflect different 
cognitive dysfunction depending on amyloid accumulation in depressed older adults with MCI.

Late-life depression (LLD) is often found together with mild cognitive impairment (MCI), which is often con-
sidered the prodromal stage of Alzheimer’s disease (AD). Epidemiological studies have revealed that older adults 
with prodromal AD have a higher frequency of depression1,2. At the same time, depressed older adults without 
AD pathology also frequently have concomitant cognitive impairment3. Therefore, it is a common clinical phe-
notype for older adults to present with both LLD and MCI. However, they exhibit different prognoses depending 
on the heterogeneity of the underlying pathogenesis. For example, some of them progress to dementia, some 
stay in the MCI stage, and some recover to their normal condition4. Thus, it is critical to detect the underlying 
neuropathology among such individuals before further cognitive deterioration progression.

Our earlier studies demonstrated that cerebral amyloidopathy, one of the core AD pathologies, may contrib-
ute to impairments in distinct cognitive domains in patients with LLD and MCI3,5,6. Specifically, subjects with 
amyloidopathy had lower word-list recall and constructional recall scores than those without amyloidopathy3. In 
another report, we further noticed different regional glucose metabolism between those with and without cerebral 
amyloidopathy5. In particular, individuals with amyloid accumulation had a decreased level of regional cerebral 
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glucose metabolism in the temporoparietal region, which is highly associated with memory function. In contrast, 
individuals without amyloid accumulation had cerebral glucose hypometabolism within the frontal region, 
which is responsible for executive function. These results suggest that cerebral amyloid accumulation possibly 
determines distinguished cognitive impairment and altered brain metabolism in patients with LLD and MCI.

Given that patients with LLD and MCI present a broad spectrum of clinical symptoms related to cognitive 
dysfunction and emotional disturbances based on the pathophysiological mechanisms, it is postulated that they 
may be mediated by widespread network disconnectivity rather than by a single brain region7,8. In previous 
research, a network analysis based on combining magneto-encephalography showed that dysfunctional com-
munication between the brain modules resulted in cognitive impairment in patients with AD, indicating the 
significance of investigating the global network organization9. In another recent study that investigated cogni-
tively intact individuals with abnormal amyloid levels of cerebrospinal fluid (CSF), it was observed from cortical 
thickness data that cerebral amyloidopathy influenced the disruption of global connectivity across the brain 
network10. Its authors also showed that healthy subjects with abnormal CSF Aβ42/Aβ40 levels and no apparent 
cerebral atrophy had a lower degree of global efficiency than those without Aβ accumulation. These findings sug-
gest that the various symptoms are mediated by a widespread network of disconnectivity under the influence of 
neuropathology, even in the preclinical or prodromal phase of AD. However, it is still unclear how different brain 
network regions interact with one another to produce cognitive and depressive symptoms and whether specific 
alterations in brain network topology reflect the presence or absence of underlying neuropathological changes.

Therefore, we utilized a network analysis derived from diffusion-weighted imaging (DWI) to investigate 
whether amyloid accumulation influences brain network topology in older adults with concomitant depression 
and MCI. In addition, the relationship between network properties and performance on neurocognitive tests 
were also analyzed. We hypothesized that alteration in the brain network in the temporoparietal area and AD-
related regions would be linked to cognitive impairment in patients with amyloid accumulation. On the other 
hand, in subjects without amyloid accumulation, an altered network in the fronto-limbic area would be found 
to be associated with their cognitive symptoms.

Results
Subject characteristics.  Table 1 shows the characteristics and cognitive scores of all of the participants. We 
performed an analysis of variance (ANOVA) to investigate the difference between the groups’ cognitive scores. 
Group differences existed in all applied cognitive examinations except for the constructional praxis z-score and 
trail-making test A (Table 1). We also performed post-hoc tests for each score, which showed that the variations 
between healthy older adults (HOA) and depressed MCI patients without amyloid accumulation (LLD-MCI-
A(−)) and those between HOA and depressed MCI patients with amyloid accumulation (LLD-MCI-A(+)) were 
significant.

However, only parts of the scores between the MCI groups were significantly different, including the word-list 
recall score and its z-score, the constructional praxis recall score, and its z-score, controlled oral word associa-
tion test (COWAT) lexicalㄱ, and COWAT lexicalㅅ. Furthermore, the average age, gender, and education level 
were not different between the LLD-MCI-A(−) and LLD-MCI-A(+) groups, while they were different from 
those of the HOA group (see limitations). There was no significant difference of depressive symptoms between 
LLD-MCI-A(+) and LLD-MCI-A(−) (t = − 1.434, P = 0.158).

Group difference in network measures.  We first investigated the group difference in the global network 
measures and did not find any significant difference even with uncorrected P-values under the alpha level of 
0.05 (Table S1). For the nodal measures (Table S2–S6), we used the permutation-based analysis of covariance 
(ANCOVA) for the three groups and conducted a false-discovery rate (FDR) across 90 brain regions. Among 
the four nodal measures (nodal degree, nodal strength, nodal clustering coefficient, and regional efficiency), 
there were survived results in nodal strengths and nodal clustering coefficients after the FDR procedure. The 
nodal strength was significantly different between the groups in the left calcarine (F = 9.1496, FDR-adjusted 
P = 0.009; unless noted, the following P-values are FDR-adjusted P-values) and the right inferior orbitofrontal 
cortex (F = 8.1036, P = 0.036). The post-hoc tests showed that the two brain regions presented different pat-
terns. The nodal strength of the left calcarine showed differences between the HOA and LLD-MCI-A(+) groups 
(F = 5.5690, P = 0.0324, mean ± standard deviation, HOA: 2580 ± 196, LLD-MCI-A(+): 2731 ± 289) and between 
the LLD-MCI-A(+) and LLD-MCI-A(−) groups (F = 12.8219, P = 0.0021, LLD-MCI-A(+): 2731 ± 289, LLD-
MCI-A(−): 2442 ± 258). In contrast, the nodal strength of the right inferior orbitofrontal cortex significantly 
decreased in the LLD-MCI-A(+) (F = 6.3591, P = 0.0244) and LLD-MCI-A(−) (F = 14.4729, P = 0.0012) groups 
compared to the HOA (HOA: 868 ± 126, LLD-MCI-A(+): 692 ± 120, LLD-MCI(−): 640 ± 102). The clustering 
coefficient of the left pallidum significantly decreased in the LLD-MCI-A(−) group compared to the LLD-MCI-
A(+) group (F = 25.4681, P = 0.0003, LLD-MCI-A(+): 28 ± 4, LLD-MCI-A(−): 24 ± 3; Fig. 1).

Correlation between network measures and cognitive domains.  We investigated the correlation 
between the network measures and the cognitive domain scores, controlling for age, gender, and education 
level. A correlation analysis was performed for the five global measures (i.e., total strength, edge density, small-
worldness, characteristic path length (CPL), and clustering coefficient) and the four nodal measures (i.e., nodal 
degree, nodal strength, clustering coefficient node, and regional efficiency). Here, we report only the results that 
remained after the FDR procedure was conducted among the 90 brain regions (Tables 2, 3). For more detailed 
results, see the supplementary materials.

For the attention and executive function domain, most of the significant correlations were found in the LLD-
MCI-A(−) group. The digit span forward test was positively correlated with the clustering coefficient (r = 0.318). 
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The trail-making test A (z-score) was correlated with total strength (r = 0.571), edge density (r = 0.377), cluster-
ing coefficient (r = 0.388), CPL (r = − 0.467), and small-worldness (r = 0.437). The trail-making test A (seconds) 
was correlated with total strength (r = − 0.519), edge density (r = − 0.391), CPL (r = 0.510), and small-worldness 
(r = − 0.359). Correlations among the nodal measures were observed for the trail-making A (seconds), COWAT 
market, COWAT market z-score, and COWAT lexicalㅇ evaluations. The trail-making A (seconds) test was 
negatively correlated with the left middle cingulum’s regional efficiency in the LLD-MCI-A(−) group (r = − 0.539), 
whereas it was positively correlated with the right caudate’s clustering coefficient in the LLD-MCI-A(+) group 
(r = 0.514). The COWAT market was positively correlated with the left inferior orbitofrontal cortex’s nodal 
strength (r = 0.510). The COWAT market z-score was further correlated with the right thalamus’s clustering 
coefficient (r = − 0.500) and the left inferior orbitofrontal cortex’s regional efficiency (r = 0.495). Finally, the 
COWAT lexicalㅇ was positively correlated with the right middle temporal gyrus (r = 0.569).

No significant correlation was observed between the global network measures and word-list learning memory. 
We determined that significant correlations existed with the nodal network measures in the LLD-MCI-A(−) 
group, but we did not find this in the LLD-MCI-A(+) group. The word-list learning score and its z-score showed 
significant correlations in the LLD-MCI-A(−) group. Word-list learning was negatively correlated with the 
clustering coefficient of the left middle occipital node (r = − 0.533). Meanwhile, the word-list learning z-score 
was positively correlated with the nodal strength of the right inferior orbitofrontal cortex (r = 0.517) but was 
negatively correlated with the clustering coefficient of the left middle occipital node (r = − 0.541).

Table 1.   Demographic information. a Mean ± standard deviation. b Yates’χ2. c COWAT​ controlled oral word 
association test.

Item HOA LLD-MCI-A(+) LLD-MCI-A(−)
Three-group 
comparison

HOA vs. LLD-
MCI-A(+)

HOA vs. LLD-
MCI-A(−)

LLD-MCI-A(+) vs. 
LLD-MCI-A(−)

Age 68.86 ± 4.60a 76.85 ± 7.30a 76.07 ± 5.41a F = 12.356, P < 0.001 t =  − 4.359, P < 0.001 t =  − 4.892, P < 0.001 t = 0.439; P = 0.663

Sex (male/female) 12/9 4/22 2/25 χ2 = 17.614b, P < 0.001 χ2 = 9.022b, P = 0.005 χ2 = 14.143b, P < 0.001 χ2 = 0.839b, P = 0.360

Education 13.33 ± 4.23 6.92 ± 4.42 6.37 ± 4.36 F = 17.940, P < 0.001 t = 5.037, P < 0.001 t = 5.557, P < 0.001 t = 0.458; P = 0.649

Geriatric Depression 
Scale 8.71 ± 4.22 13.12 ± 6.78 15.70 ± 6.37 F = 8.060, P < 0.001 t = − 2.594, P = 0.013 t = − 4.339, P < 0.001 t = − 1.434, P = 0.158

MMSE 28.95 ± 0.92 20.88 ± 3.86 22.74 ± 4.85 F = 28.682, P < 0.001 t = 9.345, P < 0.001 t = 5.777, P < 0.001 t = − 1.538; P = 0.130

Word-list learning 21.86 ± 3.18 9.96 ± 3.40 11.63 ± 4.10 F = 71.624, P < 0.001 t = 12.268, P < 0.001 t = 9.432, P < 0.001 t = − 1.610; P = 0.114

Word-list learning 
z-score 1.31 ± 0.76 − 1.36 ± 0.65 − 0.98 ± 0.83 F = 83.036, P < 0.001 t = 12.958, P < 0.001 t = 9.805, P < 0.001 t = − 1.843; P = 0.071

Word-list recall 7.76 ± 1.45 1.38 ± 1.42 2.63 ± 2.06 F = 90.673, P < 0.001 t = 15.205, P < 0.001 t = 9.700, P < 0.001 t = 2.555; P = 0.014

Word-list recall z-score 0.93 ± 0.74 2.05 ± 0.64 − 1.42 ± 0.88 F = 95.745, P < 0.001 t = 14.783, P < 0.001 t = 9.819, P < 0.001 t = 2.958; P = 0.005

Word-list recognition 9.57 ± 0.81 5.58 ± 3.00 6.22 ± 2.99 F = 15.677, P < 0.001 t = 5.926, P < 0.001 t = 4.980, P < 0.001 t = − 0.785; P = 0.436

Word-list recognition 
z-score 0.39 ± 0.59 − 1.88 ± 1.97 − 1.43 ± 1.72 F = 12.829, P < 0.001 t = 5.088, P < 0.001 t = 4.632, P < 0.001 t = − 0.896; P = 0.375

Constructional praxis 10.14 ± 0.96 8.58 ± 2.37 7.96 ± 1.83 F = 8.385, P < 0.001 t = 2.840; P = 0.007 t = 4.946, P < 0.001 t = 1.058; P = 0.295

Constructional praxis 
z-score − 0.06 ± 0.72 0.04 ± 0.88 − 0.53 ± 1.48 F = 1.976; P = 0.146 t = − 0.454; P = 0.652 t = 1.315; P = 0.292 t = 1.698; P = 0.287

Constructional praxis 
recall 7.43 ± 2.42 1.58 ± 1.98 2.81 ± 2.20 F = 44.722, P < 0.001 t = 9.114, P < 0.001 t = 6.896, P < 0.001 t = 2.148; P = 0.037

Constructional praxis 
recall z-score 0.086 ± 0.84 − 1.48 ± 0.93 − 0.64 ± 0.95 F = 17.236, P < 0.001 t = 5.970, P < 0.001 t = 2.774; P = 0.008 t = − 3.236; P = 0.003

Trail-making test A 1.00 ± 0 0.85 ± 0.37 0.78 ± 0.42 F = 2.634; P = 0.079 t = 1.912; P = 0.093 t = 2.398; P = 0.062 t = − 0.626; P = 0.534

Trail-making test A 
z-score 1.38 ± 0.63 − 0.01 ± 0.99 − 0.66 ± 1.46 F = 19.426, P < 0.001 t = 5.458, P < 0.001 t = 5.858, P < 0.001 t = 1.695; P = 0.098

Trail-making test A 
(seconds) 40.48 ± 12.90 113.14 ± 58.22 138.14 ± 86.32 F = 14.784, P < 0.001 t = − 5.587, P < 0.001 t = − 5.128, P < 0.001 t = − 1.118; P = 0.270

Boston naming 12.76 ± 1.58 9.23 ± 3.01 8.70 ± 2.84 F = 16.128, P < 0.001 t = 4.856, P < 0.001 t = 5.873, P < 0.001 t = 0.656; P = 0.515

Boston naming z-score 0.75 ± 0.61 − 0.08 ± 0.95 − 0.17 ± 0.84 F = 8.649, P < 0.001 t = 3.469; P = 0.001 t = 4.265, P < 0.001 t = 0.395; P = 0.694

Digit-span forward test 6.52 ± 1.25 4.46 ± 0.90 4.00 ± 0.83 F = 41.870, P < 0.001 t = 6.558, P < 0.001 t = 8.384, P < 0.001 t = 1.934; P = 0.059

Digit-span backward 
test 4.47 ± 1.17 2.73 ± 0.67 2.63 ± 0.88 F = 29.478, P < 0.001 t = 6.444, P < 0.001 t = 6.243, P < 0.001 t = 0.469; P = 0.641

COWAT​c animal 16.71 ± 4.28 8.77 ± 2.75 9.56 ± 3.33 F = 36.372, P < 0.001 t = 7.712, P < 0.001 t = 6.521, P < 0.001 t = − 0.935; P = 0.354

COWAT​c animal 
z-score 0.06 ± 0.86 − 1.27 ± 0.67 − 1.09 ± 0.89 F = 17.875, P < 0.001 t = 5.952, P < 0.001 t = 4.503, P < 0.001 t = − 0.835; P = 0.408

COWAT​c market 20.57 ± 6.66 10.88 ± 4.26 10.59 ± 4.26 F = 28.523, P < 0.001 t = 6.051, P < 0.001 t = 6.308, P < 0.001 t = 0.250; P = 0.804

COWAT​c market 
z-score 0.38 ± 1.20 − 0.65 ± 0.77 − 0.67 ± 0.93 F = 8.872, P < 0.001 t = 3.583; P = 0.001 t = 3.446; P = 0.001 t = 0.089; P = 0.929

COWAT​c ㄱ 9.38 ± 3.61 4.65 ± 3.23 2.67 ± 2.82 F = 25.332, P < 0.001 t = 4.586, P < 0.001 t = 6.991, P < 0.001 t = 2.247; P = 0.030

COWAT​c ㅇ 10.24 ± 4.09 4.35 ± 3.20 2.79 ± 2.87 F = 29.380, P < 0.001 t = 5.349, P < 0.001 t = 7.140, P < 0.001 t = 1.756; P = 0.086

COWAT​c ㅅ 10.19 ± 4.34 5.17 ± 3.70 3.17 ± 3.09 F = 20.889, P < 0.001 t = 4.135, P < 0.001 t = 6.311, P < 0.001 t = 2.022; P = 0.049
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Regarding the recall and recognition memory domain, all of the significant correlations with the global 
network measures and the nodal network measures were found in the LLD-MCI-A(+) group, while there was 
no significant correlation in the LLD-MCI-A(−) group. For the global network measures, the correlations with 
total strength and the following were positively associated: word-list recall (r = 0.395), word-list recall z-score 
(r = 0.375), word-list recognition (r = 0.366), and word-list recognition z-score (r = 0.370). Conversely, all of the 
correlations with the CPL and the following scores were negatively associated: word-list recall (r = − 0.363), word-
list recall z-score (r = − 0.319), word-list recognition (r = − 0.429), and word-list recognition z-score (r = − 0.407). 
For the nodal network measures, all of the correlations were positively associated. The word-list recall and 
z-scores were positively correlated with the right middle cingulum’s regional efficiency in the LLD-MCI-A(+) 
group (r = 0.498 and r = 0.477, respectively).

For the visuospatial domain, most of the significant correlations with the global network measures were found 
in the LLD-MCI-A(+) group. The constructional praxis was negatively correlated with total strength (r = − 0.343), 
clustering coefficient (r = − 0.369), and small-worldness (r = − 0.353) in the LLD-MCI-A(+) group but was nega-
tively correlated with CPL (r = − 0.305) in the LLD-MCI-A(−) group. The constructional praxis z-score showed 
significant correlations only in the LLD-MCI-A(+) group. Specifically, it was negatively correlated with total 
strength (r = − 0.465), clustering coefficient (r = − 0.307), and small-worldness (r = − 0.378), but was positively 
correlated with CPL (r = 0.413). The constructional praxis recall was positively correlated with the right superior 
orbitofrontal cortex’s regional efficiency in the LLD-MCI-A(−) group (r = 0.495).

In summary, we found a significant correlation in the global network measures mostly only with attention in 
the LLD-MCI-A(−) group and with visuospatial domain, recall, and recognition in the LLD-MCI-A(+) group. 
In contrast, regarding nodal network measures, we found significant correlations mostly with attention, memory, 
and visuospatial domain in the LLD-MCI-A(−) group and recall and recognition in the LLD-MCI-A(+) group 
(Fig. 2).

Figure 1.   Between-group differences among the network measures. A between-group difference was found in 
the nodal strength (A) and clustering coefficient (B). Yellow circles in the middle brain images indicate the brain 
regions that show a group difference in the network measures. Bar graphs show the adjusted average values 
of the network measures in each group, controlling for age, gender, and education level. Whiskers of the bar 
graphs show the confidence intervals of the adjusted average values. All P-values were adjusted through the FDR 
procedure. *P < 0.05; **P < 0.01; ***P < 0.001.
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Table 2.   Correlation between the global network measures and cognitive scores (significant results only). 
a Partial correlation coefficient, controlling for age, gender, and education level.

Cognitive domain Score Network measure

LLD-MCI-A(+) LLD-MCI-A(−)

r-valuea P-valuea r-valuea P-valuea

Attention

Digit span test forward Clustering coefficient 0.318 0.033

Trail-making test A z -score

Total strength 0.571 < 0.001

Edge density 0.377 0.018

Clustering coefficient 0.388 0.015

Characteristic path length − 0.467 0.003

Small-worldness 0.437 0.005

Trail-making test A (seconds)

Total strength − 0.519 0.001

Edge density − 0.391 0.014

Characteristic path length 0.510 0.001

Small-worldness − 0.359 0.025

Recall and recognition

Word-list recall
Total strength 0.395 0.008

Characteristic path length − 0.363 0.015

Word-list recall z-score
Total strength 0.375 0.012

Characteristic path length − 0.319 0.035

Word-list recognition
Total strength 0.366 0.015

Characteristic path length − 0.429 0.006

Word-list recognition z-score
Total strength 0.370 0.013

Characteristic path length − 0.407 0.006

Visuospatial function

Constructional praxis

Total strength − 0.343 0.023 0.314 0.036

Clustering coefficient − 0.369 0.014

Characteristic path length − 0.305 0.042

Small-worldness − 0.353 0.019

Constructional praxis z-score

Total strength − 0.465 0.001

Clustering coefficient − 0.307 0.043

Characteristic path length 0.413 0.005

Small-worldness  − 0.378 0.011

Table 3.   Correlation between the nodal network measures and cognitive scores (FDR-survived results only). 
a Partial correlation coefficient, controlling for age, gender, and education level; the collected P-values were 
FDR-adjusted across 90 nodes.

Cognitive domain Score Network measure Node

LLD-MCI-A(+) LLD-MCI-A(−)

r-valuea P-valuea r-valuea P-valuea

Attention Trail-making test A 
(seconds)

Clustering coefficient 
(node) Right caudate 0.514 0.049

Regional efficiency Left middle cingulum  − 0.539 0.028

Executive function

COWAT market Nodal strength Left inferior orbito-
frontal 0.510 0.031

COWAT market 
z-score

Clustering coefficient 
(node) Right thalamus − 0.500 0.042

Regional efficiency Left inferior orbito-
frontal 0.495 0.049

COWAT O Clustering coefficient 
(node)

Right middle tem-
poral 0.569 0.007

Learning

Word-list learning Clustering coefficient 
(node) Left middle occipital − 0.533 0.015

Word-list learning 
z-score

Nodal strength Right inferior orbito-
frontal 0.517 0.025

Clustering coefficient 
(node) Left middle occipital − 0.541 0.011

Recall and recogni-
tion

Word-list recall Regional efficiency Right middle cin-
gulum 0.498 0.028

Word-list recall 
z-score Regional efficiency Right middle cin-

gulum 0.477 0.046

Visuospatial function Construction praxis 
recall Regional efficiency Right superior orbito-

frontal 0.495 0.049
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Discussion
We investigated whether brain amyloid accumulation influences the structural connections linking neuronal 
units, and this alteration in the structural connections is associated with the distinct cognitive dysfunction in 
older adults with concomitant depression and MCI. Using a whole-brain connectivity analysis, we found that 
distinct alterations in whole-brain connectivity may be induced by the presence or absence of brain amyloid 
accumulation among LLD patients with concomitant MCI. Different impacts of amyloid accumulation on brain 
network organizations are manifested by the altered nodal strength in the left calcarine and clustering coefficient 
in the left pallidum in the network. Additionally, the nodal strength of the right inferior orbitofrontal cortex was 
different in both patient groups from the HOA group. These regions are known to be related to AD and major 
depression. The calcarine is involved in visual processing and is also associated with learning and recognition11. 
Another report suggests that an AD-related neurodegeneration pattern is apparent in the calcarine along with a 
visual field map change, although atrophy due to normal aging is also common in this area12,13. The orbitofrontal 
cortex and pallidum play important roles as neuronal circuits that regulate emotion, motivation, and reward 
and underlie the development of depressive symptoms14–16. Our findings suggest that the presence or absence 
of amyloid accumulation may influence local segregation and transmission of information across the brain net-
work and consequently formulate distinct brain organizations17 according to the underlying neuropathology in 
depressed older adults with cognitive dysfunction.

Figure 2.   Correlations between the nodal measures and cognitive domains (z-score). Left and right columns 
show scatter plots of the cognitive domains (z-score) over network measures in the LLD-MCI-A(+) group 
(leftmost column) and LLD-MCI-A(−) group (rightmost column). Values of the cognitive domains were 
adjusted, controlling for age, gender, and education level. Lines represent their fitting lines. We denoted partial 
correlation coefficients and their P-values, controlling for age, gender, and education level. The middle column 
shows the brain regions associated with significant correlation results, where blue circles represent results from 
the LLD-MCI-A(−) group and red circles represent results from the LLD-MCI-A(+) group, respectively.
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The relationship between global network properties and cognitive dysfunction reveals how the presence 
or absence of amyloid accumulation influences specific cognitive domains via distinct alteration of network 
topological measures with cerebral amyloidopathy. We compared topological properties such as total strength, 
edge density, small-worldness, CPL, and clustering coefficient between the groups. In the LLD-MCI-A(+) group, 
word-list recall, recognition, and visuospatial praxis showed significant correlations with total strength and the 
CPL. This suggests that a disconnect in the entire network influences memory dysfunction in prodromal AD, 
consistent with our previous study5. Additionally, the areas connected with the altered network nodes may disturb 
the integration of visual information processing, as shown by the significant association between visuospatial 
praxis and reduced small-worldness17,18. The LLD-MCI-A(−) group displayed poor performance during attention 
tasks associated with alterations of network properties such as diminished total strength and edge density, longer 
CPL, and reduced small-worldness. These results suggest that the clinical phenotype presenting both LLD and 
MCI could be subdivided based on the different brain networks provoked by the presence or absence of brain 
amyloid accumulation. We believe that the alteration in global network measures is linked to cognitive impair-
ment, and the relationships between them are characterized by the underlying neuropathology and neuronal 
circuit dysfunction. Pathologic amyloid protein begins to accumulate several decades before dementia in AD19, 
so its neurotoxic and neuroinflammatory effects on the brain network possibly result in depressive and cognitive 
symptoms during the prodromal phase of AD.

The structural connection of inter-regional pathways sheds more insight regarding the differences in the 
network characterization between groups. The nodal network properties analysis indicated that patients with 
LLD-MCI-A(+) had a significant correlation between poor word-list recall and regional efficiency in the right 
middle cingulum. The cingulum is connected to the hippocampus, takes memory information, and integrates it 
with other important parts of the brain20. As shown in our results, regional efficiency in the right middle cingu-
lum node was correlated with recall function in the LLD-MCI-A(+) group. Regional efficiency reflects how well 
the information propagates across nodes21. Previous studies have indicated that regional efficiency might have 
a biological meaning and serve as a potential marker to predict the risk of AD22,23. This suggests that changes in 
network properties might be early signs of structural impairment caused by amyloid accumulation.

However, in the LLD-MCI-A(−) group, the relationships between memory function and nodal network 
properties seemed qualitatively different. Their word-list score was correlated with nodal strength in the right 
inferior orbitofrontal cortex and clustering coefficient in the left middle occipital node. These may be the result 
of impairments in information traffic flow and segregation within the network, respectively. The orbitofrontal 
cortex, which is part of the major circuits of depression16, is involved in receiving information from the cortical 
and subcortical structures and in mediating cognitive flexibility24,25. In line with our results, some studies have 
also reported reduced activation of the occipital lobe in depressed patients with cognitive dysfunction. One report 
suggested that a lower density of gamma-aminobutyric acid (GABA) neurons in the occipital lobe contribute to 
a low GABA level and an imbalance in neurotransmitters in patients with depression26. Another study that used 
functional magnetic resonance imaging (MRI) found that reduced activation of the occipital lobe may initiate 
cognitive dysfunction in patients with depression27.

Besides memory, inattention and executive function showed significant associations with certain nodal net-
work measurements, clustering coefficient in the right caudate and thalamus, and regional efficiency in the left 
middle cingulum and left inferior orbitofrontal cortex in the LLD-MCI-A(−) group. These areas may play a role 
in the manifestation of various depressive symptoms. The limbic–cortical–striatal–pallidal–thalamic circuits are 
known to be responsible for emotion regulation and are formed by connections between the orbitoprefrontal 
cortex, amygdala, hippocampal subiculum, striatum, thalamic nuclei, and pallidum28,29. Microstructural altera-
tions of the connections within this circuit may lead to loosening of the local group cohesiveness and disturbance 
of information propagation between nodes.

In summary, amyloid plaque may cause an alteration in brain network topology that leads to distinct cognitive 
dysfunction in patients with LLD-MCI-A(+). Such susceptible brain networks are also influenced by dysfunction 
of the fronto-limbic circuits related to depression29,30. This may further accelerate the conversion from prodromal 
AD to dementia31. Also, brain network alterations due to amyloid accumulation may contribute to depression 
and cognitive decline32. In contrast, in patients with LLD-MCI-A(−), the brain network alterations may be related 
to a modified linkage between the fronto-limbic circuits and associated areas29,30 and are possibly mediated by 
the neurotoxic effects of elevated cortisol and reduced brain-derived neurotrophic factor levels33. Some of these 
changes may be state-dependent, and the integrity of the brain network may be partially recovered if optimal 
therapeutic interventions are applied before depression becomes long-lasting or recurs several times.

This study has some significant clinical implications. Timely identification of AD pathology among older 
adults with LLD by observing the brain network measures might enable appropriate treatment to be started 
earlier and improve the prognosis. Unlike prodromal AD patients without depression, it is hard to identify 
prodromal AD patients with depression among older adults with LLD. Therefore, it may be of great advantage 
to subdivide patients with LLD and MCI into discrete categories. Observing the integrity of brain connectivity 
in the early stage may also help predict therapeutic responses and identify novel therapeutic targets.

Investigating the disrupted network organization may also be beneficial by complementing the current limita-
tion of brain amyloid positron emission tomography (PET) imaging. Nowadays, by virtue of molecular imaging 
techniques, it has become easier to determine prodromal AD than before the emergence of such approaches34. 
The tracers used during brain PET detect amyloid plaque and neurofibrillary tangles, which are key neuropathol-
ogies of AD that begin to accumulate 10–15 years before the appearance of AD symptoms34–36. Nevertheless, 
its high procedural cost and radiation exposure limit its wider clinical application. Thus, with the recognition 
of the significance of early detection in AD and the limitation of current approaches, we should search for an 
alternative neuroimaging method that may help better identification of neuropathology in older adults with 
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depression and cognitive dysfunction. We believe that MRI, including DWI and its topological network analysis, 
may shed light on this issue.

This study has several limitations. First, the HOA group was not matched according to age, gender, or educa-
tion level with the patient groups. We used an ANCOVA and partial correlation coefficients for correcting this 
effect. Second, the current study employed DWI and thus inherits all of this approach’s limitations. We employed 
ODF reconstruction and high angular resolution diffusion imaging (HARDI) tractography to overcome this, 
which may better model the crossing fibers. Third, even though we investigated difference in correlation coef-
ficients between patient groups (Table S7 and S8), most of the results did not reach statistical significance due 
to the small sample size. Thus, all the correlation results contrasting groups should be interpreted with caution.

In conclusion, brain networks using DWI in depressed older patients with comorbid cognitive impairment 
can distinguish the presence of AD-related neuropathology and explain how brain amyloid accumulation con-
tributes to concomitant cognitive impairment. Alterations in brain network topology reflect different impacts 
of poor performance on specific cognitive domains based on the presence of amyloid accumulation. Disrup-
tions to network connectivity and integrity caused by neurodegeneration are closely linked to poor recall and 
recognition in patients with LLD-MCI-A(+). However, inattention and executive function are more influenced 
by altered networks related to fronto-limbic circuitry dysfunction in patients with LLD-MCI-A(−). This study’s 
findings may help clinicians better predict the prognosis of older adults with depression and guide the planning 
of tailored interventions.

Methods
Participants.  Patients were diagnosed with depression and were recruited if they met the criteria for MCI. 
Depression was diagnosed by two geriatric psychiatrists based on the Diagnostic and Statistical Manual for Men-
tal Disorders (DSM-5)37. We included older adults with major depressive disorder or subthreshold depression. 
The research criterion for the diagnosis of subthreshold depression is a depressive episode with insufficient 
symptoms classified as “other specified depressive disorder” in the DSM-5. MCI was also diagnosed by two 
geriatric psychiatrists based on the revised diagnostic criteria for MCI proposed by the International Working 
Group on MCI38. Eligible subjects met the following criteria: (1) memory complaints made by the participant 
or family; (2) objective impairments on neurocognitive tests as indicated by scores with − 1.5 standard devia-
tions below the mean scores of age-, sex- and education-matched healthy older adults (normative data); and (3) 
no dementia. Neurocognitive tests, used to determine the MCI criteria, included constructional praxis, word-
list memory, word-list recall, word-list recognition, constructional recall, verbal fluency, Boston naming test, 
trail-making test A, digit span forward, and digit span backward39,40. Subjective depressive symptoms were also 
assessed using the Geriatric Depression Scale41.

We recruited 74 subjects from Korea University Guro Hospital. Twenty-six patients with amyloid accumula-
tion were included in the LLD-MCI-A(+) group, and 27 patients without amyloid accumulation were included 
in the LLD-MCI-A(−) group. We also recruited 21 HOA who scored > − 1.5 SD on every cognitive task and had 
no depression. In our previous study, we reported the findings of fluorodeoxyglucose PET images from 16 sub-
jects with LLD-MCI-A(+), 15 subjects with LLD-MCI-A(−) and 21 HOA5. Among them, 51 subjects included 
in this study. Fifty-three subjects with LLD and MCI in this study also overlapped with subjects of another our 
study that reported the differences of neuropsychological between 45 LLD-MCI-A(+) and 42 LLD-MCI-A(−) 
subjects3. All subjects were recruited on a voluntary basis. This study was approved by the institutional review 
board of Korea University Guro Hospital. All methods were performed in accordance with the relevant guidelines 
and regulations of the ethics committee. Informed consent was obtained from every participant, in accordance 
with the Declaration of Helsinki.

Neurocognitive assessment.  Cognition was assessed using the Korean version of the Consortium to 
Establish a Registry for Alzheimer’s Disease assessment packet42. The frontal lobe functions, including attention 
and executive function, were tested using verbal fluency, digit span forward, digit span backward, trail-making 
test A and abstract reasoning40,42. Visuospatial and language functions were tested using the constructional 
praxis and Boston naming test, respectively42. The subtests for memory function included word-list memory, 
word-list recall, word-list recognition, and constructional recall42. The z-score on each neuropsychological test 
was calculated from age‐, sex‐, and education‐adjusted norms.

Image acquisition.  MRI data were acquired using a 3.0-T MRI (Siemens Trio Trim scanner) at Korea Uni-
versity Guro Hospital. T1-weighted images were acquired using a magnetization-prepared rapid gradient-echo 
sequence (TE/TR/TI = 2.32 ms/2.3 s/900 ms; 256 × 256 × 192 matrix for 0.9 mm isovoxels). Multiple DWIs were 
obtained with a standard single-shot, SE-EPI sequence with eddy current–balanced diffusion-weighting gradient 
pulses. Two sets of DWIs were collected with 22 additional T2-weighted images, where a single set of DWI con-
sisted of a reference volume and 64 volumes with a gradient direction. The parameters of this imaging protocol 
were: b = 1000 s/mm2, TE/TR = 100 ms/3.6 s; matrix = 112 × 112 on 230- × 230-mm field of view; 112 × 112 × 75 
matrix for 2 mm isovoxels. Adequate signal-to‐noise ratios were provided by the average of the four magnitudes.

Amyloid accumulation.  Two nuclear medicine specialists who were blinded to the clinical diagnosis and 
all other clinical findings visually assessed each florbetaben‐PET image based on the regional cortical tracer 
uptake (RCTU) and brain amyloid plaque load (BAPL) scoring system. The RCTU system grades the tracer 
uptake (1 = no binding, 2 = minor binding, 3 = pronounced binding) in the lateral temporal cortex, frontal cortex, 
posterior cingulate cortex/precuneus, or parietal cortex. Each region’s score is condensed into a single three‐
grade BAPL scoring system: 1 = no amyloid load, 2 = minor amyloid load, and 3 = significant amyloid load. BAPL 
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scores of “2” and “3” are classified as “amyloid‐positive,” and the BAPL score of “1” is regarded as “amyloid‐nega-
tive”43. Older adults with depression who had a BAPL score of 2 or 3 were categorized into the amyloid-positive 
group, while those with a score of 1 were placed into the amyloid-negative group. All subjects of HOA group 
also had a BALP score of 1.

Network construction.  The brain network consists of nodes, anatomically defined brain regions, edges, 
and connections between any of these. We included 78 cortical and 12 subcortical brain regions as the nodes, 
which are defined in the automated anatomical labeling atlas (AAL)44. To delineate them in each subject’s diffu-
sion space, we co-registered the DWI with the T1-weighted image and nonlinearly registered the T1-weighted 
image with the standard Montreal Neurological Institute template using FSL Toolkit (version 5.0.9)45.

We used whole-brain tractography using the processed DWIs through the diffusion toolkit and TrackVis 
(version 0.6.0.1)46,47 to estimate the strength of the edges. First, the eddy toolbox of FSL’s Diffusion Toolkit (ver-
sion 3.0) was performed to register all volumes with the gradient direction of DWIs to their reference volume 
of DWIs48. We employed HARDI tractography since it may represent crossing fibers better49,50. Although our 
DWIs were not acquired using the HARDI MRI protocol since they have many diffusion directions, we could 
apply HARDI tractography51. We note that we restricted the seed regions as the white matter to avoid artifacts 
in the tractography. Finally, we obtained structural connectivity matrices from the defined nodes and tractog-
raphy by counting the number of streamlines between any pair of nodes using the University of California, Los 
Angeles multimodal connectivity package (http://ccn.ucla.edu/wiki/index​.php). The number of streamlines may 
be considered as the projection strength of the white matter pathways52. The detailed procedure is shown in the 
supplementary material.

Network measures.  We computed the network measures using the Brain Connectivity Toolbox (https​
://sites​.googl​e.com/site/bctne​t/) to quantify the global and local properties of the network17. We measured the 
nodal degree, nodal strength, nodal clustering coefficients, and regional efficiency for the nodal level, edge den-
sity, total strength, clustering coefficient, CPL, and small-worldness for the global level. The nodal degree is the 
number of neighboring nodes linked to a node, while the nodal strength is the sum of edge weights linked to 
the node. They capture the centrality of the node and estimate the direct influence on its neighbors. The edge 
density of a network captures the number of all existing connections, while its total strength is the sum of all 
its edge weights. They may be affected by the overall deterioration of the white matter due to neurodegenera-
tion; white matter deterioration may impair the integrity of white matter tracts, weakening edge weights, and 
even disconnecting edges. The nodal clustering coefficient of a node measures the level of local clustering of its 
neighborhood, and the clustering coefficient of a network is the average of the values in the network. The clus-
tering coefficient is used to measure small-worldness, combined with CPL, which measures global integration. 
Specifically, CPL is the average of the shortest path lengths between all pairs of nodes in the network. A shorter 
path length represents more efficient communication between nodes, and therefore, a lower CPL reflects better 
overall global integration. The small world characteristics capture the balance between good local communica-
tion measured by the high clustering coefficient and good global communication measured by the short CPL. 
Thus, it is defined by the ratio of the clustering coefficient to CPL. Similar to CPL, regional efficiency measures 
the level of communication excellence based on the shortest path lengths, but it measures that of a certain node, 
defined by the average of the shortest path lengths from the node to all the others. We used the MATLAB brain 
connectivity toolbox to compute these measures17. A more formal description of the network measures is shown 
in the supplementary materials.

Group comparison.  We primarily compared the topological network measures of each patient group with 
the HOAs to identify the degree of its disintegration. We conducted multiple-comparison correction using per-
mutation testing53 and the FDR procedure54 to identify differences in the network measures between groups. 
We first tested the difference between the three groups by permutation-based ANCOVA20, controlling for the 
effects of age, gender, and education level. Then, we performed a permutation-based ANCOVA for three pairs 
of groups and corrected across three pairwise comparisons through the FDR procedure for post-hoc tests. For 
the nodal measures, we also performed the FDR procedure across 90 nodes. We used our in-house codes for 
permutation-based ANCOVA under MATLAB R2017a (The MathWorks Inc, Natick, MA, USA), where the 
number of permutations is 10,000.

Correlation analysis.  We conducted a correlation analysis involving the network measures and neuro-
cognitive tests, controlling for age, gender, and education level by computing Pearson’s partial correlation coef-
ficients in each MCI group separately55. The cognitive scores of the Consortium to Establish a Registry for AD39 
and the Seoul Neuropsychological Screening Battery were used40. We divided the cognitive domains into the 
following groups: attention, executive function, memory, and visuospatial function. A list of the neurocognitive 
tests used is presented in Tables 2 and 3.
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