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Universal lasing condition
Ilya V. Doronin1,2,3, Alexander A. Zyablovsky1,2,3*, Evgeny S. Andrianov1,2,3, 
Alexander A. Pukhov1,3, Yurii E. Lozovik1,4 & Alexey P. Vinogradov1,3

Usually, the cavity is considered an intrinsic part of laser design to enable coherent emission. For 
different types of cavities, it is assumed that the light coherence is achieved by different ways. We 
show that regardless of the type of cavity, the lasing condition is universal and is determined by the 
ratio of the width of the atomic spectrum to the product of the number of atoms and the spontaneous 
radiation rate in the laser structure. We demonstrate that cavity does not play a crucial role in lasing 
since it merely decreases the threshold by increasing the photon emission rate thanks to the Purcell 
effect. A threshold reduction can be achieved in a cavity-free structure by tuning the local density of 
states of the electromagnetic field. This paves the way for the design of laser devices based on cavity-
free systems.

The invention of lasers was one of the key achievements in physics1. A conventional laser consists of two main 
components: a cavity and a pumped active medium2,3. The active medium plays the role of an amplifier, while 
the cavity provides positive feedback, and together these form a coherent light generator2,3.

Initially, lasers were perceived as a combination of an amplifying medium and reflective boundaries 
(Fabry–Perot lasers)3. To describe their operation, a simple concept of light travelling along a closed path through 
an amplifying medium was applied3. According to this view3, lasing occurs firstly when the frequency of the 
electromagnetic (EM) wave is close to the transition frequency between the working levels of the active medium, 
and, secondly, when the amplification of the EM field by the active medium exceeds the total losses due to radia-
tion and dissipation inside the structure of the laser3,4.

Subsequent developments led to the creation of new lasers, to which the concept of light travelling through 
amplifying medium inside the cavity could hardly be applied. One of these is the random laser5–7, the operation 
of which has been the subject of various studies (see e.g.8,9). In these lasers, localized states in the disordered 
medium play the role of laser modes. These modes have a complicated distribution of the EM field that depends 
on the population inversion of the active medium9. Another example is the spaser (plasmonic nanolaser)10–13, 
in which the EM field modes are localized at plasmonic nanoparticles. Furthermore, it has also recently been 
demonstrated that the generation of coherent light can occur even in cavity-free systems14–16. In14,15, it was shown 
that lasing can take place in a cavity-free system based on a multilayer plasmonic waveguide. The parameters of 
the layers are chosen to minimize the group velocity at the transition frequency of active atoms. This decrease 
in the group velocity results in a stopped-light lasing in the cavity-free system14,15. Moreover, at sufficiently high 
gain, lasing can even take place in a cavity-free system without a waveguide16. In this system, the frequency 
pulling caused by the nonlinear interaction between the free-space modes and the active medium leads to the 
formation of a localized special mode composed of a large number of free-space non-localized modes16,17. At 
a sufficiently high pump rate, lasing starts in this special mode. Thus, even without a cavity, lasing can take 
place14,16,17. In these cases, simple evaluation of the laser threshold mentioned above does not apply, and direct 
numerical simulations have been used to find the threshold. In this context, the question of a lasing condition 
that does not depend on the type of laser is important.

In this paper, we show that both cavity and cavity-free lasers can be described in the unified framework. 
We demonstrate that regardless of the type of cavity, the threshold population inversion in the active medium 
is determined by the equation Dth

0 = γσ /
(

Nγsp
)

 , where γσ is the linewidth of an atom, γsp is the spontaneous 
emission rate of an atom in a given cavity, and N is the number of atoms. The value of γσ is determined by the 
dephasing processes in the active medium, such as phonon scattering, whereas Nγsp determines the total emis-
sion rate of photons. Lasing starts when this emission rate exceeds the dephasing rate. That is, lasing takes place 
when, on average, the system emits more than one photon during the dephasing time.

It follows from the obtained condition that the lasing threshold can be reduced by increasing the Purcell 
factor (i.e., the photon emission rate) of the system containing the active medium. In conventional lasers, this 
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is accomplished by adding the resonator. However, this can be achieved by a structure without cavity14,15. Thus, 
the resonator is not essential for lasing and only serves as a way to decrease the lasing threshold.

Model
We consider lasers with active medium consisting of N two-level atoms, placed within an arbitrary system of 
finite size. To describe this system we use the scheme suggested in18 (see also16,17,19). We first place the system in 
a finite three-dimensional (3D) box with size L. We introduce an artificial relaxation rate γn to each mode of the 
EM field, such that γn ≫ c/L , where c is speed of light. The presence of artificial losses prevents the influence 
of radiation reflected from the box boundaries on the behavior of laser system. We then write Maxwell–Bloch 
equations for the active atoms and the modes of the EM field in this finite box, and find a stationary nontrivial 
solution2,3,20. Finally, we move to the limit of infinite box size and zero artificial losses in the box to obtain the 
lasing conditions (see “Lasing conditions”). In this limit, the artificial losses do not affect the lasing threshold 
and, for simplicity, we assume that for all modes γn = γa . The Maxwell–Bloch equations describing active atoms 
and modes of EM field take the form:

 Here an is the complex amplitude of the nth mode of the EM field in the finite box with eigenfrequency ωn and 
loss rate γa . σm is the complex polarization of the mth atom of the active medium. ωTLS is the transition frequency 
of active atoms, and γσ is the relaxation rate of the polarization of the atom (i.e. the linewidth of the atom). The 
relaxation of polarization is mainly caused by dephasing processes such as the interactions between atoms and 
the phonons inside the active medium21,22, and is thus determined by the properties of the active medium. Dm 
is the population inversion of the mth active atom. γD and γ pump

m  are the population inversion decay and pump 
rates of the mth active atom, respectively. �nm = −deg · En(xm)/� is the interaction constant between the dipole 
moment deg of active atom placed at the point xm and the electric field per one photon En(xm) of nth mode2. The 
interaction between the EM field and active medium is described in the dipole approximation. That is, we neglect 
the interaction term V ≃ e2A2/

(

2mc2
)

 proportional to the square of the vector potential since it is small com-
pared to electro-dipole interaction when system outside the ultrastrong-coupling regime23. Fan(t) and Fσm(t) are 
noise terms, which connect with the relaxation rates in Eqs. (1)–(3) via the fluctuation–dissipation theorem21. 
We also introduce the notation D0m =

(

γ
pump
m − γD

)

/

(

γ
pump
m + γD

)

 for the stationary value of the population 
inversion of the mth atom at zero amplitudes of the modes.

Note that the general form of the Maxwell–Bloch equations (1)–(3) does not depend on the specific struc-
ture of the laser. The distribution of the EM field in the eigenmodes of the total system containing all necessary 
information about the properties of the cavity is included in Eqs. (1)–(3) by means of the coupling constants 
�nm

2,20,21. The active medium is described as an array of two-level atoms. Three- and four-level active media can 
often be considered as two-level media, if one eliminates degrees of freedom corresponding to the third or fourth 
level20. Equations (1) and (2) have the same form for three and four-level active media20. At the same time, the 
coefficients in the Eq. (3) for population inversion of active atoms depend on the specific type of active medium20 
(Eq. 3 is written for a three-level active medium). However, below we are interested in the threshold population 
inversion, which is determined from the linearized version of Eqs. (1)–(2) (see section “Lasing conditions”) and 
does not depend on the specific form of Eq. (3). For this reason, the coefficients in Eq. (3) do not matter for us. 
Thus, Eqs. (1)–(3) describe all types of laser structure within a unified framework.

In terms of the Maxwell–Bloch equations (1)–(3) without noises2,20, below a certain pump value, the stationary 
amplitude of electric field is zero. Above this value, the amplitude of electric field becomes nonzero. Therefore, 
this value is referred to as the lasing threshold. Since the Maxwell–Bloch equations (1)–(3) without noise terms 
are deterministic, the EM field calculated by these equations has zero linewidth and its second order coherence 
function g (2)(0) is equal to 1. Thus, above the lasing threshold (determined as pump rate at which a non-zero 
amplitude is achieved) the radiation is immediately fully coherent as one would expect from this model. Taking 
into account the noise terms in Eqs. (1)–(3), the amplitude of the electric field is nonzero both below and above 
the lasing threshold. As has been shown in2,20 the noise terms in the Maxwell–Bloch equations (1)–(3) allow one 
to describe phenomena associated with spontaneous emission2,20. Noise leads to a phase disturbance of the EM 
field and the atomic polarization, which results in nonzero linewidth2,24 and deviation of g (2)(0) from 1. Below 
the lasing threshold, the electric field is generated by noise and g (2)(0) ≈ 2 (see19). Above the lasing threshold, 
a deterministic contribution to the electric field appears. As a result, above the lasing threshold, the radiation 
linewidth decreases and g (2)(0) changes from 2 to 1 with an increase of the pump rate. g (2)(0) reaches 1 when the 
deterministic contribution to the EM field becomes much larger than the contribution of spontaneous radiation. 
In high-Q lasers, this occurs practically at the lasing threshold2,24. In low-Q lasers, there is a transition region 
where g (2)(0) changes smoothly from 2 to 1 (see, for example,16). Thus, the lasing threshold corresponds to the 
pumping rate at which a coherent signal originates in the system.

(1)dan/dt =− (γa + iωn)an − i
∑

m

�∗
nmσm + Fan(t)

(2)dσm/dt =− (γσ + iωTLS)σm + iDm

∑

n

�nman + Fσm(t)

(3)dDm/dt =
(

γ
pump
m − γD

)

−
(

γ
pump
m + γD

)

Dm + 2i
∑

m

(

�∗
nma

∗
nσm −�nmanσ

∗
m

)
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Lasing conditions
Using the framework described in the previous section, we can find the lasing threshold and lasing frequencies for 
an arbitrary type of cavity. Remember that we consider the laser, which is placed in a 3D box with size L, which 
plays the role of the environment (see2,16,18,19). In Eqs. (1)–(3), several parameters depend on L. In particular, 
in 3D space, the value of the coupling constants, �nm , is proportional2,21 to L−3/2 , and the frequency interval 
between the two closest modes, ωn+1 − ωn , is proportional2 to L−1 . However, as we show below (see subsection 
“General lasing condition” of “Methods”) in the limit L → ∞ the expression for the lasing threshold does not 
depend on L and tends to a finite value.

In addition, we emphasize the significant role of the EM field relaxation rate γa . In a finite box, perfectly 
reflecting boundaries cause any outgoing radiation to travel back into the system and to affect its dynamics. 
Since we aim to describe a cavity and an active medium located in free space, we introduce an artificial relaxa-
tion rate γa to each mode of the EM field, such that γa ≫ c/L , where c is speed of light (see16,19). This condition 
ensures that the effect of reflection from the boundaries on the active medium is negligible. Hence, even for 
finite L, our model is close to a system placed in free space, in which radiation leaves the system and does not 
return. Finally, we take the limit L → ∞ and arrive at an infinite system with loss, and eliminate artificial losses 
by taking γa → 0 . Such a passage to the limits is known as the Limiting Absorption Principle25–27. In this limit 
we get the solution corresponding to the radiation of waves from the active medium into the external space28.

To obtain the lasing threshold, we search for a nontrivial solution of Eqs. (1)–(3) without noise terms. The 
Maxwell–Bloch equations (1)–(3) without noise have trivial solution an = σm = 0 and Dm = D0m . However, 
this solution is unstable above lasing threshold where non-trivial solution with an  = 0 and σm  = 0 appears. 
Following standard procedure in laser physics2,3, we linearize the Maxwell–Bloch equations in the vicinity of 
the trivial solution. The threshold is defined as such value of population inversion at which linearized system of 
equations has eigenvalue with zero real part (see also17,29). In the general case of a laser with an extended active 
medium the lasing condition is determined by a homogeneous Fredholm integral equation of the second kind 
for the Fourier amplitudes of the averaged atomic polarization of the active medium (see “General lasing condi-
tion” of “Methods”):

where �α(x, k) is the effective interaction constant between atoms at the point x and the EM mode with wave 
vector k ; n

(

y
)

 is the density of active atoms; S(x) is the Fourier transform of the averaged atomic polarization 
at the point x ; D0(x) is the average population inversion of active atoms at the point x ; and ωg is the generation 
frequency. Although this equation provides us a criterion for laser action in arbitrary medium, it is complicated to 
solve in the general case. We therefore simplify our model to obtain a result that has a transparent interpretation. 
We consider a model of a laser in which all active atoms are located at one point, x = 0 . The general condition 
(4) can then be simplified to (see “General lasing condition” of “Methods”)

where the lasing frequency ωg is determined by the expression

where γsp(ωg ) is the spontaneous emission rate of atoms at the lasing frequency, and �(ωg ) is the Lamb shift 
in the laser structure21, see Eq. (24). Note that it differs from the energy level shift of atoms without pump in 
vacuum. Thus, the lasing threshold and the lasing frequency are determined by the spontaneous emission rate, 
the dephasing rate of active atoms (the linewidth of atoms), and the frequency shift in the laser structure. These 
expressions are obtained from the general lasing condition (4) under the assumption that the active medium 
occupies subwavelength volume. This approximation is valid, for example, for the plasmonic nanolaser10–12,30.

We emphasize that γsp(ωg ) in the expression for the lasing threshold (5) arises from a combination of param-
eters included in the integral equation (4). This quantity characterizes the magnitude of the interaction of the 
EM field with the active medium placed inside the laser structure. γsp(ωg ) is proportional to the local density 
of states (LDOS) of the electromagnetic modes at the location of the atoms (Purcell effect)31. The ratio of the 
spontaneous emission rate, γsp , to that in free space, γ vac

sp  , is referred to as the Purcell factor FP (i.e., FP = γsp/γ
vac
sp

)31. It is equal to the ratio of the LDOS in a given system to the LDOS in free space. According to Eq. (5), the 
lasing threshold is inversely proportional to the Purcell factor. The other quantities in Eq. (5) are determined 
by the properties of the active medium, and do not depend on the EM mode structure of the system. Thus, the 
influence of the system in which the atoms are placed is reduced to the modification of the spontaneous emis-
sion rate due to the Purcell effect.

Influence of the LDOS on the lasing threshold
Lasing in free space.  An active medium in free space can lase even without an external cavity, provided 
that the optical gain in the medium is sufficient16. To illustrate this statement, we consider a layer of active atoms 
placed in free-space. For simplicity, we study system in one-dimensional approximation. For layer of active 
atoms (1D), the threshold population inversion Dth and the lasing frequency ωg are usually determined by the 
following condition4,32:

(4)
(

γσ + i (ωTLS − ωg )
)

S(x) = D0(x)
∑

α

∫

d3k
(2π)3

[

�α(x,k)
γa+i (ck−ωg )

∫

d3y n
(

y
)

�∗
α

(

y, k
)

S
(

y
)

]

(5)Dth =
γσ

Nγsp(ωg )

(6)ωg = ωTLS +
γσ

γsp(ωg )
�(ωg )
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Here l is the length of the active region; εgain(ω,D) = 1− α nD/(ωTLS − ω − i γσ ) is the dielectric constant of 
active medium consisting of two-level atoms, where α = 4π

∣

∣deg
∣

∣

2
/� ; deg and n are the dipole moment of atoms 

and the atomic concentration, respectively4. r(ω,D) =
(√

εgain(ω,D)− 1
)

/
(√

εgain(ω,D)+ 1
)

 is the reflection 
coefficient from the boundary between the active medium and the free space4. The dielectric constant of the 
active medium can be expressed through the effective interaction constants between atoms and the EM mode 
�α(x, k) (see, for example,33,34), which are included in the integral equation (4). The coordinate dependencies of 
�α(x, k) are determined by the eigenmodes of the system En(x) , which, for a one-dimensional empty box, are 
∼ cos (kx) and ∼ sin (kx).

The expression (7) for lasing threshold is written under the assumption that lasing occurs at one of mode 
of Fabry-Perot resonator formed by the finite layer of the active medium. The lasing threshold, determined by 
formula (7), is close to the exact value of the lasing threshold, calculated using the integral equation (4). To illus-
trate this statement, we consider the dependence of the lasing threshold Dth on the length of the active medium l 
assuming the concentration of active atoms is constant. When we decrease the length of the active medium then 
the lasing threshold increases (Fig. 1a). In addition, the lasing frequency periodically varies with the change in 
length (Fig. 1b), which leads to periodic changes in the threshold population inversion (Fig. 1a). The period of 
changes is equal to half the wavelength. The described behavior is predicted by both Eqs. (4) and (7).

Thus, we conclude that the active medium in free space can lase. Lasing occurs when the radiation losses 
are compensated by the amplification of light in the active medium. Note that due to the spontaneous emis-
sion, an amplified spontaneous emission (ASE) takes place in the active medium below the lasing threshold19. 
Spontaneous emission of excited atoms induces electromagnetic radiation, which amplifies passing through the 
active medium, but the gain coefficient is insufficient for lasing. It is known that ASE system can demonstrate 
the threshold dependence of the output radiation on the pump rate19. However, in contrast to laser radiation, the 
second order coherence function, g (2)(0) , of amplified spontaneous radiation is equal to 216,19.

The well-known example of cavity-free lasers is astrophysical lasers, which form in clouds of interstellar 
gas35–37 and in the atmospheres of planets38,39. Depending on the gain and length of the active medium, these 
structures can be either ASE sources40 or lasers37,41.

Active atoms occupying a subwavelength volume in free space presents another interesting type of cavity-
free lasers. Such a system is typically considered to be incapable of lasing since there is no laser mode in the 
subwavelength volume. However, the interaction of active atoms with a continuum of free space modes can lead 
to the formation of a laser mode in such a system17. The lasing threshold for this system is determined by Eq. (5). 
Assuming for evaluation that γσ ∼ 1013 s−1 , γsp ∼ 109 s−1 , � ∼ 500 nm42 and the subwavelength volume occupied 
by the active atoms is V ∼ 10−3

�
3 , we find that at the lasing threshold, the necessary number of active atoms is 

N ∼ 104 and the concentration of active atoms is nc = N/V ∼ 1020 cm−3 . These estimates suggest that the cavity-
free laser requires a gain medium with a high concentration of active atoms, which makes it difficult to create.

Using a resonator to reduce the lasing threshold.  Lasing in the free space can be occur only at high 
gain and length of the active medium. Usually, cavity is used to decrease the lasing threshold. Adding a resonator 
leads to a change in the local density of states of the EM field (LDOS). As shown in2, a single-mode cavity can 
be considered as a structure with the density of states ρ(ω) = γCM/π

[

γ 2
CM + (ω − ωCM)2

]

 . The Purcell factor 
of this single-mode cavity is

(7)r
(

ωg ,Dth

)2
exp

(

2 i
ωg

c

√

εgain
(

ωg ,Dth

)

l

)

= 1

Figure 1.   Dependence of the threshold population inversion Dth (a) and the lasing frequency ωg (b) on the 
length of the active region l at a constant concentration of atoms n. The black line is calculated by the Eq. (4); 
the blue line is calculated by the Eq. (7). The effective interaction constants between the atoms and the EM 
mode �α(x, k) = �0 cos (k x) and �α(x, k) = �0 sin (k x) , where k = ω/c . The following values of the system 
parameters are used: �0 = 10−6ωTLS , γσ = 5× 10−5 ωTLS , γD = 1× 10−6 ωTLS , nc = 1.25× 104 �

−1
TLS , where 

�TLS = 2πc/ωTLS.
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Here ωCM and γCM are the frequency and the relaxation rate of the cavity mode; � is the wavelength of cav-
ity eigenmode; V is the cavity volume. In the resonance case, FP = 3

4π2
�
3

V
ωCM
γCM

= 3
4π2

�
3

V Q , where Q = ωCM/γCM 
is quality factor.

The lasing threshold (5) is inversely proportional to the Purcell factor, FP . There are two ways to increase 
the Purcell factor of cavity (8). The first way is to increase the Q-factor of the resonator ( Q = ωCM/γCM ). This 
approach to lowering the laser threshold is the most common in laser physics. Note that when Q >> 1 the Purcell 
factor has a sharp maximum at the frequency of the cavity mode, ωCM , and so the lasing frequency is close to 
the frequency of cavity mode.

The second way is to decrease the cavity volume V. This approach is used, for example, in the plasmonic 
nanolaser lasers (spasers)10, where the EM field is localized in subwavelength volume ( V < �

3 ). Note that 
for lasers with V >> �

3 the Purcell factor (8) can be less than one. However, a decrease in the Purcell factor 
( FP ∼ V−1 ) can be compensated by an increase in the number of active atoms, which is usually proportional to 
the cavity volume ( N ∼ V).

The expressions for the lasing threshold (5) and the lasing frequency (6) agree with the well-known expres-
sions for the lasing threshold and the lasing frequency of the single-mode laser2:

where �cav is a coupling constant of the EM field mode with the active medium. Indeed, using the density of 
state of the EM field in the single-mode cavity ρ(ω) = γCM/π

[

γ 2
CM + (ω − ωCM)2

]

2, we obtain the expressions 
(9) and (10) from the Eqs. (5) and (6) (for details, see “Single-mode laser” of “Methods”). Thus, the solution of 
the classical problem of a single-mode laser is obtained by solving Eqs. (5) and (6).

Note that the presence of the cavity leads to a change in the coupling constant between the EM field and the 
active medium caused by the change in the LDOS. That results in a change in the spontaneous emission rate of 
active atoms and in a change in the lasing threshold.

Reducing the lasing threshold using cavity‑free structures.  It is not necessary to use a resonator 
to decrease the lasing threshold. The threshold can be decreased by using cavity-free structures with Purcell 
factor FP > 1 . Use of such structures enables to increase the interaction of light with the active medium that in 
turn leads to a decrease in the lasing threshold. Waveguides with a group velocity vg << c (see inset in Fig. 2), 
e.g., line-defect waveguides in photonic crystal43–47 or plasmonic waveguides14,15 can play the role of such struc-
ture. The LDOS in these structures is increased by a factor of c/vg , leading to the enhancement of light-matter 
interaction44,45,47. This effect enables to use such waveguides to decrease the lasing threshold. For an example, 
in14,15, it has been demonstrated that lasing takes place in a planar waveguide filled with the active medium. The 
authors achieved a near-zero group velocity for the optical waves ( vg ∼ 10−4 c ) by adjusting the dimensions of 

(8)FP =
3

4π2

�
3

V

γCM ωCM

γ 2
CM + (ω − ωCM)2

(9)Dth =
γCMγσ

N�2
cav

(

1+
(ωCM − ωg )

2

γ 2
CM

)

(10)ωg =
γCMωTLS + γσωCM

γσ + γCM

Figure 2.   Dependence of the threshold population inversion Dth on the group velocity in waveguide. The black 
solid line is calculated by Eq. (4) for the case of an extended active medium ( l = 8� ). The blue dashed line is 
calculated by Eq. (5) for the case a subwavelength active medium. Inset: sketch of laser based on waveguide with 
low group velocity.
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the waveguide. In turn, this leads to a growth of the spontaneous emission rate of active atoms and, according to 
Eq. (5), to a decrease in the lasing threshold (see Fig. 2).

In Ref.14 the active medium occupying the subwavelength volume in the plasmonic waveguide has been con-
sidered. However, the conclusion that decrease the lasing threshold when a group velocity is reduced remains 
valid for an extended active medium. We consider the active layer with length l >> � placed in a waveguide with 
the group velocity vg = dω/dk (see inset in Fig. 2). Although there are no mirrors to form the cavity, lasing occurs 
in this structure. Reduction of the group velocity vg leads to a decrease in the lasing threshold, Dth ∼ vg/c , (see 
Fig. 2), which is calculated by Eq. (4). This is due to an intensification in the interaction of light with an active 
medium with an increase in the LDOS. This clarifies the mechanism of lasing based on stopped light.

Thus, the increase of LDOS leads to the increase of Purcell factor and the strength of light-active atoms inter-
action. In turn, this leads to a decrease in the lasing threshold of lasers with both subwavelength (see Eq. (5)) 
and distributed active media (see Eq. 4). The specific type of structure, by means of which the LDOS increases, 
does not affect the lasing threshold. That is, the lasing threshold can be decreased by using cavity-free structure.

Discussion
The forms of Eqs. (5) and (6) do not depend explicitly on the properties of the system, and this indicates the 
existence of a unified mechanism for lasing in lasers with arbitrary types of cavity, and even without a cavity. 
The expression for the lasing threshold in Eq. (5) can be rewritten as NDth

0 γsp > γσ . The product of NDth
0  is 

equal to the difference between the numbers of atoms in the excited and ground states. In an EM field, atoms 
radiate at a rate proportional to the number of atoms in the excited state, N

(

Dth
0 + 1

)

/2 . Simultaneously, atoms 
absorb radiation at a rate proportional to the number of atoms in the ground state, N

(

1− Dth
0

)

/2 . The differ-
ence between these quantities, NDth

0  , determines the net emission rate caused by the radiated field10. In this way, 
the product NDth

0 γsp = γrad may be interpreted as the rate of photon emission of atoms induced by a previously 
emitted photon. The lasing takes place when the radiation rate γrad exceeds the dephasing rate γσ (the linewidth 
of the atom) i.e., when the system emits more than one photon during the dephasing time. In this case, the 
radiation is coherent.

The origination process of coherence can be described in the following way. Each atom in the ensemble is 
affected by emission from all other atoms. This emission acts as an external driving force, causing the atom to 
oscillate at a unified frequency. On the other hand, dephasing processes occurring due to interaction with the 
environment (for details, see22,48) cause the phase of oscillations to be disturbed. If the action of all atoms upon 
each single atom can overcome dephasing, atoms start to synchronize and emit coherently with each other, which 
leads to a substantial increase in the atom-field interaction and lasing. To overcome dephasing, the radiation rate 
γrad must exceed the dephasing rate γσ.

It should be noted that according to the lasing condition in Eq. (5), there are two ways to decrease the lasing 
threshold. The first is to increase the Purcell factor in the system (i.e., the photon emission rate) containing the 
active medium. This approach is applied in conventional lasers by using the cavity. The second is based on the 
use of an active medium with narrow linewidth, i.e., decrease the dephasing rate. This is utilized in superradi-
ance lasers49–53.

Conclusions
In conclusion, we show that both cavity and cavity-free lasers can be described in the unified framework. For 
the case of an active medium localized in a subwavelength volume, we demonstrate that regardless of the type of 
cavity, the threshold population inversion in the active medium is determined by the equation Dth

0 = γσ /Nγsp , 
where γσ is the linewidth of the atoms, γsp is the spontaneous emission rate of the atoms in the laser structure, 
and N is the number of active atoms. The value of γσ is determined by the dephasing processes in the active 
medium, such as elastic phonon scattering, whereas Nγsp determines the total emission rate of photons. Lasing 
starts when this emission rate exceeds the dephasing rate.

It follows from the obtained condition that the lasing threshold can be reduced by increasing the Purcell 
factor in the system (i.e., the photon emission rate) containing the active medium. In conventional lasers, the 
resonator enhances the photon emission rate. However, this can be achieved by a structure without cavity. Thus, 
the resonator is not essential for lasing and only serves as a way to decrease the lasing threshold. This result 
emphasizes the universal mechanism of lasing in lasers with and without cavity, which is the mutual effect of 
active atoms on each other leading to the buildup of coherence.

We believe that our result provides insight into the operation of lasers and is relevant to both theory and 
practice.

Methods
General lasing condition.  In this section, we derive the condition for lasing in the case of a distributed 
active medium. We divide the active region into subwavelength cells, and write equations for the average polari-
zation σ̃m and population inversion D̃m for each cell:

(11)dan/dt =− (γa + iωn)an − i
∑

m

�∗
nmNmσ̃m

(12)dσ̃m/dt =− (γσ + iωTLS)σ̃m + iD̃m

∑

n

�nman
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where Nm is the number of active atoms in the mth cell. We then write the Fourier transform of the linearized 
Eqs. (11)–(12):

Here, An, n = 1, . . . are the Fourier amplitudes of the finite box modes, and Sm, m = 1, . . . are the Fourier 
amplitudes of the average atomic polarization in each cell of the active medium. Dm0 is the average population 
inversion. We then eliminate variables describing the EM field, An, n = 1, . . . and obtain

The next step is to move to the limit of an infinitely large box with infinitely small cells. First, in the limit of 
infinitely small cells, the l and m indices are transformed into continuous coordinates, and the equations (16) 
take the form

where n
(

y
)

 is the atomic concentration at point y , D0(x) is the dependence of the population inversion of the 
atom created by pumping at zero field amplitude on the coordinate; and �j(x) is the coupling constant between 
the jth mode of the EM field and the active atoms at point x . Then, in the limit of an infinitely large box, the 
discrete variables ωj are transformed into a continuous variable k, and the sum 

∑

j is replaced by the integral 
V

(2π)3

∑

α

∫

d3k , where α is the index denoting a particular polarization of light (not to be confused with the atomic 
polarization, σ ). The resulting integral equation takes the form:

Here, in the limit L → ∞ we denote �j(x)L
3/2 → �α(x, k) . D0(x) and ωg , at which there is the nontrivial solu-

tion of Eq. (18), determine the threshold population inversion Dth and the lasing frequency.
Although Eq. (18) provides us with a criterion for lasing action in an arbitrary medium, it is complicated 

to solve in the general case. In some simple cases, however, the solution can be readily obtained, e.g. for 
n
(

y
)

= Nδ
(

y
)

 , which corresponds to an active medium localized within a small subwavelength volume. After 
simple algebra, we obtain:

In order to simplify this expression, we introduce local density of states (LDOS), ρ(ω) , such that ρ(ω)dω 
gives the number of modes within the frequency interval ω to ω + dω54. This enables us to write the integral 
from Eq. (19) as

where �̃2(ω) is the interaction constant, averaged over all possible directions of the wave vector k , and over two 
possible polarizations of light (for details, see2,54). It should be noted that both the LDOS and the interaction 
constant depend on the box size L, however, their product, �̃2(ω)ρ(ω) , does not. We then use the Sokhotski–Ple-
melj theorem55 to calculate the integral in Eq. (19) in the limit γa → 0 . After combining Eqs. (19) and (20) and 
employing the Sokhotski–Plemelj theorem, we arrive at:

where the frequency integral is determined in terms of the Cauchy principal value. Now, in Eq. (21), we separate 
the real and imaginary parts to obtain the system of equations:

(13)dD̃m/dt =
(

γ
pump
m − γD

)

−
(

γ
pump
m + γD

)

D̃m + 2i
∑

n

(

�∗
nma

∗
nσ̃m −�nmanσ̃

∗
m

)

(14)−iωgAn =− (γa + iωn)An − i
∑

l

�∗
nlNlSl , n = 1, . . .

(15)−iωg Sm =− (γσ + iωTLS)Sm + i Dm0

∑

j

�jmAj , m = 1, . . .

(16)−iωg Sm = −(γσ + iωTLS)Sm + Dm0

∑

j

�jm
∑

l �
∗
jlNlSl

γa + i
(

ωj − ωg

) , m = 1, . . .

(17)S(x) =

�

d3y





modes
�

j

�∗
j

�

y
�

�j(x)
�

γσ + i
�

ωTLS − ωg

���

γa + i
�

ωj − ωg

��n
�

y
�

D0(x)



 S
�

y
�

(18)
(

γσ + i
(

ωTLS − ωg

))

S(x) = D0(x)
∑

α

∫

d3k

(2π)3

[

�α(x, k)
(

γa + i
(

ck − ωg

))

∫

d3y n
(

y
)

�∗
α

(

y, k
)

S
(

y
)

]

(19)
(

γσ + i
(

ωTLS − ωg

))

S(0) = D0(0)N
∑

α

∫

d3k

(2π)3

[

|�α(0, k)|
2

(

γa + i
(

ck − ωg

))

]

S(0)

(20)
∑

α

∫

d3k

(2π)3

[

|�α(0, k)|
2

(

γa + i
(

ck − ωg

))

]

=

∫

dω ρ(ω)�̃2(ω)

γa + i
(

ω − ωg

)

(21)γσ + i
(

ωTLS − ωg

)

= −iD0N

∫

dω ρ(ω)�̃2(ω)
(

1/
(

ω − ωg

)

+ iπδ
(

ω − ωg

))

(22)γσ =D0Nπ ρ
(

ωg

)

�̃2
(

ωg

)
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Equations (22)–(23) can be simplified further. The expressions on the right-hand side of these equations are 
proportional to the rates of spontaneous emission2,48:

and a term resembling the Lamb shift48:

with the principal difference being its dependence on the lasing frequency ωg , rather than on the transition 
frequency of an active atom ωTLS.

Finally, using Eq. (22), we substitute D0 into Eq. (23) and employ Eqs. (24) and (25) to rewrite Eqs. (22) and 
(23) as:

The expression for the rate of spontaneous emission in Eq. (24) takes into account the Purcell factor31 in the 
location of active atoms.

Single‑mode laser.  In this section, we demonstrate that Eqs. (22) and (23) yield the correct lasing fre-
quency and lasing threshold for a single-mode laser. In the single-mode laser we have |ωTLS − ωCM | << ωCM , 
where ωCM is a frequency of cavity mode2. Our aim is to evaluate the integral from Eq. (23):

where �2
cav is an interacting constant between the cavity mode and the active atoms.

We use the expression for the DOS in a single-mode lossy cavity, Vρ(ω) =
γCM/π

(ω−ωCM )2+γ 2
CM

2. We extend the 
integration limits in (18) from (0, +∞) to (−∞, +∞) to enable the use of the residue theorem. This transition 
is justified because the expression under the integral in Eq. (28) has a shape of Lorentz curve, therefore, the value 
of the integral is mostly determined by the interval where the denominator is close to zero, i.e. near the points 
ω = ωCM and ω = ωg . Thus, we choose a contour lying in the half-plane, Imω > 0 , and write

where Res1 is the residue at a point ω = ωCM + iγa in the complex plain and Res2 is the residue at a point ω = ωg . 
After algebraic operations, we obtain

Since we know the expression for the DOS, Vρ(ω) , we can explicitly write γsp as

Applying Eqs. (28), (30) and (31) to Eq. (21) yields two conditions (derived from the real and imaginary 
parts of Eq. (21)):

The first of these equations yields the well-known formula for the lasing frequency of a single-mode laser 
(“mode-pulling equation”)2,20:

(23)ωTLS − ωg = −D0N

∫

ρ(ω)�̃2(ω)dω

ω − ωg

(24)γsp
(

ωg

)

= π ρ
(

ωg

)

�̃2
(

ωg

)

(25)�
(

ωg

)

=

∫

ρ(ω)�̃2(ω)dω

ω − ωg

(26)Dth =
γσ

Nγsp
(

ωg

)

(27)ωg =ωTLS +
γσ

γsp
(

ωg

)�
(

ωg

)

(28)

∞
∫

0

f
(

ω,ωg

)

dω = V

∞
∫

0

ρ(ω)�2
cav

ω − ωg
dω

(29)

∞
∫

−∞

f
(

ω,ωg

)

dω = 2π i × Res1 + π i × Res2

(30)

∞
∫

0

f
(

ω,ωg

)

dω ≈

∞
∫

−∞

f
(

ω,ωg

)

dω = �2
cav

ωCM − ωg
(

ωCM − ωg

)2
+ γ 2

CM

(31)γsp
(

ωg

)

= π Vρ
(

ωg

)

�̃2
(

ωg

)

=
γCM �2

cav
(

ωg − ωCM

)2
+ γ 2

CM

(32)

γσ �2
cav

ωCM − ωg
(

ωCM − ωg

)2
+ γ 2

CM

= γCM �2
cav

ωg − ωTLS
(

ωg − ωTLS

)2
+ γ 2

CM

; γσ = D0N
γCM �2

cav
(

ωCM − ωg

)2
+ γ 2

CM
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Inserting the expression from Eq. (33) into the second equation in Eq. (32) enables us to write an expression 
for threshold population inversion:
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