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Radiomics involves high-throughput extraction of large numbers of quantitative features from 
medical images and analysis of these features to predict patients’ outcome and support clinical 
decision-making. However, radiomics features are sensitive to several factors, including scanning 
protocols. The purpose of this study was to investigate the robustness of magnetic resonance imaging 
(MRI) radiomics features with various MRI scanning protocol parameters and scanners using an MRI 
radiomics phantom. The variability of the radiomics features with different scanning parameters and 
repeatability measured using a test–retest scheme were evaluated using the coefficient of variation 
and intraclass correlation coefficient (ICC) for both T1- and T2-weighted images. For variability 
measures, the features were categorized into three groups: large, intermediate, and small variation. 
For repeatability measures, the average T1- and T2-weighted image ICCs for the phantom (0.963 and 
0.959, respectively) were higher than those for a healthy volunteer (0.856 and 0.849, respectively). 
Our results demonstrated that various radiomics features are dependent on different scanning 
parameters and scanners. The radiomics features with a low coefficient of variation and high ICC for 
both the phantom and volunteer can be considered good candidates for MRI radiomics studies. The 
results of this study will assist current and future MRI radiomics studies.

Medical imaging plays an important role in clinical cancer care for diagnosis, radiation therapy, treatment plan-
ning, and cancer management. Researchers have developed various analytical medical imaging methods, such 
as image segmentation, registration, pattern recognition, and multivariate pattern classification. One of these, 
 radiomics1–4, has recently emerged as a promising medical image analysis tool for diagnosis and prediction of 
response to treatment of various diseases. Radiomics involves the high-throughput extraction of large numbers 
of quantitative features from medical images and analysis of these features to predict patients’ outcome and sup-
port clinical decision-making, such as classifying benign and malignant tumors, determining molecular subtypes 
and/or mutation status, and predicting overall survival.

Several radiomics analyses have been used with various imaging modalities in oncology, such as computed 
tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), and results 
showed that a large number of radiomics features have prognostic power in several studies, such as lung and head 
and neck cancer patients on CT  images3,5, prognosis of recurrence and survival in lung cancer patients on PET/
CT  images6,7, and in brain tumor and breast cancer patients on MRI  images8–12. Radiomics features are sensi-
tive to several factors, however, such as reconstruction  settings13,14, tumor  delineation15, scanning  protocols16,17, 
different  scanners18, and various noise sources. Several radiomics studies have investigated reproducibility and 
 repeatability19. For example, Peerlings et al.20 investigated on stability of radiomics features in apparent diffusion 
coefficient (ADC) maps. Schwier et al.21 investigated on repeatability of multiparametric prostate MRI radiom-
ics features. Fave et al.22 evaluated how different image preprocessing techniques may impact both the volume 
dependence and prognostic potential of the features of non-small cell lung cancer in CT and investigated the 
variability in voxel size, slice thickness, and convolution kernels in  CT23. Also, Mackin et al.24 investigated vari-
ability in radiomics features with the x-ray tube current used in CT. In a recent study, Shiri et al.25 investigated the 
impact of image reconstruction settings on radiomics features using two PET/CT scanners. They found that the 
variability and robustness of PET/CT images are dependent on different features and concluded that radiomics 
features with a low coefficient of variation (COV) are good candidates for reproducible tumor quantification 
in multicenter studies. In a similar study of PET, Bailly et al.26 investigated the variability of 15 textural features 
according to reconstruction parameters in multicenter trials and found that Homogeneity, Entropy, Dissimilarity, 
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High Gray-Level Run Emphasis (HGRE), High Gray Level-Zone Emphasis (HGZE), and Zone Percentage (ZP) 
features are robust and suitable for use in multicenter trials.

However, not many studies have investigated the repeatability (variations when a patient is scanned twice 
on the same scanner with the same parameters) and variability when different scanning protocols are used for 
MRI radiomics studies. MRI is an important diagnostic imaging modality and has been widely used as a major 
diagnostic tool in both clinical imaging and scientific research, and quantitative radiomics analysis using MRI 
has increased recently.

Therefore, in the present study, we created an MRI radiomics phantom and used it to assess the robustness 
of MRI radiomics features with various MRI scanning protocols and two MRI scanners. First, we evaluated 
radiomics features of the MRI phantom by comparing each feature value with patient population data using the 
two-sigma range of feature values extracted from 97 T1- and T2-weighted MR images of patients with brain 
lesions. We then investigated the robustness of magnetic resonance imaging (MRI) radiomics features with vari-
ous MRI scanning protocol parameters and scanners using an MRI radiomics phantom.

Results
We determined the suitability of the MRI phantom materials by comparing the radiomics feature values from 
the phantom materials with those of the brain lesions of the patient data (mean values ± two standard deviations 
[SDs]) (Table 1). Figure 1 illustrates this analysis, showing the values of the inverse variance texture feature for 
the phantom materials over various settings in a number of excitations (NEX). The orange solid lines and orange 
dashed line in the figure represent the mean ± two SDs bounds and mean patient population data for the inverse 

Table 1.  The percentages of radiomics features for the MRI phantom within the established patient population 
bounds (mean ± 2 SDs). Siemens 1 and 2 represent two repeated scans in a Siemens scanner; ST slice thickness, 
FOV field of view, NA not available.

Scanner NEX ST FOV Matrix Average (%)

Siemens 1
T1 90.7 91.2 89.3 90.9 90.5

T2 79.8 80.3 83.3 NA 81.1

Siemens 2
T1 90.9 91.1 91.3 89.6 90.7

T2 90.9 80.4 84.0 NA 85.1

Phillips
T1 96.0 97.2 95.8 NA 96.3

T2 80.0 67.9 69.3 NA 72.4

Average
T1 92.5

T2 79.6

Figure 1.  GLCM inverse variance feature values for the MRI phantom materials with various settings in 
NEX. The orange solid lines and orange dashed line are the mean ± 2 SDs bounds and the mean of the patient 
population data for the inverse variance feature, respectively.
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variance feature, respectively. Averages of 92.5% and 79.6% phantom radiomics features for the 20 materials were 
within the established patient population bounds for T1- and T2-weighted images, respectively.

We used the COV to assess the variability of radiomics features for the impact of different MRI parameter 
settings and plotted a heat map of the COV for both the phantom and volunteer. We repeated this with image 
intensity normalization, without normalization, with smoothing filter, and without smoothing filter as a pre-
processing, respectively (Fig. 2). We used 3 sigma  method27 for the intensity normalization and the butterworth 
 algorithm28–30 for the smoothing filter. We also investigated the variability of radiomics features with different 
ROI size (diameter of 1.2 cm) (Fig. 2). Based on the COV, we categorized the features in terms of variation 
using three groups: large variation (COV > 30%), intermediate variation (10% < COV ≤ 30%), and small variation 
(COV ≤ 10%)25. Without any image reconstruction such as normalization and filtering process, the average COVs 
in these three groups were 6.1%, 18.5%, and 45.5%, respectively, for T1-weighted images and 4.5%, 17.2%, and 
51.4%, respectively, for T2-weighted images. Tables 2 and 3 summarize the radiomics features in the three groups 
for T1- and T2-weighted images, respectively. With normalization and filtering process, the average COVs for 
three groups summarized in Table 4. The detailed radiomics features in the three groups for T1 and T2- weighted 
images are listed in Tables S4, S5, S6, S7, S8 and S9 in the supplement information.

Figure 3 shows intraclass correlation coefficient (ICC) plots for T1- and T2-weighted images of the phantom 
and volunteer for a test–retest scheme on a single scanner. We found that the T1- and T2-weighted image repeat-
ability measures for the phantom (average ICC, 0.963 and 0.959, respectively) were higher than those for the 
volunteer (average ICC, 0.856 and 0.849, respectively). In this study, we categorized repeatability variations using 
three groups: high repeatability (ICC ≥ 0.9), intermediate repeatability (0.6 ≤ ICC < 0.9), and poor repeatability 
(ICC < 0.6)31. Tables 5 and 6 summarize the repeatability of the radiomics features for various MRI scanning 
parameters for all three groups for the phantom and volunteer, respectively. For the phantom, the ICC for all 
features except the Gray Level Non-uniformity (T1), Inter Quartile Range (T2), and Information Measure Corr 
1 (T2) was greater than 0.6 for both T1- and T2-weighted images. For the feature comparison between with and 
without normalization, with and without smoothing effects, and different ROI sizes, we summarized the results 
in Tables S10, S11, S12, respectively. Based on these results, we can see that features in GLRL and NID are more 
invariant compared to other feature categories.

Discussion
In recent years, radiomic studies have become increasingly important for medical image analysis to assist the 
diagnosis, prognosis, and prediction of treatment response within clinical-decision making systems. However, 
radiomics features are sensitive to different image reconstruction settings, scanning protocols, scanners, and noise 
sources, so we must identify the radiomics features that remain stable to provide accurate and reliable decision 
support for patient care. In the present study, we made our phantom with 20 homogeneous and heterogeneous 
materials selected carefully (Fig. 4B). So, our phantom is similar to the human brain as brain has both homoge-
neous and heterogeneous regions for fair comparison. We showed the suitability of the phantom materials by 
comparing radiomics features obtained from phantom materials with those of the brain lesions of patients. We 
used the brain MRI data over other patient anatomies because of its stable movement. Various studies showed 
that respiratory motion was a major factor leading to irreproducibility in various modalities such as MRI, PET, 
and  CT32. Next, we investigated the variability and repeatability in radiomics features extracted from T1- and 
T2-weighted MR images of an MRI phantom and a healthy volunteer to identify radiomics feature robustness for 
various scanning protocols and different scanners. Our results showed that the robustness of the MRI radiomics 
features across the different scanning protocols varies depending on radiomics features. According to our results, 
most intensity-based and gray level co-occurrence matrix (GLCM) features were in the intermediate or small 
variation group, whereas most neighborhood gray-tone difference (NGTD) features were in the high variation 
group. NGTD features are extracted from an image inside the region of interest (ROI), and intensity difference 
is computed in a two-dimensional neighborhood. NGTD features provide fundamental texture properties, such 
as coarseness, contrast, busyness, complexity, and texture  strength33. Of the GLCM features, variance, cluster 
shade, cluster tendency, and cluster prominence varied highly across different MRI scanning settings for both the 
volunteer and phantom, implying that these features are associated with poor robustness. Yang et al.34 investigated 
on the impact of contouring variability on PET radiomics features in the lung. They reported that the impact of 
contouring variability is present to varying degrees. In this study, we used the same uniform ROI size for both 
the volunteer and phantom. Our results showed that some features vary more than other features with different 
settings. The reason is that each feature has its own formula to express its characteristics of the image and some 
features are dealing with pixel-wise changes such as NGTD features that describe the differences between each 
voxel and the neighboring voxels, while other features are dealing with overall (average) changes in an image such 
as sum average that quantify the mean of the sum histogram of an image. Although NGTD features and these four 
GLCM features are sensitive to different scanning parameters, they have high reproducibility if the parameters 
are kept the same. These features, therefore, may be useful for intrascanner studies with fixed protocol settings.

In this study, we performed several scans with various scanning protocol parameters such as NEX, slice 
thickness, phasing steps, and FOV for T1 and T2 respectively with a multi-center scanner. We also performed 
all scans twice for each setting to evaluate the reliability of scans. Although we limited the number of scans, our 
results of repeatability showed highly reproducible. For the repeatability measures, we computed the ICC for 
radiomics features obtained using the two MRI scanners and showed that the repeatability for the phantom was 
very high (average ICC, 0.963 and 0.959 for T1- and T2-weighted images, respectively) but that the repeatability 
for the volunteer was intermediate (average ICC, 0.865 and 0.849 for T1- and T2-weighted images, respectively). 
The repeatability of the volunteer is slightly lower than that of the phantom. This is not surprising, as humans 
have factors such as patient movement, respiration, and blood flow that can affect radiomics features, and 
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Figure 2.  Heat map of the variability of radiomics features with different MRI scanning settings for (a) T1-weighted and 
(b) T2-weighted images without normalization and filtering. (c,d) shows the heat map for T1- and T2-weighted images with 
normalization. (e,f) shows the heat map for T1- and T2-weighted images with filtering, respectively. We also test the variability of 
radiomics features with different ROI size (regular ROI = diameter of 1.8 cm and small ROI = diameter of 1.2 cm). (g,h) shows the 
heat map for T1- and T2-weighted images with smaller ROI size. On the x-axis, _A, _B, and _C represent phantom scanned using 
the Siemens 1.5 T scanner, phantom scanned using the Philips 1.5 T scanner, and volunteer scanned using the Siemens 1.5 T scanner, 
respectively. The COV value is rescaled from 0 to 1 with blue representing high COV values. The hierarchical clustering on the y-axis 
was computed using a Euclidean distance measure. The full feature names for each plot listed in the tables S13, S14, S15, and S16 in the 
supplementary information.
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also highlights the fact that phantom measurements alone are not sufficient for understanding variabilities in 
MRI-based radiomics features. Also, we showed that for the volunteer, the overall repeatability for T1-weighted 
images was slightly lower than that for T2-weighted images. Of note is that 39 radiomics features were highly 
reproducible for T1-weighted images of the volunteer, and 41 radiomics features were highly reproducible for 
T2-weighted images. The variability results for the normalization and filtering effect (Table 4) did not show much 
difference between them in average COV values.

We also found that radiomics features have different effects depending on the scanning parameters, which 
similar studies by other groups also demonstrated. For example, Ford et al.35 investigated the impact of pulse 
sequence parameter selection (i.e., echo time [TE] and repetition time [TR]) on MRI textural features of the 
brain. They found that the variability in radiomics features with the choice of pulse sequence and imaging 
parameters was feature-dependent and can be substantial. In another study, Saha et al.17 assessed the impact of 
various MRI scanner parameters on the radiomics features in breast MRI studies. They found that the feature 

Table 2.  Variations of radiomics features over different MRI scanning settings for T1-weighted images 
without normalization and smoothing.

Feature category COV < 10% 10% ≤ COV < 30% COV ≥ 30%

Gradient orient histogram(7)

InterQuartileRange 90PercentileArea

Kurtosis

MeanAbsoluteDeviation

MedianAbsoluteDeviation

20Percentile

50PercentileArea

Gray level cooccurence (22)

InverseDiffMomentNorm AutoCorrelation ClusterProminence

DifferenceEntropy Contrast, Correlation ClusterShade

Homogeneity Dissimilarity ClusterTendendcy

InformationMeasureCorr2 Energy, Entropy SumVariance

Homogeneity2 InformationMeasureCorr1 Variance

InverseDiffNorm MaxProbability

InverseVariance SumAverage

SumEntropy

Gray level run length (11)

GrayLevelNonuniformity HighGrayLevelRunEmpha LongRunHighGrayLevelEmpha

ShortRunEmphasis LongRunEmphasis LongRunLowGrayLevelEmpha

RunLengthNonuniformity LowGrayLevelRunEmpha

RunPercentage ShortRunHighGrayLevelEmpha

ShortRunLowGrayLevelEmpha

Intensity (31)

GlobalEntropy GlobalMean Energy

LocalEntropyMean GlobalMedian, GlobalStd EnergyNorm

LocalEntropyMax GlobalUniformity LocalEntropyMin

InterQuartileRange Skewness

Kurtosis, LocalEntropyStd Variance

LocalEntropyMedian

LocalRangeMean

LocalRangeMin

LocalRangeStd

LocalStdMax, LocalStdMean

LocalStdMedian, LocalStdMin

LocalStdStd

MeanAbsoluteDeviation

MedianAbsoluteDeviation

20Percentile, 50Percentile

90Percentile

RootMeanSquare

LocalRangeMedian

Neighborhood gray-tone difference 
(NGTD) (5)

Coarseness Busyness

Complexity

Contrast

TextureStrength

Average COV 6.05% 18.52% 45.49%
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group related to variation in fibroglandular tissue enhancement was the most sensitive to the scanner manufac-
turer and parameters.

Our study had some limitations. First, we could not remove the effect of the volunteer’s movement including 
blood flow, which influences radiomics feature values. We sought to minimize this effect by using an immobili-
zation mask to fix the volunteer’s head in place during the scan. Also, we simulated a movement effect with the 
phantom on an MR image. For example, we shifted an image 1 mm to the right and generated a new image by 
averaging this shifted image with the original image to simulate an image for NEX 2. However, this simulation 
study did not change the radiomics feature values and does not explain the effect of the volunteer’s motion arti-
facts including blood flow. For repeatability measures, we took about a 30-min break between two scans for the 
volunteer. This may have resulted in uncertainties when the volunteer returned to the original position. In this 
study, we performed image preprocessing to reduce uncertainty in the feature analysis and used a uniform ROI 
size. However, there is an uncertainty remaining in the lesion segmentation procedure of the patient data, which 
may affect the suitability test for our phantom materials. Lastly, it should be noted that our previous study and 
other work reported volume-dependent and gray level-dependent  features22,36, respectively. In the current study, 
Tables S2 and S3 are provided in the supplementary information to show the corrected formulas along with the 

Table 3.  Variations of radiomics features over different MRI scanning settings for T2-weighted images 
without normalization and smoothing.

Feature category COV < 10% 10% ≤ COV < 30% COV ≥ 30%

Gradient orient histogram

InterQuartileRange

Kurtosis

MeanAbsoluteDeviation

MedianAbsoluteDeviation

20Percentile

50PercentileArea

90PercentileArea

Gray level cooccurence

DifferenceEntropy Correlation AutoCorrelation

Homogeneity Dissimilarity ClusterProminence

Homogeneity2 Energy ClusterShade

InformationMeasureCorr2 Entropy ClusterTendendcy

SumEntropy InformationMeasureCorr1 Contrast

InverseVariance MaxProbability SumVariance

InverseDiffMomentNorm SumAverage Variance

InverseDiffNorm

Gray level run length

GrayLevelNonuniformity LongRunEmphasis HighGrayLevelRunEmpha

RunPercentage LongRunLowGrayLevelEmpha LongRunHighGrayLevelEmpha

ShortRunEmphasis LowGrayLevelRunEmpha ShortRunHighGrayLevelEmpha

RunLengthNonuniformity

ShortRunLowGrayLevelEmpha

Intensity

GlobalUniformity GlobalEntropy Energy

LocalEntropyMax GlobalStd EnergyNorm

LocalEntropyMean InterQuartileRange GlobalMean

LocalEntropyStd LocalEntropyMedian GlobalMedian

LocalStdMax LocalRangeMean LocalEntropyMin

LocalRangeMedian 20Percentile

LocalRangeMin 50Percentile

LocalRangeStd 90Percentile

LocalStdMean RootMeanSquare

LocalStdMedian Variance

LocalStdMin

LocalStdStd

MeanAbsoluteDeviation

MedianAbsoluteDeviation

Kurtosis

Skewness

Neighborhood gray-tone difference 
(NGTD) (5)

Busyness Complexity

Coarseness TextureStrength

Contrast

Average COV 4.49% 17.15% 51.41%
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Table 4.  Average COV for T1- and T2-weighted images. Small ROI diameter of 1.2 cm, regular ROI diameter 
of 1.8 cm.

COV < 10% 10% ≤ COV < 30% COV ≥ 30%

T1-weighted images

No preprocessing 6.05% 18.52% 45.49%

No preprocessing (small ROI) 4.59% 17.80% 45.73%

Normalization 4.87% 16.83% 48.32%

Filtering 4.29% 17.72% 45.09%

T2-weighted images

No preprocessing 4.49% 17.15% 51.41%

No preprocessing (small ROI) 5.67% 17.41% 45.68%

Normalization 4.67% 19.35% 45.92%

Filtering 4.69% 19.66% 52.16%

Figure 3.  ICC plots in (a) T1-weighted and (b) T2-weighted images of the phantom and volunteer. The blue 
circles and orange squares represent the ICC values for the phantom and volunteer, respectively. The order of the 
features’ names is shown in Table 9.
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original formulas for the volume-dependent and the gray level-dependent GLCM features, respectively. In this 
study, corrected formulas were used for the volume-dependent features (Table S2) but original formulas were 
used for the gray level-dependent GLCM features (Table S3). Please note that since our analysis is based on the 
same gray levels with various MRI parameter settings for GLCM features, different gray levels with different MRI 
parameter settings could have different results although the GLCM features in the large variation (COV > 30%) 
would still be in the same category. Also, it should be noted that our repeatability test will not be affected since 
the repeatability analysis used the same parameter settings.

In this study, we aimed to identify the robustness of MRI radiomics features with various scanning parameters 
and multi-scanner variation using an MRI radiomics phantom, which is very useful for calibrating, testing, and 

Table 5.  Repeatability of the radiomics features with different MRI scanning settings using the same scanner 
for the phantom.

ICC < 0.6 0.6 ≤ ICC < 0.9 ICC ≥ 0.9

T1 GrayLevelRunLengthMatrix25(GLRLM):
GrayLevelNonuniformity

GradientOrientHistogram:
MedianAbsoluteDeviation
InterQuartileRange
20Percentile
Texture(GLCM):
Energy, InverseVariance
MaxProbability
GLRLM:
LongRunEmphasis
LongRunHighGrayLevelEmpha

GradientOrientHistogram:
Kurtosis, MeanAbsoluteDeviation
50PercentileArea, 90PercentileArea
Texture(GLCM):
AutoCorrelation, ClusterProminence
ClusterShade, ClusterTendendcy
Contrast, DifferenceEntropy, Correlation
Dissimilarity, Entropy, Homogeneity
Homogeneity2, InformationMeasureCorr1
InformationMeasureCorr2, SumAverage
InverseDiffMomentNorm, SumEntropy
SumVariance, Variance
GrayLevelRunLengthMatrix25(GLRLM):
HighGrayLevelRunEmpha, ShortRunEmphasis
LongRunLowGrayLevelEmpha, RunLengthNonuniformity
LowGrayLevelRunEmpha, RunPercentage
ShortRunHighGrayLevelEmpha, ShortRunLowGrayLevelEmpha
Intensity:
Energy, EnergyNorm, GlobalEntropy, GlobalMean
GlobalMedian, GlobalStd, GlobalUniformity, Kurtosis, InterQuartileRange, LocalEntropy-
Max,
LocalRangeMedian, LocalEntropyMean,
LocalEntropyMedian, LocalRangeMin
LocalEntropyMin, LocalEntropyStd, Variance LocalRangeMean, LocalRangeStd,
LocalStdMax, LocalStdMean, Skewness, LocalStdMedian, LocalStdMin, LocalStdStd,
MeanAbsoluteDeviation, RootMeanSquare MedianAbsoluteDeviation
20Percentile, 50Percentile, 90Percentile
Neighborhood Gray-Tone Difference (NGTD):
Busyness, Coarseness, Complexity
Contrast, TextureStrength

T2
GradientOrientHistogram:
InterQuartileRange
Texture(GLCM):
InformationMeasureCorr1

GradientOrientHistogram:
Kurtosis
MeanAbsoluteDeviation
MedianAbsoluteDeviation
Texture(GLCM):
Correlation
Intensity:
Kurtosis, LocalStdMax
LocalRangeStd
NeighborIntensityDifference:
Busyness

GradientOrientHistogram:
20Percentile, 50PercentileArea
90PercentileArea
Texture(GLCM):
AutoCorrelation, ClusterShade
ClusterProminence, Contrast
ClusterTendendcy, Energy, Variance
DifferenceEntropy, Entropy
Dissimilarity, Homogeneity
Homogeneity2, InverseDiffNorm
InformationMeasureCorr2
InverseDiffMomentNorm, SumEntropy
InverseVariance, MaxProbability
SumAverage, SumVariance
Texture (GLRLM):
GrayLevelNonuniformity, RunPercentage
HighGrayLevelRunEmpha, ShortRunEmphasis
LongRunEmphasis, ShortRunHighGrayLevelEmpha
LongRunHighGrayLevelEmpha
LongRunLowGrayLevelEmpha
LowGrayLevelRunEmpha
RunLengthNonuniformity
ShortRunLowGrayLevelEmpha
Intensity:
Energy, EnergyNorm, GlobalEntropy
GlobalMean, GlobalMedian, GlobalStd
GlobalUniformity, InterQuartileRange
LocalEntropyMax, LocalEntropyMean
LocalEntropyMedian, LocalEntropyMin
LocalEntropyStd, LocalRangeMean
LocalRangeMedian, LocalRangeMin
LocalStdMean, LocalStdMedian
LocalStdStd, MeanAbsoluteDeviation
MedianAbsoluteDeviation, 20Percentile
50Percentile, 90Percentile, RootMeanSquare
Skewness, Variance, LocalStdMin
Neighborhood Gray-Tone Difference (NGTD):
Coarseness, Complexity, Contrast
TextureStrength
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evaluating new MRI techniques and variability and repeatability measurements. In this study, we focused on the 
scanning parameters such as NEX, slice thickness, phasing steps, and FOV, which are the most commonly used 
in MRI scanning and we fixed all other parameters including filtering, smoothing, and coil sensitivity to avoid 
introducing other uncertainty factors in this study. We showed that all of the materials in the phantom were suit-
able by comparing its radiomics features with the patient data from the 97 T1- and T2-weighted MR images and 
investigated the robustness of various radiomics features with different MRI scanning protocols and two scanners.

Conclusions
In the present work, an MRI phantom was constructed with 20 MRI materials covering a wide range of radiom-
ics feature values and several scans were performed with various scanning protocol parameters such as NEX, 
slice thickness, phasing steps, and FOV for T1 and T2 respectively. The ICC showed high repeatability for the 
phantom but intermediate repeatability for the volunteer, while the COV revealed little difference in variability 
between normalization and filtering effect.

We believe that this study is very useful for practice in the radiomics community, especially in MRI radiomics 
studies. Our results demonstrated that various radiomics features have different effects depending on the different 
scanning parameters and scanners. Furthermore, we identified the robust MRI radiomics features with various 

Table 6.  Repeatability of the radiomics features with different MRI scanning settings using the same scanner 
for the volunteer.

ICC < 0.6 0.6 ≤ ICC < 0.9 ICC ≥ 0.9

T1
GrayLevelRunLengthMatrix(GLRLM):
LongRunHighGrayLevelEmpha
ShortRunLowGrayLevelEmpha

GradientOrientHistogram:
50PercentileArea
Texture (GLCM):
AutoCorrelation, Contrast, Correlation
Dissimilarity, InverseDiffNorm
InformationMeasureCorr1, MaxProbability
InformationMeasureCorr2, SumAverage
InverseDiffMomentNorm, SumVariance
Texture (GLRLM):
HighGrayLevelRunEmpha
ShortRunHighGrayLevelEmpha
Intensity:
Energy, EnergyNorm, GlobalEntropy
GlobalMean, GlobalMedian, Kurtosis
LocalEntropyMax, LocalEntropyMin
LocalEntropyStd, LocalRangeMin
LocalRangeStd, LocalStdMax, LocalStdMin
LocalStdStd, 20Percentile, 50Percentile
90Percentile, RootMeanSquare, Skewness
Neighborhood Gray-Tone Difference 
(NGTD):
Busyness, Complexity

GradientOrientHistogram:
InterQuartileRange, 20Percentile
Kurtosis, 90PercentileArea
MeanAbsoluteDeviation
MedianAbsoluteDeviation
Texture (GLCM):
ClusterProminence, ClusterShade
ClusterTendendcy, DifferenceEntropy
Energy, Entropy, Homogeneity
Homogeneity2, InverseVariance
SumEntropy, SumEntropy, Variance
GrayLevelRunLengthMatrix (GLRLM):
GrayLevelNonuniformity
LongRunEmphasis, LongRunLowGray 
LevelEmpha
RunPercentage, ShortRunEmphasis
Intensity:
GlobalStd, InterQuartileRange
LocalEntropyMean, LocalEntropyMedian
LocalRangeMean, LocalRangeMedian
LocalStdMean, LocalStdMedian
MeanAbsoluteDeviation, Variance
MedianAbsoluteDeviation
Neighborhood Gray-Tone Difference 
(NGTD):
Coarseness, Contrast, TextureStrength

T2

Texture(GLCM):
MaxProbability
Texture (GLRLM):
LongRunEmphasis
Intensity:
GlobalMedian
LocalEntropyMin
20Percentile
50Percentile
IntensityHistogram:
20Percentile
50Percentile

Texture(GLCM):
Energy, Entropy
InverseVariance
Homogeneity
Homogeneity2
InformationMeasureCorr2
SumAverage, SumEntropy
Texture (GLRLM):
GrayLevelNonuniformity
LongRunHighGrayLevelEmpha
LongRunLowGrayLevelEmpha
LowGrayLevelRunEmpha
RunLengthNonuniformity
RunPercentage
ShortRunLowGrayLevelEmpha
Intensity:
GlobalEntropy, GlobalMean
GlobalUniformity, Kurtosis
InterQuartileRange
LocalEntropyMax, variance
LocalStdMax, LocalStdMin
LocalStdStd, Skewness
Neighborhood Gray-Tone Difference 
(NGTD):
Contrast

GradientOrientHistogram:
InterQuartileRange
Kurtosis, 20Percentile
MeanAbsoluteDeviation
MedianAbsoluteDeviation
50PercentileArea, 90PercentileArea
Texture (GLRLM):
AutoCorrelation, SumVariance
ClusterProminence, Contrast
ClusterShade, Dissimilarity
ClusterTendendcy, Variance
DifferenceEntropy, Correlation
InformationMeasureCorr1
InverseDiffMomentNorm
InverseDiffNorm
Texture (GLRLM):
HighGrayLevelRunEmpha
ShortRunEmphasis
ShortRunHighGrayLevelEmpha
Intensity:
Energy, EnergyNorm, GlobalStd
LocalEntropyMean, LocalRangeStd
LocalEntropyMedian, Variance
LocalEntropyStd, LocalStdMean
LocalRangeMean, LocalStdMedian
LocalRangeMedian, 90Percentile
MeanAbsoluteDeviation
MedianAbsoluteDeviation
RootMeanSquare
Neighborhood Gray-Tone Difference 
(NGTD):
Busyness, Coarseness
Complexity, TextureStrength
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scanning parameters and multi-scanner variation using an MRI radiomics phantom. The radiomics features with 
a low COV and high ICC can be considered good candidates for MRI radiomics studies, whereas those with a 
high COV and low ICC must be used with caution.

Methods
MRI phantom and volunteer. An MRI phantom was created and used to investigate the repeatability and 
robustness in quantitative radiomics features with various MRI scanning protocol parameters, preprocessing 
(normalization and image filtering), and scanners. Figure 4 shows the MRI phantom, which was made of acrylic 
with dimensions of 14.5 × 17.8 × 10.3 cm. Inside the phantom, there were 20 cylinders and each cylinder had a 
diameter of 2.4 cm and length of 10.3 cm. The phantom could be filled with water through the hole on top of it 
(Fig. 4A). The MRI phantom was constructed of 20 MRI materials covering a wide range of radiomics feature 
values (Table 7).

The phantom and the brain of the healthy volunteer were scanned using a 1.5 T Siemens MRI system (SIE-
MENS Magnetom Aera, Erlangen, Germany) with three-dimensional T1-weighted gradient echo sequence and 
T2-weighted fast spin echo sequence. A fixed TR (11 ms) and TE (4.77 ms) and flip angle of 30° with various 
scanning protocol parameters were used for T1-weighted images. For T2-weighted images, a TE of 281 ms, TR 
of 1530 ms, and flip angle of 160° with various scanning protocols were used. For comparison, scanning of the 
MRI phantom was also performed using a 1.5 T Philips MRI system (PHILIPS Marlin, Finland). For this scan-
ner, a fixed TR (11 ms) and TE (4.61 ms) and flip angle of 30° were used for T1-weighted images, and a TE of 
281 ms, TR of 1535 ms, and flip angle of 90° were used for T2-weighted images. We then varied the following 
scanning protocol parameters: number of excitation (NEX), slice thickness, phasing steps, and field of view 
(FOV). The detailed scanning protocols are listed in Table 8. Each scan was performed twice with the same set-
ting for both scanners for the repeatability test. The phantom was removed from the scanner after the first scan 
and repositioned for the second scan. For the volunteer, the scan was also performed twice with the same setting 
and the volunteer took about a 30-min break between the two scans. The scans were performed each week for 
multi-scanner variability. In order to determine the variability from different scanning parameters and scanners 
accurately, we did not perform any intensity normalization on MR images to prevent another uncertainty on 
radiomics features or diminishing the effects of various scanning settings.

Patient data for the suitability test. First, we investigated the suitability of our phantom materials with 
brain lesions. A total of 97 patient data identified as having necrosis or progression of brain lesions were used 

Figure 4.  The MRI phantom and the healthy volunteer’s brain (a) The MRI phantom consisting of 20 different 
materials. (b) A T1-weighted image of the phantom. (c) A T1-weighted image of the healthy volunteer’s brain 
with 20 ROIs.

Table 7.  The 20 materials used in the MRI phantom.

Materials

1. 5% Styrofoam Ball & 95% Petroleum Jelly
2. 8% Styrofoam Ball & 92% Petroleum Jelly
3. Polyteck Gel 00
4. ClearBallistic Gell 20
5. ClearBallistic Gell 3
6. 30 g Carbon 980 & 300 ml h20
7. 40 g Carbon 980 & 180 ml h20
8. 21 g Carbon 974 & 220 ml h20
9. Liquid Plastic: 75% Hardener & 25% Softener
10. Liquid Plastic: 95% Hardener & 5% Softener

11. Liquid Plastic: 100% liquid plastic
12. Liquid Plastic: 75% plastic soft
13. Liquid Plastic: 75% plastic & 25% Softener
14. Superflab
15. Liquid Plastic: 75% SuperSoft & 25% Softener
16. Liquid Plastic: 90% SuperSoft & 10% Softener
17. Liquid Plastic: 100% SuperSoft plastic
18. SuperStuff
19. Liquid Plastic: 75% SuperSoft & 25% Softener
20. Liquid Plastic: 90% SuperSoft & 10% Softener
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to evaluate the suitability of each phantom  material37. The use of all patient data were approved and written 
informed consent was waived by The MD Anderson Cancer Center Institutional Review Board. All MR images 
of these patients were acquired using a GE 1.5 T MRI scanner with a slice thickness of 5 mm, slice spacing of 
6.5 mm, and field-of-view of 22 cm for T1- and T2-weighted images. The brain lesions were segmented on the 
post-contrast T1 images by a radiation oncologist because the lesions were easier to identify. The post-contrast 
T1 contour was then rigidly mapped to the other scan sequences such as pre-contrast T1- and T2-weighted 
images for each patient at each time point using the Velocity AI software (version 3.0.1; Varian Medical Systems, 
Atlanta, GA, USA).

Phantom and a healthy volunteer data for the repeatability and variability. For the repeatability 
and variability of the radiomics features, we used the features from the phantom and a healthy volunteer from 
two scans. All ROIs on the phantom and a healthy volunteer were delineated semiautomatically using a contour 
tool available with our in-house imaging software program  IBEX23,38. Each ROI had a cylindrical shape with a 
diameter of 1.8 cm and a height of 10 cm for both the phantom and the volunteer. We used axial images where 
the height is along the z-axis. We used this uniform ROI size on MR images of the phantom and the volunteer 
to avoid uncertainty between the ROI size and radiomics features. Twenty ROIs on the phantom and volunteer’s 
brain were delineated (Fig. 4B,C, respectively); Twenty ROIs on a healthy volunteer’s brain were evenly selected 
over the brain. For patient data, each lesion on MR images for each patient was delineated by ValocityAI software 
(version 3.0.1; Varian Medical Systems, Atlanta, GA, USA). The radiation oncologist reviewed the contours on 
the MR images to ensure correct mapping and modified them when necessary.

In this study, we performed image preprocessing before extracting radiomics features to reduce uncertainty 
in the feature analysis; an edge-preserving smoothing filter was applied to the tumor volume before the feature 
calculations to preserve meaningful edge information while smoothing out undesirable imaging  noise29. Then, 
we extracted a total 76 radiomics features from delineated ROIs from MR images of the phantom, volunteer, 
and patients, respectively. The radiomics features consisted of 7 Gradient orient histogram features, 22 GLCM 
features, 11 GLRL features, 31 intensity features, 5 neighborhood gray-tone matrix (NGTDM). The detailed 
features are listed in Table 9 and Table S1 in the supplementary information. All quantitative image features 
were calculated and extracted using  IBEX23,38,39. This software was designed based on MATLAB (version 8.1.0; 
MathWorks, Natick, MA), and available at http://bit.ly/IBEX_MDAnd erson . Our previous study and other work 
reported volume dependent and gray level dependent  features22,36. In this study, corrected formulas were used 

Table 8.  The scanning protocols used with the Siemens and Philips 1.5 T MRI scanners. NEX number of 
excitation, ST slice thickness, FOV field of view.

Scanner NEX ST FOV Matrix

Siemens
T1 1, 2, 3 2, 3, 4 mm 192, 256, 500 192, 256, 320

T2 2, 3.4, 4 2, 3, 4 mm 192, 256, 500 N/A

Philips
T1 1, 2, 3 2, 3, 4 mm 192, 256, 512 N/A

T2 1, 2, 3 2, 3, 4 mm 192, 256, 512 N/A

Table 9.  The examined radiomics features extracted from delineated ROIs on MR images.

Category Features

Gradient orient histogram 1. Inter Quartile Range
2. Kurtosis

3. Mean Abs. Deviation
4. Median Abs. Deviation

5. 20 Percentile Area
6. 50 Percentile Area 7. 90 Percentile Area

Gray level
co-occurrence
Matrix

8. Auto Correlation
9. Cluster Prominence
10. Cluster Shade
11. Cluster tendency
12. Contrast
13. Correlation

14. Difference Entropy
15. Dissimilarity
16. Energy
17. Entropy
18. Homogeneity
19. Homogeneity 2

20. Info. Measure Corr 1
21. Info. Measure Corr 2
22. Inv. Diff Moment 
Norm
23. Inv. Diff. Norm
24. inverse Variance
25. Max Probability

26. Sum Average
27. Sum entropy
28. Sum Variance
29. Variance

Gray level
run length

30. GL Non-uniformity
31. High GL Run Emp
32. Long Run Emp

33. Long Run High GL 
Emp
34. Long Run Low GL 
Emp
35. Low GL Run Emp

36. RL Non-uniformity
37. Run Percentage
38. Short Run Emp

39. Short Run High GL 
Emp
40. Short Run Low GL  
Emp

Intensity direct

41. Energy
42. Energy Norm
43. Global Entropy
44. Global Mean
45. Global Median
46. Global Std
47. Global Uniformity
48. Interquartile Range

49. Kurtosis
50. Local Entropy Max
51. Local Entropy Mean
52. Local Entropy Median
53. Local Entropy Min
54. Local Entropy std
55. Local Range Mean
56. Local Range Median

57. Local Range Min
58. Local Range Std
59. Local Std Max
60. Local Std Mean
61. Local Std Median
62. Local Std Min
63. Local Std Std
64. Mean Abs. Deviation

65. Median Abs. Deviation
66. 20 Percentile
67. 50 Percentile
68. 90 percentile
69. Root Mean Square
70. Skewness
71. Variance

Neighborhood gray-tone 
difference

72. Busyness
73. Coarseness 74. Complexity 75. Contrast 76. Texture Strength

http://bit.ly/IBEX_MDAnderson
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for the volume-dependent features and original formulas were used for the gray level-dependent GLCM features 
as shown in the Table S2 and S3.

Data analysis. First, we investigated the suitability of each phantom material to see whether the range of 
radiomics features of each material was similar to the range of radiomics features of the brain lesions of patients. 
This was done by comparing each feature value from the phantom with those from brain lesions using mean 
values ± 2 SDs, where this range covers 95% of an approximately normal data set and excludes outliers of the 
data. This brain lesions of patients only used for the suitability of the phantom materials. Next, we investigated 
the robustness of the radiomics features obtained from the 20 phantom materials in T1- and T2-weighted images 
using various scanning protocols and the two scanners. To assess the robustness of the various radiomics fea-
tures with the different MRI scanning protocol parameters, the COV was computed for each radiomics feature 
in each scan using Eq. (1)

where σ is the standard deviation and μ is the mean when applying different scanning settings for each MRI 
parameter (i.e., NEX = 1, 2, and 3).

Next, the repeatability of the radiomics features in two scans was investigated. This was performed with 
the Siemens 1.5 T MRI scanner twice under the same conditions, such as the same range of whole scanning 
parameter settings. The repeatability of the radiomics features extracted from normalized images was assessed 
using the ICC, a measure of the reliability of measurements that can demonstrate how strongly measurements 
with the same settings resemble each other. For our test–retest scheme with two repeated scans, the ICC was 
computed using Eq. (2) 40

where BMS is the between-subjects mean square and WMS is the within-subjects mean square. Therefore, the 
ICC considers the variation in repeated scans in relation to the total variation in the  population40.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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