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Spike bursting in a dragonfly 
target‑detecting neuron
Joseph M. Fabian1* & Steven D. Wiederman2

Dragonflies visually detect prey and conspecifics, rapidly pursuing these targets via acrobatic flights. 
Over many decades, studies have investigated the elaborate neuronal circuits proposed to underlie 
this rapid behaviour. A subset of dragonfly visual neurons exhibit exquisite tuning to small, moving 
targets even when presented in cluttered backgrounds. In prior work, these neuronal responses were 
quantified by computing the rate of spikes fired during an analysis window of interest. However, 
neuronal systems can utilize a variety of neuronal coding principles to signal information, so a spike 
train’s information content is not necessarily encapsulated by spike rate alone. One example of this 
is burst coding, where neurons fire rapid bursts of spikes, followed by a period of inactivity. Here we 
show that the most studied target-detecting neuron in dragonflies, CSTMD1, responds to moving 
targets with a series of spike bursts. This spiking activity differs from those in other identified visual 
neurons in the dragonfly, indicative of different physiological mechanisms underlying CSTMD1’s spike 
generation. Burst codes present several advantages and disadvantages compared to other coding 
approaches. We propose functional implications of CSTMD1’s burst coding activity and show that 
spike bursts enhance the robustness of target-evoked responses.

Sensory neurons respond to salient stimuli by generating electrical signals, often in the form of impulses called 
spikes (action potentials). Neurons encode information about a stimulus within the pattern of spikes over time, 
and this can be achieved with a variety of different codes. Identifying this code is critical for interpreting neuronal 
responses, but it is difficult to identify which codes individual neurons are utilising. However, the statistics of 
spike activity can reveal patterns consistent with specific coding strategies. One representation is spike burst 
coding, where information is conveyed by rapid bursts of spiking activity, followed by a period of inactivity. This 
common strategy in the mammalian brain conveys multiple coding advantages1,2, however there are no identified 
examples of spike burst coding in the dragonfly, and only one example in the fly3.

Visual neurons in flying insects have been investigated for over 60 years. Dragonflies are aerial predators, 
which excel at hunting small moving prey and chasing conspecifics during acrobatic pursuits. A subset of 
neurons in their lobula, the Small Target Motion Detectors (STMDs) are sensitive to the movement of small 
objects, and likely underlie the detection and tracking of targets during pursuits4. Most published work on 
dragonfly STMDs comes from a particularly interesting neuron, the Centrifugal Small Target Motion Detector 
neuron (CSTMD1)5–13. This neuron possesses remarkably complex response properties including predictive 
gain modulation6,7,10,11 and selective attention8,12, proposed to underlie their interception of prey even amidst a 
swarm. Like many other investigations of neuronal activity, previous descriptions of CSTMD1 quantify response 
strength by counting spike rates over a temporal window of interest. Here we present additional analysis of 
CSTMD1’s spiking characteristics and contrast them with other visual neurons in the dragonfly brain. In doing 
so, we observe the presence of burst coding in CSTMD1’s responses to small moving targets and demonstrate 
that these bursts represent a robust signal with minimal processing latency.

Materials and methods
Electrophysiology.  We recorded from 20 immobilised male wild-caught adult Hemicordulia dragonflies, 
gathered from the Adelaide Botanic Gardens. Animals were immobilised with a 1:1 beeswax–rosin mixture 
(Colophony Kolophonium, Fluka Analytical), and fixed to an articulating magnetic stand. We tilted the animal’s 
head forward and dissected a small hole on the posterior surface, directly over the left lobula. We pulled alu-
minosilicate glass micropipettes on a Sutter Instruments P-97, which were backfilled with 2 mol/L KCl solution 
(AnalaR), with a typical electrical resistance of 50–150 MΩ. We stepped electrodes into the left proximal lobula 
complex with a piezoelectric stepper (Marzhauser-Wetzlar PM-10) until a neuron was impaled. Animals were 
presented with a series of visual stimuli for classification, which included small drifting targets, moving bars, 
moving gratings and textured patterns. The lobula contains many STMD neurons, but three have been well-
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characterised; the centrifugal STMD, CSTMD1, and two binocular STMD neurons, BSTMD1 and BSTMD27,13. 
Here we analyse recordings from these STMD neurons, as well as an ‘optic flow’ Lobula Tangential Cell14. Each 
STMD neuron is identified by its small target selectivity, characteristic receptive field and action potential 
waveform5,7,13 CSTMD1 has a large receptive field with a sharp transition at the visual midline, with targets tra-
versing the contralateral hemisphere with respect to our recording location driving inhibition and the ipsilateral 
driving strong excitation. BSTMD1 has a large binocular receptive field, with a characteristic graded response in 
the contralateral hemisphere and a pure spiking response in the ipsilateral hemisphere. BSTMD2 also has a large 
binocular receptive field, but it exhibits strong direction selectivity, with excitation for leftward moving targets, 
and inhibition for rightward moving targets in the ipsilateral visual field (recorded from the left lobula complex). 
Intracellular responses were digitized at 5 kHz with a 16-bit A/D converter (National Instruments) for off-line 
analysis with MATLAB.

The anatomy of all three STMD neurons presented here have been published elsewhere5,7,13, but we will briefly 
summarise them here. All three STMD neurons receive input in the lateral midbrain, and in the case of BSTMD1 
also the medial lobula. CSTMD1 and BSTMD2 have large output arborisations which extend into the outer layers 
of the lobula, while the outputs of BSTMD1 are confined within the midbrain. Our previous work hypothesised 
synaptic interactions between CSTMD1 and BSTMD1, but evidence of this remains at a preliminary stage, and 
interactions with the more recently described BSTMD2 have not yet been investigated. All three neurons have 
arborisations in similar regions of the lateral midbrain and significant regions of overlap in their receptive fields, 
but at this time we lack convincing empirical evidence of direct synaptic interactions.

We sampled many neurons during our recordings, however present both individual exemplars and aggregate 
data. Precise spike timing varies between animals and pooling across animals smears inter-spike intervals (ISI). 
We performed this analysis on multiple examples of each neuron type and observed the same result. Therefore, 
we present visualisation of individual representative neurons and aggregate analysis of burst coding’s effect on 
response probabilities.

Visual stimulation.  We present visual stimuli on an LCD display (144–165 Hz) located 20 cm from the 
dragonfly, centred on the visual midline. We used custom software in MATLAB (utilising Psychtoolbox) to 
generate visual stimuli and synchronise data acquisition. Once identified, STMD neurons were presented with 
moving black square targets (1.5–2 deg) drifting at 60 degrees/s on a white background. Stimuli in Fig. 1(ii,iii) 
and Fig. 2c–f drifted at 21 different trajectories through the receptive field, while stimuli in Figs. 1(i) and 2a,b 
drifted vertically on 3 different trajectories. For Fig. 1(iv) LTCs were presented with elongated bars drifting in the 
preferred direction at a range of velocities and widths.

Spiking and bursting analysis.  We detect spike timing from intracellularly recorded signals with custom 
MATLAB scripts, and calculate interspike intervals (ISI). To visualise higher-order patterns in spike timing, 
we calculate the interval following a spike (ISIi) as a function of the preceding interval (ISIi−1). Bursts were 
defined as successive spikes with an ISI less than 5 ms. This threshold is consistent with other studies of bursting 
neurons3 and corresponded to a local minimum in CSTMD1’s ISI distribution. Burst length was defined as the 
number of consecutive spikes with ISI values below 5 ms.

Figure 1.   Statistics of spiking activity in dragonfly visual neurons. (a) Raw intracellularly recorded spike trains 
from 4 different dragonfly visual neurons during the presentation of a visual stimulus. (b) The distribution of ISI 
values from an individual example of each visual neuron. (c) The next interval (ISIi+1) plotted as a function of 
the previous interval (ISIi) for each neuron.
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To compute response probabilities, in the bursting condition we binned the data into 20 ms windows for all 
trials within an individual cell, and calculated the probability that any given window contained a burst of each 
length. In the spike rate condition, we binned the responses into a range of time windows, and calculated the 
probability that any given window reached a spike rate greater than 50 spikes/s 

(

spike rate =
spike number

window duration

)

 . We 
define the odds ratio as the probability of a response (a burst or spike rate surpassing our threshold) occurring 
in the presence of a drifting target divided by the probability of a response in the absence of a target.

Results
Spiking statistics of dragonfly lobula neurons.  Dragonfly visual neurons respond to a salient stimulus 
with a series of spikes (Fig. 1a). ISI is derived from the time separating any two successive pairs of spikes. The 
instantaneous spike rate can be calculated by inverting the ISI and will be similar to a spike rate determined 
by counting spikes within a ‘binned’ time window. Neuronal responses often have a log-normal distribution of 
ISIs, but in the case of CSTMD1 the skewed distribution reveals a second hump (Fig. 1b). This pattern of either 
extremely short ISIs, or relatively long ones, is indicative of a neuron which rapidly switches between very high 
and relatively low instantaneous spike rates. This is observed when neurons are firing spikes in bursts, with mul-
tiple action potentials occurring in brief succession, followed by a prolonged period of inactivity. The ISIs of the 
other neurons exhibit a broad log-normal distribution, representative of spike rates observed in previous studies 
and indicative of non-bursting neurons7,13,14.

In mammalian systems and the lateral line of weakly electric fish, burst coding neurons have been identified 
by comparing the ISIs between the previous spike and the next spike, for each spike in a train1. If a neuron spikes 
at a relatively constant rate, the ISI for the previous and the next spike should be similar, and when plotted against 
each other, points will cluster centrally. Conversely, if a neuron is exhibiting bursting behaviour, the first spike of 
a burst will have a large previous ISI and a small next ISI. The central spikes within a burst will have short ISIs in 
both directions. The final spike of a burst will have a small previous ISI and a large next ISI. Therefore, bursting 
neurons are identified by the formation of three separate clusters. This individual CSTMD1 exhibits a dominant 
bursting behaviour, in contrast to BSTMD1, BSTMD2 and this LTC which do not (Fig. 1c).

Bursting behaviour in CSTMD1.  CSTMD1 is differentiated by the bursting activity and we can compute 
the length of each burst, as well as the frequency of different burst lengths. We presented 120 repeats of a small 
(2 × 2 deg) target drifting vertically through the receptive field of CSTMD1 and computed the timing of each 
length of spike burst (e.g. single spike, 2 spike burst, etc.). We multiplied the frequency of each burst by the 
burst length to identify the proportion of total spikes which belong to each burst length across time (Fig. 2a). 
Spontaneous activity is almost exclusively composed of isolated spikes, but responses to a moving target are 
dominated by two and three spike bursts. The proportion of burst length vary across time, with higher burst 
lengths becoming more frequent as overall response strength increases. If we take the burst based view, bursts of 
different lengths follow different response time courses (Fig. 2b). During spontaneous activity and early stages 
of the target trajectory, almost all responses are isolated spikes. Over time as the target traverses into the most 
sensitive part of the receptive field spike activity increases, and burst length gradually increases with longer spike 
bursts becoming more common. The silent period following each burst lasts approximately 10 ms irrespective of 
the length of the burst, and the size of CSTMD1s receptive field gradually shrinks as spike burst length increases 
(see Supplemental Material).

Burst coding results in neuronal responses with higher signal to noise ratios (SNR) than spike rate codes in 
several systems1. For CSTMD1’s responses, we quantified the probability of each burst length occurring (across 
17 dragonflies) in the presence, and absence (spontaneous activity) of a moving target. When no target is present 
isolated spikes are common and bursts are exceedingly rare, while bursts of 5 spikes or more were non-existent 
(Fig. 2c). When a target is moving within CSTMD1’s receptive field, the probability of all bursts increased. 
CSTMD1s responses are normally quantified by computing a spike rate over an integration window in time. 
Spike bursts can be detected very rapidly, for example if we assume a 2 ms ISI for each spike in a burst then a 
5 spike burst is measurable within 8 ms of the first spike. For comparison we compute spike rates for the same 
data over a range of windows between 2 and 100 ms, and calculate the probability that those spike rates pass a 
threshold of 50 spikes/s (Fig. 2d). The probability of breaking this threshold was elevated when a target is present 
across all integration windows and increases with longer integration windows. In the absence of a target, long 
integration windows have reduced response probabilities, but the probability of these ‘false positives’ increases 
at shorter window lengths. From this data we can compute odds ratios for responses in the presence and absence 
of a target (N = 17). Doing so reveals that CSTMD1’s spike bursts (Fig. 2e) greatly outperform spike rates even 
at the longest integration windows tested (Fig. 2f). Robust spike rate calculation requires lengthy integration 
windows, but the presence of a burst only takes a few milliseconds, highlighting bursting as an excellent coding 
solution for signalling robust, rapid signals.

Discussion
Here we have provided strong evidence of bursting activity in a well-studied target-detecting neuron in the 
dragonfly brain. To our knowledge, this is the first example of this form of spiking activity in any insect target-
detecting neuron. Bursting activity conveys multiple potential advantages when compared to a rate based alter-
native. Spike bursting increases the reliability of synaptic transmission by increasing redundancy, which may be 
important given the relatively low probabilities of vesicle release from individual spike arrival at many synapses15. 
In this sense, using spike bursts increases the information content of a spike train at the cost of temporal reso-
lution and metabolic energy. In addition to this, synapses could be tuned to selectively detect subsets of burst 
length, allowing the parallel coding and decoding of multiple signals from a single spike train16.
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How might CSTMD1 use spike bursts? We have demonstrated that the other two identified STMD neurons, 
BSTMD1 and BSTMD2, do not exhibit bursting activity, so this is not a common property of all STMD neurons. 
Moving targets elicit a range of burst lengths, and we are yet to identify a stimulus parameter which selectively 
drives specific bursts. Further work should focus on varying target parameters such as size or velocity, to deter-
mine whether tuning curves differ between varying burst lengths. Spike bursts provide a more robust indicator 
of target movement than isolated spikes. CSTMD1 is spontaneously active, firing 10–20 spikes each second in the 
absence of visual stimulation. Downstream neurons cannot distinguish spontaneous from stimulus driven spikes, 
therefore any individual spike encodes relatively little information about target movement. However, spike bursts 
are extremely rare in the absence of a stimulus, and the likelihood of bursts decreases with increasing length. This 
means that spike bursts represent a coding space which is almost completely free of background noise, and could 
be used to signal critical events to downstream neurons which require higher levels of confidence.

Using spike rates to encode information comes with many limitations, evidenced both with empirical and 
theoretical study17. Neuronal responses are usually reported as spike rates because they are convenient to measure 
and correlated with information content, however in many circuits, it is not clear whether they play a causal role 
in neuronal communication. If CSTMD1 encodes information by spike rate, a downstream neuron must integrate 
spiking activity over a window of time to estimate that rate. In such systems, shorter integration times results 
in larger quantisation errors in spike rate estimation, so robust signals require long integration windows. Drag-
onfly prey pursuits involve rapidly changing conditions, and behaviour is controlled with minimal latency18,19. 
Our data shows that short integration windows for spike rate calculation leads to an uninformative signal, and 
integration times of 50 ms or more are required to see significant improvement. Spike bursting is an extremely 
effective method for signalling information rapidly and accurately, since spike bursts have durations of only a 
few milliseconds, and occur almost exclusively during the presentation of a relevant stimulus. In fact all spike 
bursts had odds ratio greater than even the longest spike rate integration times tested.

If spike bursting has so many benefits for target detection, why don’t all target detecting neurons burst? The 
answer to this question remains elusive given our current understanding of STMD circuits, but it may be linked 
unique properties of CSTMD1. Bursting systems rely on interactions between rapid spike generation conduct-
ances and slower mechanisms which determine when these bursts occur1. CSTMD1 is known for its strong 
facilitative mechanisms, where responses gradually build as a target drifts through the receptive field6,7,10,11, and 
it is possible that mechanisms underlying bursting and facilitation are linked. While there is still evidence of 
facilitatory mechanisms in BSTMD1 and BSTMD210, the strength of this facilitation tends to be far weaker than 
what we observe in CSTMD1. Secondly, many of the advantages of busting relies on the ability of downstream 
neurons to decode these bursts. Very little is known about the downstream targets of specific STMD neurons, and 
until these circuits are identified the functional implications of bursting, or the absence of bursting, will be elusive. 
Further investigation will examine how CSTMD1′s gradual increase of bursts and decrease in isolated spikes 
relates to the slower mechanisms driving facilitation. Moreover, it is important to establish how this bursting code 
may be intertwined with the previously observed ‘higher-order’ properties of prediction or selective attention.

Figure 2.   CSTMD1 responses segmented into component burst lengths. (a) An individual CSTMD1’s overall 
spiking activity in response to a drifting target (mean of 120 repetitions split between 3 possible trajectories in 1 
dragonfly), is segmented into contributions from each burst length. Gray shaded region indicates peristimulus 
duration, and the inset shows the three target trajectories superimposed on CSTMD1s receptive field. (b) 
The same data is represented as the frequency rate of each burst length. The frequency of each burst length 
during target presentation (shaded region) is shown in the inset. (c) The probability of observing each burst 
length (20 ms windows), either in the presence (blue line) or absence (orange line) of a target drifting through 
CSTMD1’s receptive field (mean ± SEM, N = 17 dragonflies). (d) The probability of observing spike rates above 
50 spikes/s in the presence or absence of a target, for a range of integration window sizes, for the same data as 
(c). (e,f) The odds ratios for bursts and spike rates, as calculated from the data in c and d.
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Data availability
The datasets generated during the current study are available in the Figshare repository (https​://doi.org/10.25909​
/13277​879).
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