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Hierarchical deep learning models 
using transfer learning for disease 
detection and classification based 
on small number of medical images
Guangzhou An1,2,3, Masahiro Akiba1,3, Kazuko Omodaka4, Toru Nakazawa3,4 & 
Hideo Yokota2,3*

Deep learning is being employed in disease detection and classification based on medical images for 
clinical decision making. It typically requires large amounts of labelled data; however, the sample size 
of such medical image datasets is generally small. This study proposes a novel training framework 
for building deep learning models of disease detection and classification with small datasets. Our 
approach is based on a hierarchical classification method where the healthy/disease information from 
the first model is effectively utilized to build subsequent models for classifying the disease into its 
sub-types via a transfer learning method. To improve accuracy, multiple input datasets were used, 
and a stacking ensembled method was employed for final classification. To demonstrate the method’s 
performance, a labelled dataset extracted from volumetric ophthalmic optical coherence tomography 
data for 156 healthy and 798 glaucoma eyes was used, in which glaucoma eyes were further labelled 
into four sub-types. The average weighted accuracy and Cohen’s kappa for three randomized test 
datasets were 0.839 and 0.809, respectively. Our approach outperformed the flat classification 
method by 9.7% using smaller training datasets. The results suggest that the framework can perform 
accurate classification with a small number of medical images.

Artificial intelligence (AI) has been applied in medical image classification via deep learning algorithms trained 
on massive amounts of supervised  data1,2. Gulshan et al.3 used deep learning to create an algorithm for the 
automated detection of two ocular diseases in retinal fundus photographs based on a dataset of 128,175 retinal 
images. Rajpurkar et al.4 succeeded in classifying 14 different diseases using deep learning based on 112,000 
chest X-rays. In addition to applications in disease detection, AI has also been implemented to assist decision 
making related to treatment. For instance, Esteva et al.5 used 130,000 dermatological photographs to build a deep 
learning model that outperformed human dermatologists in deciding treatment plans for patients with two types 
of skins cancer. Typically, the more the input data provided, the better a deep learning-based model  performs6.

However, the supervised data available in the medical field is limited, since high level knowledge is required 
to prepare such data. Thus, there is a need for techniques for building deep learning models with small amounts 
of supervised data. Many deep learning techniques are being developed to overcome the obstacle of insufficient 
supervised data in the medical field. One approach is to synthetically increase the number of available samples 
for training deep learning models through data augmentation based on the geometrical transformation of images, 
or to mimic the distributions from which the images are  sampled1,7. Another approach is the ‘not-so-supervised’ 
learning case, which includes semi-supervised, multi-instance, and transfer learning; among these, transfer 
learning has recently become the most  popular8. Transfer learning, inspired by human thought processes, is a 
method in which model knowledge is effectively transferred across partially related or unrelated tasks to solve a 
new task with minimal  retraining9. A study by Kermany, et al.10 demonstrated the competitive performance of 
deep learning models built with transfer learning in classifying normal eyes and eyes with three macular diseases 
using 4000 optical coherence tomography images.

A recent report stated that the doctor’s diagnostic decision is hierarchically structured, where a fairly broad 
initial list of potential diagnoses is then into fewer potential  options11. In AI field, there is a similar efficient con-
cept called the hierarchical classification method, in which hierarchically structured local classification models 
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are built according to a predefined  hierarchy12. This method achieved good classification performance not only 
in fine-grained natural image  classification13, but also in medical image  classification14,15. Although it is effective, 
there have been few studies to discuss the effectiveness of hierarchical classification to construct deep learning 
models with small amounts of data.

AI has been developed for supporting the diagnosis of various ophthalmologic diseases. Glaucoma is a leading 
cause of blindness worldwide, and glaucoma-related blindness is irreversible if not detected early and treated 
 appropriately16. Glaucoma is regarded as a multifactorial disease, and some ophthalmologists suggest that treat-
ment ought to be categorized by its  cause17. A published guideline that defines four types of retinal optic discs 
based on their  morphology18 was shown to be a useful addition to the determination of a proper treatment plan 
in glaucoma  management19–21. This classification is difficult for doctors as it is based on subjective assessments 
of medical  images22. Optical coherence tomography (OCT) is a popular imaging modality used in glaucoma 
diagnosis as it can capture cross-sectional images to form volumetric data of the retina. There have been several 
studies on diagnosing glaucoma using OCT data with  AI23–26; most of these have aimed at automatic detection 
for classifying normal and glaucoma cases, whereas few have targeted glaucoma classification, which is difficult 
but crucial for proper treatment of glaucoma patients.

The purpose of this study was to propose a novel training framework for building deep learning models of 
disease detection and classification by using small datasets. Our approach is based on a hierarchical classifica-
tion method, where the healthy/disease information from first model is effectively utilized to build subsequent 
models for classifying the disease into its sub-types using a transfer learning method. The effectiveness of the 
proposed training framework using a small OCT dataset is demonstrated to classify the glaucoma sub-types.

Methods
Dataset. In this study, images of 156 normal and 798 glaucomatous eyes were obtained from the Tohoku 
University Hospital database. This study adhered to the tenets of the Declaration of Helsinki, and the proto-
cols were approved by the Clinical Research Ethics Committee of the Tohoku University Graduate School of 
Medicine (study 2014-1-805). Participants provided their written informed consent to participate in this study. 
The ethics committees approved this consent procedure, and all methods were carried out in accordance with 
relevant guidelines and regulations. These images were reviewed and labelled by two glaucoma specialists. The 
glaucomatous eyes were further classified into four sub-categories based on the optic disc morphology according 
to the definitions used in Nicolela classification as focally ischemic (FI), myopic glaucomatous (MY), general-
ized enlargement (GE), and senile sclerotic (SS) discs. Images with discordant classifications between the two 
glaucoma specialists were excluded. A total of 156 normal, 118 FI, 266 GE, 307 MY, and 107 SS eye images were 
used. The demographic data of the final subjects are presented in Supplementary Table S1.

These eye images were captured using swept source OCT (DRI OCT Triton), and a three-dimensional (3D) 
scan of the disc region (6.0 mm × 6.0 mm) was performed horizontally through 128 B-scans with 512 axial depth 
scans (A-scans) each. Four types of images, which the doctors used to analyze the 3D data for glaucoma diagnosis, 
were extracted from the 3D disc scan OCT data and used in our machine learning system: (1) projection images 
(image ‘a’ in Fig. 1); (2) en face images (image ‘b’ in Fig. 1); (3) horizontal B-scan OCT images crossing the disc 
center (image ‘c’ in Fig. 1; disc H B-scan); (4) vertical B-scan OCT images crossing the disc center (image ‘d’ in 
Fig. 1; disc V B-scan). Extraction and pre-processing details for these four types of images are provided in the 
subsection titled ‘Image Extraction and Pre-processing’ in the Supplementary Information.

Proposed approach. First, we analyzed doctors’ diagnostic processes of disease detection and classification 
as follows (shown in the upper part of Fig. 1). (1) Doctors use limited information (e.g., a single type of medical 
image) to detect diseases. The determination of a treatment plan is difficult, as it requires disease classification 
based on complex symptoms, and it must be performed after disease detection (excluding normal images). (2) 
Doctors reuse the knowledge of classifying normal and diseased cases to classify diseased cases into subcatego-
ries. (3) For accurate diagnosis, doctors use multiple information sources (e.g., multiple types of medical images) 
to make optimal diagnostic decisions. Then, according to the analyzed characteristics of doctors’ diagnostic 
processes mentioned above, a novel two-step framework to build deep learning models for disease detection 
and classification was proposed to achieve high accuracy. In the first step, the model for classifying healthy and 
disease (disease detection) was built. In the second step, the model for disease classification was built by reus-
ing parameters of the model for disease detection. This two-step framework was further extended to handle 
multiple input images by combining the machine learning models trained separately on single input images. In 
detail, we implement a training framework composing of three different methods including hierarchical clas-
sification, hierarchy transfer learning, and a stacking ensemble method. The first two components were used to 
build deep learning classification models with a single type of input image, and the last was used to combine 
these models. We applied hierarchical classification to separate the training steps of the model classifying nor-
mal versus disease cases and the model for disease classification. Hierarchy transfer learning from the model for 
classifying normal versus disease cases was used to build disease classification models based on the knowledge 
obtained from classifying normal and disease cases after the step of disease detection. For disease detection, 
we used transfer learning from a pretrained model on a large visual database (ImageNet) with more than 14 
million natural images for visual object recognition. A metamodel was then used to combine the results of the 
model classifying normal versus disease cases and the model for disease classification using a single type of input 
images. Finally, a stacking ensemble method was used to combine the separate deep learning models to obtain 
the overall result (Fig. 1).
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Experiments and training. Two experiments were designed to verify our methods. One experiment com-
pared the performance of different training approaches, whereas the other evaluated the applicability of the 
proposed approaches to small training data.

The first experiment was performed as described below by using the entire set of training data to compare 
classification performances among models trained using three proposed approaches (Fig. 2). We separately 
trained deep learning models for each type of extracted image from the 3D OCT data. A convolutional neural 
network (CNN), which can automatically create efficient image features for the classification, was used as the 
 classifier27. Flat classification models were used to classify eyes as normal, FI, GE, MY, or SS directly with transfer 
learning from a deep learning model (a CNN) pretrained on the ImageNet dataset (ImageNet-pretrained CNN 
model) to create Model 1 (Fig. 2a, n = 4). We built a hierarchical classification model (Fig. 2b) applying transfer 
learning from the ImageNet-pretrained CNN model separately with a low-level model (Model 2 in Fig. 2b) for 
classifying normal versus glaucoma and a high-level model (Model 3 in Fig. 2b) for glaucoma classification 
(n = 4). Furthermore, the normal confidence from Model 2 and the confidence of FI, GE, MY, and SS from 
Model 3 were concatenated into a confidence vector length of 5. Then, a metamodel of the linear support vector 
machine (SVM) was trained using the confidence vector data with the supervised labels to combine the models 
in a cascaded  manner28. As described in the section titled ‘Proposed Approach’, a hierarchical classification model 
applies transfer learning from the ImageNet-pretrained CNN model to create a low-level model for classifying 
normal versus glaucoma cases; then, it is hierarchically transferred to build a glaucoma classification model from 
the low-level model. Finally, a metamodel of the linear SVM was used to calculate the overall result (Fig. 2c).

A stacking ensemble method was used to combine the separately trained single-input image models. The 
confidence vector calculated by models trained with different single-input images was extracted and concatenated 
to train the superior metamodel via a linear SVM to combine the single-input models. For comparison with the 
stacking method, a multiple-input CNN with a direct four-image input was selected to handle multiple images 
and trained with the three proposed approaches (Fig. 2). A metamodel was also used to combine the results of 
different-level models to calculate the final classification result.

The second experiment was designed to evaluate the deep learning models’ applicability to small amounts 
of training data built using the proposed approach by using partial training data. Partial training datasets were 
created using a stratified random sampling strategy using different percentages of the entire training data (25.0%, 
37.5%, 50.0%, 62.5%, 75.0%, 87.5%, and 100.0%). With the different training datasets, deep learning models were 
built with the proposed approaches (Fig. 2) using one type of input image (projection image) and a combination 
model via a stacking ensemble method for different single-input models.

Figure 1.  Overview of our main framework for building deep learning models. The top figure illustrates 
doctors’ diagnostic process. The bottom figure illustrates the building of deep learning models based on the 
analyzed characteristics of the doctors’ diagnostic process using three techniques: hierarchical classification, 
hierarchy transfer learning, and a stacking ensemble method.
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In this study, we adopted the VGG-16 CNN architecture, which is widely used to solve image classification 
 tasks29, for all the deep learning models and customized it as shown in the Model Architectures and Training 
Details in the Supplementary Information. In all the model training phases, data augmentation techniques were 
used to improve the models’ classification performance given the limited training data, as presented in the sec-
tion titled ‘Model Architectures and Training Details’ in the Supplementary Information.

Evaluation of classification models. The entire dataset was shuffled to create three different training 
(80%) and test (20%) datasets with a stratified sampling strategy. The training dataset was used to build the 
classification models, and the test dataset was used to evaluate the models. The average of the classification 
indexes for the three test datasets was used to evaluate the proposed approaches. Our dataset was not balanced 
in class distribution; thus, Cohen’s kappa and weighted accuracy were used to evaluate the deep learning models. 
Cohen’s kappa coefficient is a statistic that measures the inter-rater reliability of qualitative items by considering 
the possibility of agreements occurring by  chance30. The agreement thresholds used in this study were based on 
the following guideline: 0.61–0.80 corresponds to good agreement, and 0.81–1 corresponds to almost perfect 
 agreement30. The weighted accuracy is computed by taking the average, over all the classes, of the fraction with 
the number of correctly predicted instances in that class, divided by the total number of instances in that  class31. 
We used a paired t-test P-value (two-tailed) of 0.05 as the significance level to determine whether the mean dif-
ference between two sets of Cohen’s kappa was zero.

Results
Performance comparison of different training approaches. The Cohen’s kappa for the deep learning 
models of single-input images built with the flat classification strategy and transfer learning from the ImageNet-
pretrained model (proposed approach-1 in Fig. 2a) were 0.567 for projection, 0.600 for en face, 0.550 for disc H 

Figure 2.  Proposed approaches for building deep learning models. Consider a classification problem (class 
number = n + 1) of normal and disease cases with n subtypes. (a) Proposed approach 1: flat classification is used 
to directly classify normal eyes and those with four subtypes of disease with transfer learning from an ImageNet-
pretrained CNN model to create Model 1. (b) Proposed approach 2: hierarchical classification is used to create 
a low-level model (Model 2) for classifying normal versus disease cases and a high-level model (Model 3) for 
classifying subtypes of disease. Both models apply transfer learning from the ImageNet-pretrained CNN model. 
The confidence in a ‘normal’ result from Model 2 and the confidence in disease subtypes from Model 3 are 
concatenated to calculate the overall result from training Metamodel 1. (c) Proposed approach 3: hierarchical 
classification using hierarchy transfer learning between different-level models is used in the hierarchical 
classification model is. In contrast with proposed approach 2, the high-level model (Model 4) for classifying 
disease subtypes, transfer learning is from the low-level model (Model 2) instead of from the ImageNet-
pretrained CNN model. The normal confidence from Model 2 and the disease subtype confidence from Model 4 
are concatenated to train Metamodel 2 to calculate the overall result.
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B-scan, and 0.400 for disc V B-scan. Only the deep learning model using en face images achieved good perfor-
mance with Cohen’s kappa over 0.6 (Cohen’s kappa: 0.600; weighted accuracy: 66.3%). The Cohen’s kappa for 
the deep learning models built using hierarchical classification without hierarchy transfer learning (proposed 
approach-2 in Fig. 2b) were 0.678 for projection, 0.707 for en face, 0.708 for disc H B-scan, and 0.495 for disc 
V B-scan. The deep learning models achieved good performance with Cohen’s kappa over 0.6 when using pro-
jection (Cohen’s kappa: 0.678; weighted accuracy: 75.5%), en face (Cohen’s kappa: 0.707; weighted accuracy: 
74.6%), and disc H B-scan (Cohen’s kappa: 0.708; weighted accuracy: 77.5%) images. The deep learning models 
using hierarchical classification models provided significantly improved classification performance (P-values of 
the paired t-test: 0.027, 0.045, and 0.016, respectively) compared to models using the flat classification strategy 
for the same input images. The Cohen’s kappa for the deep learning models built with hierarchical classification 
and hierarchy transfer learning (proposed approach-3 in Fig. 2c) were 0.695 for projection, 0.722 for en face, 
0.679 for disc H B-scan, and 0.503 for disc V B-scan. The deep learning models with the projection, en face, 
disc H B-scan as the input achieved good performance (projection (Cohen’s kappa: 0.695; weighted accuracy: 
76.4%), en face (Cohen’s kappa: 0.722; weighted accuracy: 77.3%), and disc H B-scan (Cohen’s kappa: 0.679; 
weighted accuracy: 74.4%)). The deep learning models using hierarchical classification models provided signifi-
cantly improved classification performance (P-values of the paired t-test: 0.014, 0.037, and 0.021, respectively) 
compared to models using the flat classification strategy for the same input images. There was no considerable 
difference between hierarchical classification with or without hierarchy transfer learning for all types of input 
images (left part of Fig. 3).

Our stacked method of four models that were built with transfer learning and pretrained on ImageNet pro-
vided satisfactory performance, with a Cohen’s kappa of 0.727 and weighted accuracy of 71.8%. The multiple-
input CNN models achieved a Cohen’s kappa of 0.642 and weighted accuracy of 69.2% with four input images 
(right part of Fig. 3). The standard deviation of Cohen’s kappa for stacking was smaller than that of the multiple-
input CNN trained with the same proposed approaches. The multiple-input CNN was not significantly higher 
than the single-input CNNs of projection images, en face images, and disc H B-scans. However, classification 
performance significantly improved with the stacking method for each single-input model (P-values of the 
paired t-test: 0.014, 0.022, 0.006, and 0.012 for projection, en face, disc H B-scan, and disc V B-scan images, 
respectively).

The hierarchical classification strategy with or without hierarchy transfer learning between the low-level 
model for classifying normal versus glaucoma and the high-level model for glaucoma classification showed 
significantly improved classification performance compared to flat classification (P-values of the paired t-test for 
the hierarchical classification strategy without hierarchy transfer learning were 0.001, 0.049, 0.008, and 0.013, 
and with hierarchy transfer learning were 0.047, 0.048, 0.030, and 0.031, for projection, en face, disc H B-scan, 
and disc V B-scan images, respectively, for both cases). There was no significant difference between the results 
of the hierarchical classification strategy with and without hierarchy transfer learning after applying the stack-
ing ensemble method. Proposed approach-3 (hierarchical classification and hierarchy transfer learning with the 
stacking method) achieved the highest Cohen’s kappa, 0.809, and weighted accuracy, 83.9%.

Applicability evaluation of the proposed approaches in small training data. The performance 
change (as measured using Cohen’s kappa) provided by the deep learning classification models using projection 
input images was compared. All the models trained with flat classification (FC; Fig. 2a), hierarchical classifica-
tion without hierarchy transfer learning (HC; Fig. 2b), and hierarchical classification with hierarchy transfer 
learning (HC & HTL; Fig. 2c) using a larger training dataset achieved an increase in Cohen’s kappa. Only HC 
and HC & HTL achieved satisfactory performance when using the entire training dataset. There was no signifi-
cant difference between HC and FC in the case of a small training dataset. The HC & HTL strategy achieved a 
good Cohen’s kappa when using 62.5% of the entire training dataset (Fig. 4a).

Figure 3.  Classification performances of deep learning models built with the proposed approaches. The figure 
shows Cohen’s kappa with standard deviation error bars for the deep learning models for projection, en face, 
disc H B-scan, and disc V B-scan images and combination models using multiple-input CNN and stacking built 
with different proposed strategies.
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The performance changes due to the stacked deep learning classification models using all the types of input 
images were compared. All the stacked models trained with FC, HC, and HC & HTL achieved a higher Cohen’s 
kappa (Table 1) compared to the single-input (projection) model using the same number of training datasets. 
With sufficient training data, all the models achieved convergence classification performance. With the same 
number of training datasets, the classification performance of HC & HTL was better than that of FC (Table 1, 
Fig. 4b; all P-values of paired t-tests < 0.05). The performance of the models built with the HC strategy was better 
than that of the models built with the FC strategy for large training datasets (more than 75.0% of the training 
dataset). However, there was no significant difference between HC and FC for a small training dataset (less than 
75.0% of training dataset). The HC & HTL strategy achieved a fairly good Cohen’s kappa of 0.642 when using 
only 25.0% of the entire training dataset (Table 1, Fig. 4b). The performance reduction (relative Cohen’s kappa) 
for each model using each training dataset was calculated with reference to the Cohen’s kappa for the CNN 
model built with the HC & HTL strategy (Fig. 4c). The performance reduction of flat classification was greater 
than (1.000–0.903) × 100.0% = 9.7% compared to the use of the proposed method with the same training dataset 
(Table 1, Fig. 4c). The performance reduction of hierarchical classification was smaller than flat classification 
for each size of the training dataset, while the rate of performance reduction for hierarchical classification was 
larger than that with flat classification (Table 1, Fig. 4c).

Discussion
In this study, we built high-accuracy deep learning models for disease detection and classification. Experiments 
showed that the deep learning models trained with transfer learning from an ImageNet-pretrained CNN model 
with flat classification and data augmentation performed effectively in disease detection and classification on 
one type of input images (Fig. 3). The approach proposed by Kermany et al.10 is similar to proposed approach-1 
(Fig. 2) as we adopted data augmentation for model training, which is useful in small datasets.

We proposed a two-step framework to build deep learning models for disease detection and classification 
based on the characteristics of the doctors’ diagnostic processes analyzed; the first step builds the model for dis-
ease detection, and the second step builds the model for disease classification by reusing parameters of the model 
for disease detection. Hierarchical classification was applied first for classifying diseased cases into subcategories 
after excluding the normal cases. The deep learning models built with hierarchical classification performed 
well and produced substantially improved results compared to flat classification for three types of input images 
(Fig. 3). Similar to our proposed approach-2 (Fig. 2), a previous study used hierarchy knowledge in disease 

Figure 4.  Performance change with different training dataset sizes. (a) Cohen’s kappa with standard deviation 
error bars for deep learning models trained with different training methods based on single-input (projection) 
images. (b) Cohen’s kappa with standard deviation error bars for deep learning models trained with different 
training methods based on all input images. (c) Calculated classification performance reduction for models 
using different training datasets and other training methods with stacking, with respect to Cohen’s kappa for the 
CNN model built with the proposed method of HC & HTL with stacking.

Table 1.  Performance change of stacking models with different training dataset sizes.

Cohen’s kappa Relative Cohen’s kappa

Percent of total training data
Number of
training data FC HC HC & HTL FC HC HC & HTL

25.0% 185 0.546 0.556 0.642 0.851 0.866 1.000

37.5% 278 0.600 0.606 0.666 0.899 0.910 1.000

50.0% 370 0.655 0.679 0.731 0.897 0.929 1.000

62.5% 462 0.675 0.710 0.756 0.893 0.939 1.000

75.0% 554 0.707 0.744 0.788 0.897 0.945 1.000

87.5% 647 0.727 0.784 0.805 0.903 0.975 1.000

100.0% 739 0.727 0.796 0.809 0.899 0.984 1.000
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classification and transfer learning from a pretrained model with a large natural image dataset and achieved 
a high  accuracy32. We evaluated the applicability of this approach in relatively small datasets and found that it 
achieved higher performance than flat classification. As the variants for normal and diseased cases are different, 
we believe that hierarchically building models for disease detection and classification models can contribute to 
performance improvement. Moreover, we applied similar architectures for low-level and high-level models in the 
hierarchical classification model to further apply hierarchy transfer learning so that the parameters of models for 
classifying normal and diseased cases based on the analysis of the doctors’ diagnostic processes can be reused for 
classifying diseases into subcategories, which utilizes the knowledge of classifying normal and diseased cases. The 
combination of two methods (proposed approach-3) produced higher classification performance using smaller 
datasets than flat and hierarchical classification. While the knowledge of classifying normal and diseased cases 
is important to consider when classifying diseases into subcategories, it is believed that the hierarchy transfer 
learning method that attempts to reuse the parameters contributes to performance improvement when using 
relatively small training datasets.

We proposed two methods for handling multiple-input images based on doctors’ requirement of multiple 
images to make accurate diagnosis. As described in glaucoma guidelines, multiple sources of information, such 
as the patient’s medical history, visual acuity, assessment of the nerve fiber layer, and visual fields, are required to 
accurately assess early-stage  glaucoma33. We extracted multiple useful images from one set of volumetric data to 
develop our deep learning models. The classification performance improved and was good for the multiple-input 
CNN and stacking methods. In comparison with the multiple-input CNN method, our stacking method consid-
erably boosted the performance of four single-input CNNs with a small standard deviation. Doctors’ processes 
of making a diagnosis after asynchronously interpreting multiple images was imitated with the stacking method.

Our proposed approach of hierarchical classification and hierarchy transfer learning (approach-3; HC & HTL) 
showed good compatibility with the stacking method and achieved higher classification performance than other 
proposed approaches. The classification performance was good even for small training datasets. The stacked deep 
learning models trained with three approaches (Fig. 2) achieved good classification performance using a small 
dataset (37.5% of the training dataset). The area under the receiver operating characteristic (ROC) curve (AUC) 
for each class, with the confidence calculated by three different proposed methods, was used to confirm the clas-
sification performance without a fixed threshold to predict. We found that our proposed approach of combining 
all the techniques achieved the best macro-average AUC (Fig. 5a), followed by approach-1 (FC) and approach-2 
(HC), in recognizing normal, FI, and GE cases. For the largest class (MY) and smallest (SS) glaucoma-type classes 
in HC (Fig. 5b,c), the problem of imbalance affected performance, even when weighted loss was applied during 
training. The HC & HTL method provided the best classification performance of recognizing the largest class 
among the proposed approaches (Fig. 5b). In future studies, methods for overcoming the imbalance problem of 
the smallest class should be investigated.

A deep learning model for glaucoma detection and classification was built using the proposed framework 
that is implemented by hierarchical classification, hierarchy transfer learning, and the stacking ensemble method 
using different images, achieving a high Cohen’s kappa of 0.809. Based on the previous guideline of Cohen’s 
 kappa30, this value implies a high performance of the decision support system for glaucoma clinical care. For 
comparison, we also conducted another diagnosis test. We randomly sampled images of 50 cases from the 
dataset used in this study, which were then classified into normal and glaucoma sub-categories by three medi-
cal ophthalmology interns. The average Cohen’s kappa of these classification results with supervised data was 
0.408, lower than that of our deep learning model. The model can be used in diagnosis support of glaucoma by 
providing the confidence level for normal cases and each disc type, which would help doctors to select proper 
treatment plans according to the optic disc  shape20,34.

Our model has a high potential for the automatic diagnosis of glaucoma. First, as more data are collected 
in future, the performance of deep learning models would improve. Next, many new deep learning techniques 
have been reported recently, such as deep learning architectures, which can boost the performance of deep 

Figure 5.  ROC curves for models built using a small training dataset. ROC curves for the stacked hierarchical 
classification model using hierarchy transfer learning: (a) macro-average ROC curve of all five classes, (b) ROC 
curves for the classification of the largest data class (MY) versus others, and (c) ROC curves for the classification 
of the smallest data class (SS) versus others.
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learning models. Hopefully, deep learning models built with these new techniques and our approaches would 
achieve even better performance for glaucoma detection and classification. Finally, the images for which grading 
is difficult might be used in a semi-supervised classification manner to improve the performance of our deep 
learning models.

This study is novel in that it proposes a deep learning training framework using hierarchical classification and 
hierarchy transfer learning capable of building models that perform accurate disease detection and classification 
using a small number of images. The high potential of deploying deep learning models with a small number of 
datasets was demonstrated for practical diagnosis based on the characteristics of the clinical diagnostic processes.

Conclusions
In this study, we proposed a novel two-step framework using hierarchy transfer learning to build deep learning 
models for disease detection and classification based on an analysis of the characteristics of doctors’ diagnos-
tic processes. This training framework enabled the built deep learning models to achieve high accuracies and 
improved classification performances in comparison with models based on other training approaches. Moreover, 
the two-step framework was extended to handle multiple input images by combining models created with each 
type of input image with a stacking method to further improve the accuracy of doctors’ diagnoses. We showed 
that high accuracy and robustness can be achieved with a smaller number of training data using the proposed 
training framework. The effectiveness of the proposed approach and its applicability to diagnostic classifica-
tion in medical images were demonstrated using a retinal image dataset relevant in glaucoma diagnosis. These 
results indicate the high potential of deploying deep learning models with a limited number of medical images 
for practical diagnoses through the analysis of the clinical diagnostic process.

Data availability
The images and diagnosis data used to support the findings of this study have not been made available because 
they are real clinical data from Tohoku University Hospital, and the patients’ rights to privacy should be pro-
tected, as it is possible to identify people from these data, but are available from the corresponding author on 
reasonable request.
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