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Distribution of absorbed photons 
in the tunneling ionization process
I. A. Ivanov1* & Kyung Taec Kim1,2

We describe a procedure that allows us to solve the three-dimensional time-dependent Schrödinger 
equation for an atom interacting with a quantized one-mode electromagnetic field. Atom-field 
interaction is treated in an ab initio way prescribed by quantum electrodynamics. We use the 
procedure to calculate probability distributions of absorbed photons in the regime of tunneling 
ionization. We analyze evolution of the reduced photon density matrix describing the state of 
the field. We show that non-diagonal density matrix elements decay quickly, as a result of the 
decoherence process. A stochastic model, viewing ionization as a Markovian birth-death process, 
reproduces the main features of the calculated photon distributions.

Tunneling ionization is a process which can be pictured as a non-resonant absorption of a large number of pho-
tons from a driving electromagnetic field. The strong field approximation (SFA) theory, developed by  Keldysh1, 
defines the tunneling regime of ionization as the regime characterized by the values of the Keldysh parameter 
γ = ω

√
2|ε0|/E � 1 (here ω , E and |ε0| are the frequency, field strength and ionization potential of the target 

system). This theory and its subsequent  developments2–8 provide the basis for understanding various phenomena 
accompanying the process of the tunneling ionization, such as above-threshold ionization or high harmonic 
generation.

The approaches we mentioned above consider electromagnetic field and the field-atom interaction in an 
entirely classical way. A quantum description of light and light-matter interaction is provided by quantum electro-
dynamics (QED)9. In the present manuscript, we describe an approach allowing us to solve the time-dependent 
Schroödinger equation (TDSE) numerically for an atom interacting with an electromagnetic field, with field-atom 
interaction described in the framework of QED. The necessity and usefulness of such a description is obvious 
for very high field strengths which can already be obtained in laboratories. Development of laser  techniques10–14 
has allowed us to reach intensities of laser radiation of the order of 1023 W/cm2 , and the attainment of yet higher 
intensities of the order of 1026 W/cm215 can be expected in the near future. At these intensities, a plethora of new 
phenomena, such as various effects due to the electron  spin16, quantum radiation reaction  effects17, and many 
 others15,18 opens up for experimental study.

It is, in part, the possibility of studying these phenomena which prompted our interest in developing the 
present procedure, based on the QED description of the photon field. What will interest us below, however, are 
not the effects appearing at very high field strengths. We will consider weaker fields with intensities of the order 
of 1014 − 1015 W/cm2 . Even for such field intensities the description of the atomic or molecular photo-ionization 
based on the non-relativistic TDSE may have its limitations. This fact has been realized since the pioneering 
work by  Reiss19, where it was shown that in the tunneling regime of ionization relativistic effects may prove quite 
significant. In particular, relativistic non-dipole effects are visible in the experimentally observed photo-electron 
 spectra20 for the infrared (IR) laser fields of the intensity of the order of 1014 W/cm2 . These non-dipole effects in 
the tunneling regime of ionization have been studied  experimentally20,21, and  theoretically16,22–28. Effects related 
to the electron spin, which cannot be described by the non-relativistic TDSE, have also been observed. A strong 
spin asymmetry is present in the spectra of the above threshold ionization process (ATI)16,29. The free-electron 
lasers (FEL)12–14 offer a possibility of the experimental study of the relativistic effects in the domain of high pho-
ton energies, where the non-dipole effects due to finite photon momentum can be expected to be particularly 
 important30,31.

The relativistic and spin effects can be studied using the relativistic generalizations of the SFA  theory7,16,19,22,25,28. 
Alternatively, for not very high field strengths, one can use perturbative approach, by adding the terms describ-
ing relativistic interactions to the non-relativistic  Hamiltonian23,24 and solving the resulting TDSE numerically. 
Treatment of higher field strengths, where electron acquires relativistic velocities, but electromagnetic fields can 
can still be considered classically, is possible with the use of the approaches based on the numerical solution of 
the time-dependent Dirac equation (TDDE)31–34.
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QED offers a natural framework for taking into account relativistic and electron spin effects. There is, however, 
another, equally important aspect of the QED which is related to the fact that in this theory electrons and pho-
tons are considered as quantum fields. In the present work we will exploit a possibility which the QED approach 
to the description of the photon fields offers: the possibility to “count” the photons, i.e., the possibility to study 
statistics and distributions of photons, tracking evolution of the state of the field during the process of atom-field 
interaction. More specifically, we will consider the process of tunneling ionization. As we will see, analyzing the 
photon distributions may reveal some interesting features of the process.

Atomic units (a.u.) with m = e = � = 1 (here e and m are electron charge and mass) are used throughout the 
paper. The speed of light in these system of units is c ≈ 137.036 a.u.

Results
Theoretical model. We will first outline briefly the procedure we employ to describe an atom interacting 
with a quantized electromagnetic field. The quantized vector potential can be written  as9,35:

where it is assumed that the electromagnetic field is quantized in a finite volume V, and ak,� are the photon anni-
hilation operators. The combined Hilbert space of the system atom+ field is the tensor product Hatom ⊗Hfield . 
Here Hatom and Hfield are electron and photon sectors of the Hilbert space, respectively. We will employ the 
well-known fact that the photon Hilbert space is spanned by the Fock states |N� - the eigenstates of the operator 
N̂k,� = â†k,�âk,� of the number of photons in the mode k, � . We will consider below only one mode of the field, 
corresponding to linear polarization in the z-direction and a particular photon frequency ω = 0.057 a.u. (wave-
length of 800 nm). We will omit, therefore, subscripts k, � in all the formulae below. Using the basis of the Fock 
states, the matrix elements of the photon operators in Eq. (1) assume the well-known  form36:

while all other matrix elements have zero values. The state of the combined system atom+field at the initial 
moment of time, t0 = 0 a.u., is assumed to be a tensor product φ0 ⊗ |N0� of the ground atomic state φ0 and the 
Fock state |N0� . Subsequent evolution of the system is governed by the time-dependent Schrödinger equation 
(TDSE)9 (we use velocity gauge to describe atom-field interaction):

where Ĥatom is atomic Hamiltonian. We do not have to include the field Hamiltonian in Eq. (3) because the vector 
potential in Eq. (1) is time-dependent, i.e., the representation we use in Eq. (3) is the Schrödinger representation 
for the atomic operators and interaction representation for the field operators. This representation can be 
obtained from the Schrödinger picture, in which neither atomic nor field operators depend on time, by means 

of the unitary transformation exp
{

−iĤfieldt
}

 generated by the field Hamiltonian Ĥfield.

We use a non-relativistic form, Ĥatom = p̂
2

2
+ V(r) , of the atomic Hamiltonian, with the short-range atomic 

potential V(r) = −1.903e−r/r . This potential supports only one bound state of s− symmetry with ionization 
potential |ε0| = 0.5 a.u. Though our computational procedure can be applied equally well for the case of the 
Coulomb potential, we choose a short-range atomic potential with only one bound state to concentrate fully on 
ionization by excluding all effects due to excitation processes. Another assumption we make is the dipole approxi-
mation, which consists in neglecting the spatial dependence of the vector potential in Eq. (1). Both these assump-
tions are easily justified for the moderate field intensities (of the order of several units of 1014 W/cm2 ) that we 
consider below. A short explanation of what we mean by the light intensity may be appropriate here. As is well-
known, for the Fock state of the field, the expectation values of the field operators (e.g., the vector potential (1)) 
are zero. To relate the photon number N to the observable effects, we can use instead the cycle-averaged expecta-
tion value of the Poynting operator, which in the Fock state |N�  is36 ωcN/V  . The cycle-average for the Poynting 
vector, computed for the classical monochromatic linearly polarized wave wave E0 cosωt , is, on the other hand: 
cE20/(8π) . From the point of view of the time-averaged flux of energy, the Fock state |N0� is, therefore, equivalent 
to a monochromatic wave with E0 =

√
8πωN0/V  . We will call E0 defined in this way the ’equivalent field 

strength’.
To solve evolution equation (3) numerically, we use the completeness of the Fock states in Hfield , and expand 

the time dependent wave-function of the atom+field system as:

(1)Â(r, t) =
∑

k,�

√

2πc2

ωV

(

ek,�âk,�e
−iwt+ik·r + h.c

)

,

(2)
�N − 1|a|N� =

√
N

�N + 1|a†|N� =
√
N + 1 ,

(3)i
∂|�(t)�

∂t
=

(

Ĥatom + 1

c
Âp̂+ 1

2c2
Â
2
)

|�(t)� ,

(4)|�(t)� =
N0+n2
∑

N=N0−n1

|fN (t)� ⊗ |N� ,
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where |fN (t)� are vectors from the atomic Hilbert space Hatom , and the parameters n1 , n2 define the range of 
the Fock states we need to keep to ensure convergence of the expansion (4). Details of the procedure we use to 
solve the TDSE (3) using the expansion (4) are given in the Section “Methods” below. We solve the TDSE for the 
interval of time (0, MT), where T = 2π/ω is an optical cycle corresponding to the driving frequency ω = 0.057 
a.u. For the majority of the calculations we report below, we used M = 12 . That this choice of M is adequate for 
the purposes of the present work is shown in the section “Methods” below.

We are primarily interested in the evolution of the state of the electromagnetic field on the interval of pulse 
duration. The state of the field can be described by the reduced density matrix ρF(t)36, which can be computed 
from the density matrix ρ̂(t) = |�(t)���(t)| of the complete atom+field system obtained from the solution 
|�(t)� of the TDSE, by taking a partial trace with respect to atomic variables. For the |�(t)� represented as an 
expansion (4), the partial trace can be easily computed, giving the following expression for the reduced density 
matrix describing the state of the field:

where �fN2(t)|fN1(t)� is a scalar product of the vectors fN (t) from the atomic Hilbert space Hatom occurring in 
the expansion (4). Matrix elements of ρ̂F(t) in the basis of the Fock states can, therefore, be easily computed 
once the TDSE equation (3) is solved. The diagonal matrix elements ρ̂NN

F (t) then give us the probabilities PN (t) 
of observing the field in a state with N photons.

We will be interested below in the process of absorption of photons. For the field initially in the Fock state 
|N0� , the number of photons is fixed and the projection of the wave-function of the system at time t on the Fock 
state |N1� directly gives us the probability of absorption or emission of N1 − N0 photons. In the case of the initial 
Fock state of the field that we consider in the present work, the matrix element ρ̂N0−n,N0−n

F  (where n is a positive 
integer) give us, therefore, the probability Pn of absorption of n photons. From the point of view of experimental 
studies of photon absorption dynamics, a more natural choice would be a coherent state of the field. This choice 
entails a difficulty, however. For the coherent state the number of photons is not fixed and we can specify only 
the expectation value N0 of the number of photons. The dispersion of the number of photons is proportional to 
N

1
2
0

36 and can be much larger than the number of photons absorbed in the process of ionization. This makes the 
definition of the number of absorbed photons less straightforward for a coherent state. It is the possibility of the 
direct interpretation of the ρ̂N0−n,N0−n

F  as the absorption probabilities which motivated our choice of the Fock 
state of the field as the initial state. We can expect, however, that the general features of the ionization dynamics 
which we describe below, will be valid in the case of ionization driven by the field in a coherent state. The phase 
of the field in a Fock state is completely undefined. It is  known37 that the effect of the undefined field phase on 
the density matrices can be described as a suitable average of density matrices obtained for coherent states with 
different phases of the field. Therefore, we can expect this effect to vanish for long enough pulses. That this is 
indeed the case was shown, e.g.,  in38 by comparing electron spectra obtained for the case of ionization driven by 
the field in a coherent state and in a Fock state of the same effective field strength.

More convenient for the study of the absorption process is the normalized probability distribution Qn . This 
distribution is a conditional probability of absorbing n photons from the field provided at least one photon has 

been absorbed, and it coincides with Pn for n ≥ 1 up to a normalization factor which ensures that 
n=+∞
∑

n=1

Qn = 1 . 

The results for the probability distribution of absorbed photons, Qn , that we obtain by solving the TDSE (3) and 
using Eq. (5) are shown in Fig. 1. For comparison, we also show in the Figure the results we obtain for Qn using 
the SFA (the details of this calculation are given in the Section “Methods”), and the results we obtain using a 
stochastic model of the ionization process we present below.

Stochastic model of strong field ionization. To understand the main features of the distributions, Qn , 
in Fig. 1, and get a better insight into the photon absorption for the strong field ionization process, we report 
below a study of the dynamics of the process. This study is based on an analysis of the reduced density matrix 
ρ̂F(t) as a function of time on the interval of the pulse duration. The exact equation governing evolution of the 
reduced density matrix can be obtained by taking a partial trace with respect to the atomic variables of the von-
Neumann equation describing quantum evolution of the atom+field system:

where Ĥ(t) and ρ̂(t) are the Hamiltonian and the density matrix of the system atom+field, respectively. Eq. (6) 
and the initial condition ρ̂(0) = |N0��N0| ⊗ |φ0��φ0| (here |N0� and |φ0� are initial states of field and atom) 
determine, in principle, subsequent evolution of the reduced photon density matrix. This equation is exact but 
can hardly be solved in practice for the system we are presently studying. Various simplifications of the general 
equation for the reduced density matrix, the so-called ’master equations’, describing evolution of a subsystem 
interacting with the environment (often called the ’reservoir’ in the literature) are  known39. These approximations 
are usually based on the assumption that the evolution of the reduced density matrix is  Markovian39, that is the 
process has no memory and its evolution for t > t0 is defined by the state at t0 . In this case the general form of 
the master equation in the so-called Lindblad  form40 can be derived.

(5)ρ̂F(t) = Tratom|�(t)���(t)| =
∑

N1,N2

�fN2(t)|fN1(t)�|N1��N2| ,

(6)i
∂

∂t
ρ̂F(t) = Tratom

[

Ĥ(t), ρ̂(t)

]

,
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Figure 1.  Distributions of absorbed photons, Qn . Also shown are SFA distributions obtained using Eq. (17), and 
distributions obtained using the stochastic model based on Eqs. (8) and (9).
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Figure 2.  Absolute values of the reduced density matrix elements ρ̂N0−n,N0−n

F
 . Logarithmic scale is used.
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Atom‑field interaction as an example of decoherence phenomenon. In the problem we are presently considering, 
the subsystem we are interested in is the electromagnetic field. Atom plays the role of the environment. That this 
separation may be meaningful and useful can be seen from Fig. 2, which shows absolute values of the reduced 
density matrix elements ρ̂N0−n,N0−n

F  as functions of time (measured in the units of the optical cycles).
One observes from the Fig. 2 that the density matrix elements ρ̂N0−n,N0−n

F  with negative n1 , n2 (corresponding 
to the emission of photons) have negligible values. This is, of course, expected for the long pulses we consider 
presently. More interestingly, we observe the progressive decay of the non-diagonal elements of the density matrix 
for positive n1 , n2 . For the time t = 12 o.c, for both field strength values shown in Fig. 2, matrix elements are 
predominantly concentrated along the main diagonal with positive n1 , n2 . Such behavior is, in fact, typical for 
the density matrix of a subsystem interacting with the environment, and is a manifestation of the decoherence 
 process41. The decoherence process has been  invoked41–44 to clarify the measurement problem and to understand 
the transition from the quantum to classical description in quantum mechanics.

Decay of the non-diagonal elements of the reduced density matrix can be understood as follows. According 
to Eq. (5), matrix elements of the reduced density matrix are the overlaps �fN2(t)|fN1(t)� of the corresponding 
states of the environment (states of the atom in our case). With increasing time, the environment states |fN (t)� 
with different N become, progressively, more and more separated in energy, and thus, their overlaps tend to zero. 
The state (4) of the atom+ field system evolving from the initial product state |φ0� ⊗ |N0� is an entangled state. 
With the atomic vectors |fN (t)� becoming approximately orthogonal with time, a measurement performed on 
an atom which finds the atom in the state |fN (t)� , allows us, therefore, to state with certainty that the field is in 
the corresponding state |N� . For large enough times, therefore, the environment (i.e. the atom) carries complete 
information about the system (field). This is, indeed, the decoherence process at work, as described, e.g.,  in43. 
Thus, we see that by picturing the field as a system, and the atom as the environment, we encounter an interest-
ing example of the decoherence process which manifests itself through the decay of the non-diagonal matrix 
elements, computed in the basis of Fock states, of the reduced photon density matrix.

Evolution of diagonal elements of the reduced density matrix. In the previous section, we saw that, due to the 
decoherence process, the non-diagonal matrix elements of the reduced photon density matrix become small for 
large enough time. We now turn our attention to the diagonal elements of the reduced density matrix. As we 
mentioned above, under the assumption of the Markovian character of the process, the master equation describ-
ing evolution of the reduced density matrix can be written using the Lindblad operators, which in our case can 
be represented as matrices with dimension equal to the number of photon states we consider. For the problem 
of a one-mode electromagnetic field in a cavity interacting with a bath (which may be, e.g., the phonons in the 
material of the walls of the cavity), the master equation can be further simplified to give a relation of the  form39:

where, using the notation we employed above, Pn(t) = ρ̂
N0−n,N0−n
F  are diagonal elements of the reduced photon 

density matrix. For the problem considered  in39 the explicit expressions for the coefficients �n ans µn in this 
equation can be given. We cannot use those particular expressions, however, since our problem differs somewhat 
from the one considered  in39, where the environment was considered to remain in thermal equilibrium during 
the process. This would certainly not be the case in our problem, where the environment (the atom) is not in an 
equilibrium state for the whole interval of the pulse duration. However, we can preserve the general structure 
of Eq. (7) as the master equation describing the evolution of the density matrix in our problem. Indeed, Eq. (7) 
is a Kolmogorov  equation36,45 describing the so-called ‘birth-death processes’45–47, and is, therefore, sufficiently 
general for our purposes. More detailed justification of the possibility to use Eq. (7) for the description of the 
evolution of the diagonal photon density matrix elements is given in the section “Methods” below.

The ’birth-death processes’ are continuous-time Markov  chains45 in which only jumps to the neighboring 
states are allowed at small intervals of time. The meaning of the parameters �k and µk in Eq. (7) in our case is 
the rate of absorption ( �k ) or emission of a photon ( µk ) in a photon state, where k photons have already been 
absorbed. Using Eq. (7) as the master equation for our problem, we thus assume a Markovian character for the 
process. We can use the Kolmogorov equation (7), not only for the probability distribution Pn , but also for the 
normalized distribution Qn of the number of absorbed photons. One can see that if Pn(t) obeys Eq. (7), evolution 
of Qn(t) for large enough times is also described by an equation of the type (7). Indeed, by definition for n ≥ 1 : 
Qn(t) = Pn(t)/C , where C is the normalization factor equal to the total probability of absorption of at least one 
photon, which for long enough pulses should be equal to the total ionization probability. In the field regime we 
consider, the total ionization probability, in turn, is proportional to time. Therefore the constant C ∝ t . We have, 
therefore, Qn(t) ∝ Pn/t . Substituting this expression into Eq. (7) and neglecting terms of the order of 1/t2 , we 
obtain a Kolmogorov type equation (7) for Qn(t).

What will interest us now is the steady state solution of Eq. (7), i.e., the solution to which solutions Qn(t) of 
the Kolmogorov equation (7) tend in the limit t → ∞ . Such a solution represents the equilibrium state; in our 
case it is the equilibrium between the atom and the field reached at the end of the ionization process. A sufficient 
condition for the steady state distribution to exist is |�k−1/µk| < 1 for all k greater than some k0 . The steady state 
solution, if it exists, can be obtained from Eq. (7) by equating time-derivatives on the left hand side to zero and 
solving the recurrence relation thus obtained. The results  reads48:

(7)
dPn(t)

dt
= �n−1Pn−1(t)+ µn+1Pn+1 − (�n + µn)Pn(t) ,
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where the constant can be determined from the normalization condition 
∞
∑

n=1

Qn = 1.

As for the rate coefficients �n ans µn in Eq. (7), we will try to find a set of them having as simple a form, and 
as few free parameters as possible. As one can see from Eq. (8), it is the ratio �k−1/µk which determines Qn . We 
represent this ratio as �k−1/µk = 1+ f (k) , and we use the following trial form for the function f(k):

where q(x) is a third-order polynomial fixed uniquely by the requirement that f(x) and its first derivative be 
continuous functions. A typical form of the function defined by Eq. (9) is shown in Fig. 3. Our choice of f(x) 
is suggested by Eq. (8). As one can see from this expression, if for large n, the Qn ’s form a geometric sequence 
such that Qn+1/Qn = b < 1 , then the choice β = b− 1 in Eq. (9) will reproduce such behavior that, (provided 
|β + 1| < 1 ) guarantees the existence of a steady state solution of the Kolmogorov equation. Similarly, if for small 
n, the Qn ’s behave so that Qn+1/Qn = a , we might use α = a− 1 in Eq. (9). Finally, the choice of the parameter 
x0 fixes the position of the maximum of the distribution. We have thus three parameters, α , β , and x0 , in Eq. (9) 
which we will consider as fitting parameters for the trial form of f(k). Results of the three-parameter fits, based 
on Eq. (9), are shown in Fig. 1.

Discussion
Our results, presented in Fig. 1, show that the SFA results obtained using the procedure described in the section 
“Methods” below, and the ab initio results obtained by solving the TDSE (3) with the QED Hamiltonian, agree 
reasonably well. The three-parameter fitting procedure, based on the ’birth-death’ model we described above, 
gives a considerably better agreement with the calculated distributions Qn . The relatively small deviation between 
the TDSE and the SFA results can be due to the fact that SFA neglects effect of the atomic potential on the ionized 
electron. For systems with Coulomb potential, for instance, SFA can give predictions for ionization probabilities 
which are a few orders of magnitude smaller than the results of TDSE calculations, unless special care is taken 
to take into account Coulomb  interaction8. For systems with short range interactions TDSE and SFA usually 
agree better, but we can still expect some differences for a potential of a small but finite radius of the order of one 
atomic unit, like the potential V(r) we use. This can be seen if we note that the physical results do not depend 
on the gauge used for the description of the electromagnetic field. SFA results obtained using the commonly 
used length and velocity gauges, on the other hand, may  differ8, thereby implying presence of an intrinsic, albeit 
possibly relatively small, error. SFA becomes a gauge-independent theory only for the zero-range  potential8.

For the reader’s convenience we summarize briefly the basic premises on which this model was based. We 
first demonstrated that the non-diagonal elements of the reduced density matrix describing the field vanish with 
time. We believe this phenomenon presents an interesting example of the decoherence process which may occur 
when we follow the evolution of a subsystem interacting with its environment. The subsystem in question and 
the environment are, in our case, the field and the atom, respectively. Looking at the atom as the environment is 
certainly not a conventional way to look at the ionization process. We saw, however, that the mechanism leading 

(8)Qn = const ×
n
∏

k=1

�k−1

µk
,

(9)f (x) =
{

α, x < x0 − 1
q(x), x ∈ (x0 − 1, x0 + 1)
β , x > x0 + 1

}

,

-1

 0

 1

 2

 3

 4

 5

 10  12  14  16  18  20
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α

x0

f(
x)

x

Figure 3.  Typical behavior of the function f(x) in Eq. (9).
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to the decay of the non-diagonal matrix elements of the photon density matrix is the same as in the more con-
ventional examples of the decoherence phenomenon, e.g., a subsystem interacting with a collection of harmonic 
 oscillators41,49,50. Different environment states in the entangled subsystem+environment state become approxi-
mately orthogonal with time. This leads to the suppression of the non-diagonal elements of the reduced density 
matrix describing the  subsystem41,42. The source of this approximate orthogonality in the present case is the fact 
that, for large enough times, different atomic vectors in the expansion Eq. (4) become well separated in energy.

As for the diagonal matrix elements of the reduced photon density matrix (5), we proposed a simple model 
which pictures absorption and emission of photons in the process of strong-field ionization as a ’birth-death’ 
process. An assumption we made was the Markovian character of the process. For the related problem of the 
one-mode electromagnetic field in a cavity, the master equation, governing evolution of the field, can be cast in a 
 form39that is reminiscent of the Kolmogorov equation describing the birth-death stochastic models. We adopted 
this equation as the equation governing the evolution of the reduced photon density matrix for the strong field 
ionization process. We were interested in the steady state solution of the Kolmogorov equation, to which Qn(t) 
tends in the limit t → ∞ . As we noted, the steady state solution does not always exist. For instance, we would not 
have such a solution for a pure birth process (all µk = 0 in Eq. (7)). If, for example, we set all coefficients µk to 
zero in Eq. (7) and assume that all coefficients �k have equal values, �k = � , then the solution of Eq. (7) would be 
the Poisson  distribution48 Qn(t) = e−�t(�t)n/n! which does not have a non-trivial steady state limit for t → ∞ . 
That photon absorption distributions are distinctly non-Poissonic has been noticed in the  literature7,38,51. In 
framework of our model, based on the Kolmogorov equation, the non-Poissonic character of the distribution of 
absorbed photons is just a consequence of the fact that the Poisson distribution is not a steady state distribution; 
Qn ’s in this case explicitly depend on time.

Conclusions
We studied evolution of the quantum system consisting of atom interacting with quantized electromagnetic field. 
The study was based on the numerical solution of the time-dependent Schroödinger equation driven by the QED 
Hamiltonian. Use of the QED picture allowed us to study probability distribution Qn of photons absorbed in the 
tunneling regime of strong field ionization.

We proposed a statistical model based on the view of ionization as a stochastic birth-death process. In 
framework of this model the distribution Qn can be interpreted as a steady state solution of the Kolmogorov 
equation to which absorbed photons distribution tends in the limit of large times. Making an assumption about 
the behavior of the ratio of the birth and death rates �k−1/µk of the stochastic process encapsulated by Eq. (9), 
with three parameters considered as fitting parameters, we obtained results presented in Fig. 1. The Figure shows 
reasonable agreement of the model distribution given by the steady state solution of Eq. (7) and the results of the 
ab initio numerical calculation of the distribution of absorbed photons.

Methods
Solution of the TDSE. We will use a co-ordinate representation for the vectors |fN (t)� in the expansion 
Eq. (4). We will omit, therefore, the Dirac notation for |fN (t)� and will simply write fN (r, t) , understanding them 
as functions of the spatial coordinates and time. To solve the TDSE (3) we represent fN (r, t) as (we employ the 
geometry imposed by the field geometry with the polarization vector along the z-direction):

The radial variable r is treated by discretizing the TDSE on a grid with a step-size δr = 0.1 a.u. in a box of size 
Rmax . Upon substituting expansions (4) and (10) into Eq. (3), projecting the result on vectors Yli0(n)⊗ |Ni� with 
different li , Ni , and computing the arising matrix elements, we obtain a system of coupled evolution equations 
for the radial functions fNl(r, t) . This system of coupled equations is solved using a matrix iteration  method52. 
This procedure, in fact, is quite similar to the procedure employed for the solution of the ordinary atomic TDSE 
reported  previously53–55.

The computational cost of realization of the strategy based on the expansions (4), (10) depends on the values 
of the parameters n1 , n2 in Eq. (4), parameter lmax in Eq. (10), and parameter Rmax defining the size of the box. 
The parameters n1 and n2 should be roughly of the order of the maximum number of photons which can be 
absorbed (parameter n1 ) or emitted (parameter n2 ) during the evolution. To choose parameters lmax and Rmax 
properly, we relied on the experience gained in solving ordinary atomic TDSE for the classical field with field 
intensity related to the photon number N0 according to the relation we gave above. For instance, for the solution 
of Eq. (3) for the equivalent field strength of E0 = 0.1 a.u. (corresponding intensity of 3.51× 1014 W/cm2 ), we 
used Rmax = 1500 a.u., lmax = 50 , n1 = n2 = 50 . The choice of Rmax also depends, of course, on the duration of 
the time interval over which we solve the TDSE (3). As mentioned above, for the majority of the calculations we 
report, this interval was (0, 12T), where T = 2π/ω , with an optical cycle corresponding to the driving frequency 
ω = 0.057 a.u. Solving the TDSE, we introduce a cutoff envelope function g(t), so that the expression for the 
vector potential used for the solution of the TDSE (3) is g(t)Â(r, t) where Â(r, t) is the operator given by Eq. (1), 
and the envelope function was chosen as:

(10)fN (r, t) =
lmax
∑

l=0

fNl(r, t)Yl0(n) .
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where (0, MT) is the time interval on which the TDSE has been solved. Introduction of the adiabatic turning on 
and off of the interaction is a commonly-employed procedure in quantum field theory, used e.g., for the construc-
tion of S-matrix56. In our case, the introduction of the envelope function is also necessary for computational 
reasons. We cannot propagate the TDSE numerically on very long time intervals, and we wish to avoid the effects 
of a sudden turning on and off of the interaction. We must ensure, of course, that the envelope function we use is 
indeed adiabatic, i.e., the results we obtain are not affected by the choice of the duration of time interval (0, MT) 
on which we propagate the TDSE. We presented an extensive study of this question in the  work38, where we solved 
the TDSE for the system atom+photon field using a semi-classical description of the quantized electromagnetic 
field, based on an approach proposed  in37. We showed in that work that the results for the photon number distri-
bution are not affected by the particular choice of envelope function, as long as the interval on which the TDSE 
is propagated is sufficiently long. To show that this conclusion remains valid in the present case, when we solve 
the fully quantum TDSE using expansion (4), we show, in Fig. 4, the absorbed photons probability distributions 
Qn , obtained for different pulse durations for an effective field strength of 0.07 a.u.

Estimate of the photon density matrix based on the SFA. To estimate the elements of the reduced 
density matrix (5) describing the photon field, we can use a semi-classical method for the description of the 
quantized electromagnetic field proposed  in37. In the framework of this procedure, the atomic Hilbert space 
vector |fN (t)� in the expansion (4) can be found as a Fourier transform:

where m = N − N0 , and the vector |�(t, θ)� belonging to the atomic Hilbert space is a solution of the time-
dependent Schrödinger equation:

with an initial condition such that �(r, t, θ) is the ground atomic state at t = 0 , and A(t, θ) is a classical field:

with the same effective amplitude A0 =
√

8N0πc2

ωV
 as the quantum electromagnetic field (1), and the same 

envelope function g(t) we used above in the fully quantum calculation. The effect of the quantum nature of the 
field in the semi-classical  approach37 reveals itself through the presence of the classical phase θ , uniformly dis-
tributed in the interval (0, 2π) . The appearance of the uniformly-distributed classical phase can be traced  back37 
to the fact that the phase of the field is completely undetermined in the Fock state of the  field36. By computing 
the Fourier transform of the solution of the classical TDSE (13), as prescribed by Eq. (12), we can find the com-
ponents |fN (t)� in the Eq. (4).

(11)g(t) = sin2
(

π t

MT

)

t ∈ (0,MT) ,

(12)fN (r, t) =
1

2π

2π
∫

0

�(r, t, θ)e−imθ dθ ,

(13)i
∂�(r, t, θ)

∂t
=

(

Ĥatom + 1

c
p̂A(t, θ)+ 1

2c2
A(t, θ)2

)

�(r, t, θ) ,

(14)A(t, θ) =
√

2Nπc2

ωV
g(t)ez

(

e−iωt−iθ + c.c.
)

= g(t)ezA0 cos (ωt + θ) ,
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Figure 4.  Absorbed photons probability distributions Qn , obtained for different propagation intervals in 
Eq. (11) for an effective field strength of 0.07 a.u.



10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:3956  | https://doi.org/10.1038/s41598-021-83453-0

www.nature.com/scientificreports/

To use this recipe, we need an analytic estimate for the solution of the classical TDSE (13). This estimate can 
be obtained using the SFA. In framework of this approximation, the solution to Eq. (13), satisfying the condition 
that the atom is in the ground atomic state φ0(r) at t = 0 can be written  as7,8:

where ε0 is the ground state energy, and a(k, t, θ) are the SFA ionization amplitudes given in the velocity gauge 
which we use by the  expression7,8:

where the classical vector potential A(τ , θ) is given by Eq. (14), and φ̃0(k) is the Fourier transform of the initial 

state wave-function. Using Eq. (16) we can compute the quantity ã(k, t,m) =
2π
∫

0

a(k, t, θ)e−imθ dθ

2π
 . We will need 

only the elements of the photon density matrix with N1 < N0 , N2 < N0 (corresponding to the states of the field 
with at least one photon absorbed by the atom), where the term φ(r)e−iε0t in Eq. (15) does not contribute. Using 
Eq. (12) and Eq. (15), we obtain, for these elements of the photon density matrix in Eq. (5):

where m1 = N1 − N0 , m2 = N2 − N0 . All the integrals in Eq. (17), Eq. (12), Eq. (15) were computed numerically. 
The calculation is quite straightforward and we will not dwell upon its details.

Justification of the use of Kolmogorov equation (7) for the diagonal elements of the reduced 
photon density matrix. In the present section, we describe in more detail the reasoning which led us to 
the assumption that the evolution of the diagonal elements of the reduced photon density matrix can indeed be 
described by the Kolmogorov equation (7). We cannot provide a mathematically rigorous proof of this state-
ment. Indeed, the task we have at hand is the description of the irreversible behavior of a system interacting 
with a reservoir, which is a notoriously difficult problem. It can be solved in some instances when simplifying 
assumptions about the reservoir can be made, e.g., the assumption that the reservoir is affected very little by the 
system and that it remains in a state of thermal equilibrium during the process. Such an assumption was made 
 in39; it allows one to obtain a Kolmogorov-type equation describing the evolution of the reduced photon density 
matrix for the field interacting with the cavity. This assumption amounts to postulating that the reservoir is suf-
ficiently large (i.e. contains many degrees of freedom) and that typical relaxation times of the reservoir are much 
faster than the typical time interval over which the photon density matrix changes appreciably. We can hardly 
use these assumptions in the present case, where the role of the reservoir is played by the atomic system. We 
cannot, therefore, use this line of argument.

We will, instead, present some arguments of heuristic character, based primarily on numerical evidence. 
First, we note that the three-term structure of Eq. (7) appears quite naturally in the quantum mechanical equa-
tion for the evolution of the diagonal elements of the photon density matrix. The latter can be obtained from 
the expression (5) for the density matrix elements. We will employ, as above, the notation Pn(t) = ρ̂

N0−n,N0−n
F  

for the diagonal elements of the reduced photon density matrix. We can use the above-mentioned fact that, 
in the semi-classical method proposed  in37 (which is an excellent approximation for the field parameters we 
consider), the atomic Hilbert space vector |fN (t)� in the expansion (4) is a Fourier transform (12) of the solution 
�(r, t, θ) of the time-dependent Schrödinger equation (13) with the classical vector potential A(t, θ) given by 
the Eq. (14). Using Eq. (12), Eq. (13), and expressing �(r, t, θ) in terms of |fN (t)� by using Fourier transform 
inverse to Eq. (12), we obtain:

where m1 = N1 − N0 , and Ĥ(t, θ) is the Hamiltonian operator on the right hand side of the Eq. (13). Project-
ing Eq. (18) on fN (r, t) and using the explicit expression for the Hamiltonian (13) and vector potential (14), we 
obtain for the time derivative of Pn(t) = �fN0−n(t)|fN0−n(t)�:

where A0 and g(t) are the amplitude and the envelope function in Eq. (14), I(z) stands for the imaginary part 
of a complex z. Deriving Eq. (19), we neglected terms proportional to the overlaps �fN (t)|fN1(t)� with N  = N1 
which give us non-diagonal elements of the photon density matrix. As we have seen, these vanish with time due 
to the decoherence process. Eq. (19) is not yet of the form of the Kolmogorov equation Eq. (7) since it involves 
matrix elements of the momentum operator calculated with amplitudes fN (t) , and not the overlaps of the fN (t) 

(15)�(r, t, θ) = φ0(r)e
−iε0t +

∫

a(k, t, θ)
eik·r

(2π)3/2
,

(16)a(k, t, θ) = −i

t
�

0

φ̃0(k)

�

k2

2
+ k · A(τ , θ)

�

exp







−i

t
�

τ

(k + A(x, θ))2

2
dx − iε0τ







dτ ,

(17)ρ
N1N2
F (t) = �fN2(t)|fN1(t)� =

∫

ã(k, t,m2)
∗a(k, t,m1) dk ,

(18)
∂fN (r, t)

∂t
= − i

2π

2π
∫

0

∑

m1

Ĥ(t, θ)fN1(r, t)e
i(m1−m)θ ,

(19)
dPn(t)

dt
≈ A0g(t)I

(

�fN (t)|p̂z |fN−1(t)�eiωt + �fN (t)|p̂z |fN+1(t)�e−iωt
)

,
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themselves, which we need in order to express the right-hand-side of Eq. (19) in terms of the diagonal density 
matrix elements Pn(t) . Formally, we can write Eq. (19) in the form of Eq. (7) by rewriting the matrix elements 
in Eq. (19) as:

and similarly for the second matrix element in Eq. (19). In Eq. (20) a(t) and b(t) are functions of time satisfy-
ing a(t)+ b(t) = 1 , but are otherwise arbitrary. In order for Eq. (20) to be of the Kolmogorov form (7), these 
functions must be chosen so that the coefficients with Pn(t) , Pn−1(t) and Pn+1(t) resulting upon substituting 
Eq. (20) (and an analogous expression for the matrix element �fN (t)|p̂z |fN+1(t) ) in Eq. (19)) be approximately 
time-independent. We can provide only numerical evidence indicating that such a choice is indeed possible, and 
that the diagonal photon density matrix elements Pn(t) calculated in the present work do approximately satisfy a 
Kolmogorov-type equation. To show this, let us introduce the functions P̃n(t) = Pn(t)/Pn where Pn are the con-
stant values which Pn(t) assume at the end of the pulse. If we assume that Pn are indeed stationary limiting values 
of the random birth-death process described by Eq. (7), then, from Eq. (8), we must have: Pn+1/Pn = �n/µn+1 . 
Using this relation and the Kolmogorov equation (7), one obtains the following equation which P̃n(t) must satisfy 
if our basic assumptions about the statistical character of the process are correct:

This equation is somewhat easier to handle numerically than Eq. (7) since we have only µn and �n with the same 
n on the right-hand-side. We can check now, if the P̃n(t) we obtain from our numerical calculations indeed satisfy 
equation Eq. (21) with some coefficients µ and � . A straightforward way to proceed is to use a least-squares fit, 
taking as an input the computed values of P̃n(t) and their derivatives, and using Eq. (21) as the fitting expression. 
More specifically, we form the functional:

(20)�fN (t)|p̂z |fN−1(t)� = a(t)Pn(t)
�fN (t)|p̂z |fN−1(t)�

�fN (t)|fN (t)�
+ b(t)Pn+1(t)

�fN (t)|p̂z |fN−1(t)�
�fN−1(t)|fN−1(t)�

,

(21)dP̃n(t)

dt
= µnP̃n−1(t)+ �nP̃n+1(t)− (�n + µn)P̃n(t) .

Figure 5.  (Color online) Results of the fit based on the Eq. (22) for Ṗn(t)/Pn for n = 17 and n = 18 . Dashed 
vertical lines indicate the boundaries of the interval (t1, t2) on which the fitting procedure was applied.
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where the values of Pn and its derivative are computed on the interval (t1, t2) , and we seek the minimum of the 
functional (22) with respect to variations of the parameters µn,�n . The results of this procedure for a particular 
field strength of 0.08 a.u. and particular values of t1 , t2 defining the interval on which the fitting procedure is 
applied, are shown in Fig. 5 for n = 17 and n = 18 (which are the values of n for which the distribution of the 
absorbed photons have a maximum for this intensity, as Fig. 1 shows). One can see that the fit based on Eq. (22) 
reproduces the correct behavior of the derivative dP̃n(t)dt  fairly well. That this fact is not entirely trivial can be seen 
from Fig. 6, where we show the functions P̃n(t) appearing on the right-hand-side of Eq. (21) for n = 18 . If the 
functions P̃n(t) were simple (e.g., monotonic) functions of time, the success of the fitting procedure (22) could 
be regarded as a mere coincidence. This is not the fact, however. As Fig. 6 shows, the functions P̃n(t) are rather 
complicated functions of time. Even more important, perhaps, is the fact that, to obtain the results shown in 
Fig. 5, we used the interval (t1, t2) at the end of the pulse. As one can see form the Figure, the fitting expression 
(22) with the coefficients µn,�n obtained for this interval proves relatively accurate even for t-values lying well 
outside the interval (t1, t2) . This, in our opinion, shows that the fitting formula (22) indeed captures essential 
features of the behavior of the diagonal matrix elements of the reduced photon density matrix.

We can also see that Eq. (21) approximately describes ionization dynamics by converting the difference equa-
tion into a differential one. Let us consider the function P̃(n, t) , which for integer n coincides with P̃n(t) . Then, 
from Eq. (21), one can obtain a partial differential equation that P̃n(t) should approximately satisfy:

A consequence of this equation is that the ratio ∂P̃(n,t)
∂t /

∂P̃(n,t)
∂n  is a function of n only. Fig. 7 shows lines of constant 

elevation of the function h(t, n) = arctan
{

∂P̃(n,t)
∂t /

∂P̃(n,t)
∂n

}

 in the (t, n)− plane (we use arctangent of the ratio to 

make h(t, n) vary within finite limits). If Eq. (23) is approximately valid, the lines of constant elevation of h(t, n) 
should be the lines of constant n. This is indeed approximately the case, as can be seen from Fig. 7. It shows that 
lines of constant elevation of h(t, n) are indeed lines n ≈ const everywhere in the (n, t)-plane apart from some 
regions, which are in fact the neighborhoods of points where ∂P̃(n,t)

∂n  has zeros. When deriving Eq. (23), we 
approximated finite differences with first-order partial derivatives. This approximation fails in the vicinity of 

zeros of ∂P̃(n,t)
∂n  . Therefore, the deviation of the lines of the constant elevation from n ≈ const in the vicinity of 

zeros of ∂P̃(n,t)
∂n  is to be expected. We believe, therefore, that Fig. 7 provides good evidence in favor of the approxi-

mate validity of Eq. (23). Assuming that this equation is valid, we can retrace the steps we used to derive it and 
obtain the Kolmogorov equation Eq. (7) for the diagonal elements of the reduced photon density matrix.
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Figure 7.  (Color online) Lines of constant elevation for the function h(t, n) = arctan
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