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Dicke and Fano‑Andreev reflections 
in a triple quantum‑dot system
A. González I.1*, M. Pacheco1,3, A. M. Calle1,3, E. C. Siqueira2,3 & P. A. Orellana1*

This article studies quantum interference effects and their influence on the electronic transport 
through a parallel triple quantum‑dot system coupled to normal and superconducting leads in the 
linear response and non‑equilibrium regime. We model the system by a triple impurity Anderson 
Hamiltonian including the Coulomb intra‑dot correlations in all quantum‑dots. Using the non‑
equilibrium Green’s function formalism, we calculate the Andreev conductance and the transmittance 
for energies within the superconductor gap. Our results show that the Andreev reflection spectra, both 
in the presence and absence of Coulomb interaction, reveal Fano and Dicke‑like resonances in analogy 
to the Fano and Dicke effects in atomic physics. As one of the main results, we obtain that the charge 
shows abrupt changes due to the Dicke effect.

Electron transport through multiple quantum dots systems exhibits exciting interference effects such as  Fano1–7 
and Aharonov-Bohm8–12. The interference phenomenon, which resembles the well-known Dicke resonance in 
atomic physics, appears to be of particular  importance13. It manifests itself by a narrow (subradiant) and a broad 
(superradiant) line-shape, spontaneously emitted by closely linked atoms, separated by a distance smaller than 
the wavelength of the emitted  light14. In the electronic case, the decay rates (level broadening) are produced by 
the couplings between localized levels and the conduction channel, and the proximity and effective couplings 
give rise to fast (super-tunneling) and slow (sub-tunneling)  modes15.

The presence of the Dicke effect has been predicted theoretically and experimentally in different nanoscopic 
 systems16–24. On the other hand, Fano effect is another quantum interference phenomena that has been studied 
in quantum transport for some time. This effect is due to the quantum interference from localized states and 
continuum states. It yields characteristic asymmetric Fano lineshape, characterized by the Fano factor q, which 
is a measure of the coupling strength between the continuum and the localized state.

The electronic transport through quantum dots (QDs), double quantum dots (DQDs) and triple quantum 
dots (TQDs) coupled to normal/ferromagnetic and superconductor leads, has been studied  recently25–30. The 
Cooper  pairs31 transport, along with interference effects among electrons and holes, gives rise to novel and 
interesting  phenomena32,33. Within this context, several features of the Dicke effect have been considered under 
the presence of superconductor correlations. In particular, it has been found that the Dicke effect occurs in the 
Andreev conductance spectrum by modulating the interdot coupling and the side-dot  levels34,35. A description 
of the relationship between the induced electron pairing and the Dicke effect has been  studied36 by focusing 
specifically on how the electron pairing and correlation effects are affected by the side-attached quantum dots, 
ranging from the interferometric to the molecular limits. However, a detailed description of the interplay between 
Dicke effects and the charging effect induced by the Coulomb intra-dot correlations, is still missing.

In this paper, we present an investigation of the influence of the Dicke and Fano effects on electronic trans-
port through a coupled triple quantum dot system coupled to normal and superconducting leads in a linear and 
non-linear regime.

In particular, we study the interplay between the proximity effect due to the superconducting lead and the 
conjunction of two phenomena: Dicke and Fano-Andreev reflections. We shall focus on the electronic properties 
of TQDs within the regime of low temperatures and sub-gap energies (eV ≪ �) , where the electronic transport is 
mainly carried by Andreev reflection (AR). We consider Coulomb correlations in all the quantum-dots and study 
their influence on the electronic conductance. The inter-dot Coulomb interaction is assumed to be much smaller 
than the corresponding intra-dot interaction and, in consequence, is omitted. Transport characteristics, such as 
the Andreev conductance and the electrical current of the system at the low-temperature limit, are derived using 
the non-equilibrium Green function method, in the linear and non-linear response regime. We use the Hubbard 
I  approximation37 to obtain the relevant Green’s functions from the equations of motion. Our results show that 
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the Andreev reflection spectra, both in the presence and absence of Coulomb interaction, reveal Dicke and Fano-
like resonances in analogy to their counterpart effects in atomic physics. As one of the main effects, we obtain 
that the charge shows abrupt changes due to the Dicke effect, which has not been shown in previous reports.

The paper is organized as follows. “Results” introduces the model and describes the general background of 
the transport properties in the TQD system. Next, “Summary” presents the corresponding numerical results in 
the equilibrium and non-equilibrium regime for both non-interacting and interacting cases. Finally, “Appendix” 
closes with a summary and general conclusions.

Results
Model
The system under consideration consists of a single-level central quantum dot (QD2) attached to one normal 
metallic and one superconducting lead and two side quantum dots (QD1 and QD3) as shown schematically in 
Fig. 1. The following Hamiltonian models the system (N-TQD-S):

The first term is the Hamiltonian for the normal electrode and it is given by:

where c†kNσ ( ckNσ ) is the electron creation (annihilation) operator of an electron with spin σ and energy ǫkNσ in 
the normal electrode.

The second term stands for the BCS  Hamiltonian31 of the superconducting (right) lead and reads:

where c†kSσ ( ckSσ ) is the electron creation (annihilation) operator of an electron with spin σ and energy ǫkS in the 
superconducting electrode, and � denotes the superconducting energy gap.

The third term is the Hamiltonian of three coupled QDs, given by

where d†mσ ( dmσ ) is the electron creation (annihilation) operator of an electron with spin σ and energy ǫdm in the 
m-th quantum dot with m = 1, 2, 3 . We assume that each quantum dot has only a single-electron spin-degenerate 
level, with ǫdm↑ = ǫdm↓ ; Um is the strength of the Coulomb interaction in the m-th quantum dot while tj2(j = 1, 3) 
stands for the interdot coupling parameter.

The last term in Eq. (1) describes tunneling of electrons between the leads (N, S) and the central quantum 
dot (QD2) :

where Vkβσ (β = N , S) is the tunneling matrix element between the central QD2 and the electrode β . In the wide-
band limit approximation, one can introduce the coupling constants with the leads: Ŵβ = 2π

∑

k |Vkβ |2δ(ω − ǫ
β

k ).
The retarded Green’s function Gr

σ in the generalized 6× 6 Nambu representation is obtained from the Dyson 
equation:

(1)H = HN +HS +HTQD +HT .

(2)HN =
∑

k

∑

σ

ǫkNσ c
†
kNσ ckNσ ,

(3)HS =
∑

k

∑

σ

ǫkSc
†
kSσ ckSσ +

∑

k

(�∗ckS↓c−kS↑ +�c†−kS↑c
†
kS↓),

(4)HTQD =
∑

m,σ

ǫdm,σ d
†
m,σ dm,σ +

∑

σ

∑

j=1,3

[

tj2d
†
2σ djσ +H .c

]

+
∑

m

Umnmσnmσ̄ ,

(5)HT =
∑

kσ

∑

β=N ,S

(Vkβσ c
†
kβσ d2σ +H .c),

Figure 1.  A sketch of triple-QD system coupled to normal metal and superconducting leads.
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where gr denotes the retarded Green’s function of the triple quantum dot isolated from the leads being written as:

where grm matrices are defined as:

with m = 1, 2, 3 . The interdot coupling matrix t is given by:

The retarded self-energy of the leads, in the wide-band approximation, acquires the following form:

where

and

where ρs denotes the dimensionless modified BCS density of states in the superconductor given by:

We have adopted the equation of motion method and the Hubbard-I decoupling scheme to find the Green’s 
functions. The general expression for the charge current through a barrier from the normal lead to the QDs can 
be calculated in terms of non-equilibrium Green’s function Gr,a . The charge current I flowing in a biased system 
from left to right can be calculated from the following expression:

with N =
∑

kσ c†kσ ckσ.
By using the equation of motion (EOM), we can obtain

where Gr,<(ω) is the Fourier transform of retarded and lesser Green’s function of the system, and �<,a
N  is the 

Fourier transform of lesser, advanced self-energy of the normal lead.
In order to obtain the lesser Green’s function G<

σ (ω) , we use the Keldysh equation

where the lesser self-energy is given by

while fi is the Fermi matrix, given by

(6)Gr = gr + gr�rGr ,

(7)gr =







�

gr1
�−1

t 0

t∗
�

gr2
�−1

t

0 t∗
�

gr3
�−1







−1

,

(8)grm =
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ω − ǫdm
+

nm

ω − ǫdm − Um
0

0
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ω + ǫdm
+

nm
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,

(9)t =
[

−t 0

0 t

]

.

(10)�
r =

[

0 0 0
0 �

r
N +�
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S 0

0 0 0,

]

(11)�
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N = −
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2
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1 0

0 1

]

(12)�
r
S = −
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2
ρs(ω)ŴS

[

1 − �
ω
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1

]

,

(13)ρs(ω) =
|ω|θ(|ω| −�)√

ω2 −�2
− i

ωθ(�− |ω|)√
�2 − ω2

.

(14)I = −e

〈

dN

dt

〉

(15)I =
2e

�

∑

∫

dω [Gr
2(ω)�

<
N (ω)+ G<

2 (ω)�
a
N (ω)+H .c.](11),

(16)G< = G
r(ω)�<Ga(ω),

(17)�
<(ω) = �

<
N +�

<
S =

[

0 0 0
0 fN (ω)ŴN + fS(ω)ŴS 0
0 0 0,

]

(18)fi =
[

fi 0

0 f̄i

]
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with the Fermi functions for electrons and holes defined as fi = f (ω − Vi) and f̄i = f (ω + Vi) , respectively. For 
i = N and fi = f̄i = f (ω) for i = S . Also,

and

denotes the couplings constants in the matrix form of the leads, while ρ̄s denotes the density of states in the 
superconductor given by

Finally, by substituting the matrix elements previously calculated, the current in the sub-gap regime ( e|V | < � ), 
i.e., the Andreev current in the limit of low temperature, can be written as

where V is the bias voltage, and TA is the Andreev transmittance, given by:

It is important to note that the Coulomb correlations make TA dependent on the average occupations of the 
QDs. For the non-magnetic case, the averaged occupation number does not depend on spin, which allows us 
to set for each QD: �ni,σ � = �ni� , i = 1, 2, 3 . These occupation numbers are obtained by solving the following 
system of equations: 

As one may notice by inspecting Eqs. (24a), (24b) and (24c), they form a system of equations for 〈n1〉 , 〈n2〉 
and 〈n3〉 which must be solved in a self-consistent way.

The LDOS of the quantum dots come from of matrix elements of the retarded Green’s function matrix (elec-
tron components in Nambu space). The LDOS for dots 1, 2 and 3 are, respectively: 

Then, the total DOS of the triple quantum-dot is given by the addition of LDOS of each QD:

Results
We now discuss the transport properties within the Andreev regime. Within this regime, the range for the Fermi 
energy and QD levels is restricted in the range of the superconductor gap, � . We denoted r as the ratio of leads 
coupling ŴS/ŴN and assumed that the quantum-dot levels are spin degenerate, ǫdi,σ = ǫdi (for i = 1, 2, 3 ). In 
addition, we have introduced the parameter η , which describes the separation of the levels ǫd1 and ǫd3 from the 
level ǫd2 = ǫd . We have supposed that the energy levels of the side dots (QD1 and QD3) are located symmetrically 
with respect to the energy level of the central dot (QD2), i.e. ǫd1 = ǫd + η and ǫd3 = ǫd − η . Furthermore, unless 
stated otherwise, we set the coupling between the two side dots to the central dot to be symmetric ( t12 = t32 = t 
), and we consider two regimes: interferometric regime (when t is very small in respect to Ŵ ) and the molecular 
regime (when t is very near to the value of Ŵ ). In the linear response regime, the chemical potentials of the leads 

(19)ŴN =
[

ŴN 0

0 ŴN

]

(20)ŴS = ρ̄s(ω)ŴS

[

1 − �
ω

−�
ω

1

]

(21)ρ̄s(ω) =
|ω|θ(|ω| −�)√

ω2 −�2
.

(22)IA =
2e

h

∫ e V

−e V
dω TA(ω),

(23)TA = Ŵ2
N |Gr

2,12(ω)|2.

(24a)�n1� = − i

∫

dω

2π
G<
1,11[ω, �n1�, �n2�, �n3�],

(24b)�n2� = − i

∫

dω

2π
G<
2,11[ω, �n1�, �n2�, �n3�],

(24c)�n3� = − i

∫

dω

2π
G<
3,11[ω, �n1�, �n2�, �n3�].

(25a)ρ1(ω) =−
1

π
Im(Gr

1,11[ω, �n1�, �n2�, �n3�]),

(25b)ρ2(ω) =−
1

π
Im(Gr

2,11[ω, �n1�, �n2�, �n3�]),

(25c)ρ3(ω) =−
1

π
Im(Gr

3,11[ω, �n1�, �n2�, �n3�]).

(26)ρ(ω) = ρ1(ω)+ ρ2(ω)+ ρ3(ω).
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are set to zero, µN = µS = 0 . On the other side, in the non-linear regime we set the chemical potential of the 
leads as µN = eV  and µS = 0 , therefore, µN − µS = eV  , where V is the applied voltage. In addition, we assume 
in all our calculations that kBτ = 0 , where τ is the temperature. Finally, we assume that the intradot Coulomb 
interaction is equal at all quantum dots, i.e., Um = U  , for m = 1, 2, 3 . In what follows, we rename ŴN = Ŵ.

Noninteracting case. Let us first consider the limit where the Coulomb interaction is neglected, Ui = 0 
for i = 1, 2, 3.

In Fig. 2 we show the differential conductance as a function of the bias voltage for different values of 
r = ŴS/ŴN , by choosing a small t (interferometric regime) and an even smaller value of η in order to investigate 
the Dicke resonances. We can observe that when r does not exceed a certain critical value, the differential con-
ductance exhibits one very narrow central peak and two broader and smaller side peaks symmetrically located 
with respect to the zero energy. However, for higher values of r, we observe that dI/dV presents six peaks in 
this interval of energy. In other words, these peaks split as r increases from a specific critical value (see inset in 
Fig. 2). Also, we note from Fig. 3 that the spacing of these peaks increases with the value of r when eV is very near 
zero and conversely, they move closer when the range of eV increases. In order to have a better understanding 
of Fig. 2, we will analyze the effect of r and η on the differential conductance. For that purpose we will study the 
expression for TA given by Eq. (23), in the limit of � → ∞ with ω̃ = ω − ǫd , for which we obtain,

with

From Eq. (27) we can deduce that the roots of TA are ω̃ = ±η . In the case of symmetric coupling with the leads 
( ŴS = Ŵ ), the Andreev transmittance is given by the expression:

(27)TA =
r2Ŵ4(ω̃2 − η2)2

S

S = 4Ŵ2ω̃2
(

ω̃2 − η2 − 2t2
)2 +

(

4ω̃2
(

ω̃2 − η2 − 2t2
)2 −

(

1+ r2
)

Ŵ2
(

ω̃2 − η2
)2
)2

4(ω̃2 − η2)2
.

Figure 2.  Differential conductance in the noninteracting case, calculated as a function of the bias voltage 
when ǫd = 0 and indicated values of r: r = 0.5(red) , r = 1.0(blue) , r = 1.5(green) , r = 2.0(magenta) . Fixed 
parameters: η = 0.001Ŵ , t = 0.1Ŵ . (b) Closeup of central peak presented in panel (a). (c) Closeup of central 
peak presented in panel (b).
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Equation (28) shows that in the transmittance function there are resonant peaks appearing at 
ω̃ = ±

√

η2 + 2t2  , ω̃ = 0 , and two Fano antiresonances located at ω̃ = ±η . The narrow central peak in the 
transmittance may be considered as a long-lived (subradiant) state, while the other two peaks correspond to 
short-lived (superradiant) states. Since the central peak is located at zero, the width of the central peak is defined 
by the value of η . For small values of η , the width of the central peak becomes much narrower. With η increas-
ing, the width of the central line also increases, while the two satellite peaks become broader with η . This effect 
resembles the Dicke effect in atomic physics, where a strong narrow emission line appears when the distance 
between atoms is smaller than the Fermi wavelength of the corresponding radiation. In the present case, the 
difference of energy between the levels, η , plays the role of the distance between atoms.

On the other hand, when we consider an asymmetric coupling to the leads, for instance, r = 2 , the Andreev 
transmittance function is given by Eq. (29) :

where α = (ω̃2−η2)

(ω̃2−η2−2t2)
This function presents two Fano antiresonances when α = 0 , that is to say at ω̃ = ±η , and six peaks are sym-

metrically located on either side of the zero-energy at ω = ±
√
3
2
α and ω = ±

√
3
2
α . To gain a more clear physical 

insight into the dependence of TA on η , we analyze the limit η = 0 . The Hamiltonian HTQD can be diagonalized 
leading to three effective levels ω1 = ǫd +

√
2t2 , and ω2 = ǫd and ω3 = −

√
2t2 . Since the system of three one-

level QDs has three molecular-like states (denoted by index 1, 2, and 3 for increasing energy), one could also 
expect three peaks in the conductance. However, the matrix elements of the coupling between the molecular 
state |2� and the left and right leads vanish, that is, the molecular state |2� decouples from the leads when η = 0 
and the central peak disappears. The Andreev transmittance shows only two peaks at the positions ω̃ = ±

√
2t2 

and it is zero at ω̃ = 0 . On the other side, when η  = 0 , the molecular-like levels ω1 and ω3 locate symmetrically 
on both sides of µR and the AR conductance reveals a well-defined central peak due to two-level Andreev reflec-
tion, where the conventional resonant tunneling is forbidden due to ωi(i = 1, 3) in the gap. On other hand, when 
ωi(i = 1, 3) aligns with the chemical potential of the superconducting lead, µR = 0 , i.e., ωi(i = 1, 3) = 0 two 
side-peaks appear in ω̃ = ±

√

η2 + 2t2 due to the Andreev reflection (AR) through a single level. When this 
happens, an electron coming from the left lead with the energy ǫd can tunnel into the i-state of the QD, leaving a 
hole propagating back to the i-state in the QD and the creation of a Cooper pair in the right superconducting lead.

Interacting case. Andreev conductance vs gate voltage. In this section, we study the impact of the elec-
tronic charging induced by intradot Coulomb interaction on the transport properties of the TQD system in the 

(28)TA =
Ŵ4(ω̃2 − η2)4

Ŵ4
[

ω̃2 − η2
]4 + 4ω̃4

[

(ω̃2 − η2 − 2t2
]4
.

(29)TA =
α4Ŵ4

[

ω̃ −
√
3Ŵ
2

α

]2[

ω̃ +
√
3Ŵ
2

α

]2

+ α4Ŵ4

,

Figure 3.  Density plot of differential conductance vs r and eV in the noninteracting case, when ǫd = 0Ŵ in the 
applied bias range between (a) −0.1Ŵ and 0.1Ŵ (b) Closeup of the central peak in the figure (a), in the applied 
bias range between −0.001Ŵ and 0.001Ŵ.
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linear regime. Figures 4 and 5 display the occupation and linear conductance versus the QD energy level ǫd for 
the interferometric regime ( t, η ≪ Ŵ ). We can observe that the Coulomb interaction splits the Dicke spectrum 
into two sets symmetric with respect to the electron-hole symmetry point ǫd = U/2 , and their centers are lo-
cated approximately at ǫd = 0 and −U . The graph of DOS in Fig. 5 confirms this behavior. Besides, four Fano 
antiresonances in the conductance appear at the electron-hole symmetry due to the destructive quantum inter-
ference. Additionally, we can observe the occupation numbers’ features to determine the corresponding linear 
conductance behavior. It is remarkable that the occupation number presents a staircase-like form, with abrupt 
changes around ǫd = 0 and ǫd = −U . This behavior of the charge is due to the Dicke-like spectrum, as we can 
see in the DOS (Fig. 6), in which a structure of levels with super-tunneling (broad states) and sub-tunneling 
states (sharp states) develops around ω = 0 and ω = U . As εd or εd + U fall slightly below the Fermi energy, 
the sharp sub-tunneling state completely enters the Fermi sea, and consequently, the charge changes abruptly.

The DOS in Fig. 7 may be written roughly as:

(30)ρ(ω) ≈
1

π

∑

α

( Ŵ+
(ω − eα)2 + Ŵ2

+
+

Ŵ−
(ω − eα)2 + Ŵ2

−

)

.

Figure 4.  Electronic occupation and linear conductance of a TQD system calculated as a function of the dot’s 
level energy for (a) r = 1 and (b) r = 2. Fixed parameters: U = 1Ŵ , t = 0.1Ŵ , and η = 0.001Ŵ.

Figure 5.  Electronic occupation and linear conductance of a TQD system calculated as a function of the dot’s 
level energy around ω = 0Ŵ , for (a) r = 1 and (b) r = 2. Fixed parameters: U = 1Ŵ , t = 0.1Ŵ , and η = 0.001Ŵ.
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In the limit when η → 0 , the second term in the sum tends to a Dirac-δ function. Then, by integrating the above 
equation at Fermi energy and zero temperature, we obtain:

From Eq. (31), we can understand the charge behavior as a function of the energy level εd . As εd decreases and 
falls below the Fermi energy µ , the charge jumps abruptly in steps of 1/2. Besides, since each of these steps in 
the occupation graph reveals electronic tunneling, three more peaks in the linear conductance plot appear. Each 
step in electron occupation represents an electron filling from the left normal lead, which occurs when ǫdi or 

(31)ndi(εd) ≈
1

2
θ(µ− εd)+

1

2
θ(µ− εd − U).

Figure 6.  Total DOS in the interacting case, calculated as a function of the energy and r for indicated values 
of rate of coupling: r = 0 (black), r = 0.5 (red), r = 1.0 (blue), r = 1.5 (green), r = 2.0 (magenta). Fixed 
parameters: U = 1Ŵ , ǫd = 0 , η = 0.001Ŵ , t = 0.1Ŵ.

Figure 7.  Total DOS calculated as a function of the energy in the interacting case ( U = 1Ŵ ), when ǫd = 0 is 
in a range of energy very near (a) ω = 0Ŵ and (b) ω = 1Ŵ , and the indicated values of the rate of coupling: 
r = 0 (black), r = 0.5 (red), r = 1.0 (blue), r = 1.5 (green), r = 2.0 (magenta). Fixed parameters: η = 0.001Ŵ , 
t = 0.1Ŵ.
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ǫdi + U  lines up with µN = µS . From Eq. (8) one can understand that the intra-level interaction results in an 
energy level splitting, in the simpler case with only one central QD ( t = 0 ) : from the original one single-electron 
spin-degenerate level ǫd splitting into two spin-degenerate levels, ǫd with the probability 1− �n� and (ǫd + U) 
with the probability 〈n〉 . Of particular interest are the sharp peaks seen at both ǫd = 0 and ǫd = −U  . At ǫd = 0 , 
ǫd lines up with the Fermi surface µ (here we have set µN = µS = µ = 0 ), so 〈n〉 jumps from 0 to 0.5, describ-
ing the first electron filling; then each of both levels, ǫd and ǫd + U  , has 50% probability of being occupied. At 
ǫd = −Ŵ , ǫd + U  lines up with the Fermi surface µ , and 〈n〉 jumps from 0.5 to 1, describing the second electron 
filling; then level ǫd + U  has 100% probability of being occupied while level ǫd has 0% probability.

Additionally, Fig. 5 displays a zoom of the Andreev conductance vs the energy level for r = 1 and r = 2 
around ǫd = 0 . We can see that as r increases, the height of the peaks decreases and, on the contrary, their width 
increases, in the same way as in the non-interacting case. Besides, as we can see in this figure, for small values of 
η , the central peak’s width becomes sharper. Moreover, the insets in the above figure show the details of the sharp 
resonances. This structure of resonances resembles the Dicke resonance in the optical emission spectra of atoms.

Differential Andreev conductance vs bias voltage. Next, we investigate the effect of the electronic charging 
induced by intra-dot Coulomb interaction on the AR process within the non-equilibrium regime. Figure 8 dis-
plays the differential conductance as a function of the bias voltage. The central peak, appearing near eV = 0 , 
is split due to the proximity effect to the superconductor (Andreev reflection). When r = 2 in this figure, one 
again observes the splitting of the central peak, but now the separation of each of these peaks from the eV = 0 
is no longer symmetrical as in the non-interacting case. In addition, if we choose ǫd = 0 the height of the peaks 
decreases as r increases, similarly to the non-interacting case (c.f. Fig. 2b), but in Fig. 8 we chose to plot dI/dV 
the value of ǫd in which the differential conductance is maximum, so that effect is not observable.

The shape of the differential conductance may be understood by noticing the quantum interference among 
the electron trajectories entering and leaving the side-attached quantum dots. These interferences give rise to 
the so-called Fano-Andreev  antiresonances5–7. On the other hand, the states of two side-attached quantum dots 
interfere with each other, giving rise to a Dicke-like effect.

The equation for dI/dV may be written as a superposition of two Fano and Breit–Wigner like line-shapes:

where ξ± = (V ± q±ŴS±)/ŴS± , ε = (V + iŴ−)/Ŵ− , and Ŵ− = η2/ŴN . It is worth noting that the last term 
in the above equation does not contain adjustable parameters. The above equation is explained in Fig. 9, where 
the first terms take into account the destructive interference given by the Fano-Andreev effect. The last term 
represents a process equivalent to the transmission through a double quantum-dot in a series configuration with 
a coupling given by rη . The fitting of the above equation is shown in Fig. 8 (red line). Similar behavior of the dif-
ferential conductance can be found in the a quantum dot coupled to a topological superconductor nanowire. In 
this case, tuning the non-local gate produce the hybridization of the two topological states in the superconductor 
producing a split of the zero bias peak in the differential  conductance38.

(32)
dI

dV
≈

1

1+ q2+

(ξ+ + q+)2

ξ 2+ + 1
+

1

1+ q2−

(ξ− + q−)2

ξ 2− + 1
+

4r2

|ε2 − r2|2
,

Figure 8.  (a) The differential conductance (black line) as a function of the bias voltage of a TQD system and 
the fitting (red line) by the sum of the Fano and BW functions when ǫd = 0.000075Ŵ r = 2 . (b) Differential 
conductance (solid line) calculated as a function of the bias voltage of a TQD system and the proposed fitting 
(dashed line) when ǫd = −1.000075Ŵ and r = 2 . The zoom of both figures shows the differential conductance 
and the fitting proposed by the function BW in the low energy limit. Fixed parameters: U = 1Ŵ , t = 0.1Ŵ , 
η = 0.001Ŵ.
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Summary
In summary, we have investigated the electronic transport through a triple quantum-dot device coupled to 
normal and superconductor leads. The main focus was to study the Andreev features appearing in both the dif-
ferential conductance and QD occupations under Coulomb correlations in the QDs. Within the interferometric 
regime (small t), we have studied the impact on the sub-gap transport properties by varying the coupling ratio 
with the leads, r, when the level spacing between two side-QDs and the central QD is small η ≪ 1 . We found 
that the conductance, both in the interacting and in the non-interacting case, shows the presence Fano-Andreev 
reflactions and a sharp central peak resembling the Dicke resonance in the optical emission spectra of atoms, 
in which the role of the distance between atoms is played by the space in energy levels η . In particular, in the 
interacting case we show a splitting due to the Andreev reflection of the subradiant and superradiant quasipar-
ticles states whenever the coupling ratio exceeds the certain critical value. On other hand, we explain the shape 
of the differential conductance near of zero-bias voltage as a result of the two equivalent quantum interference 
processes: the first, among the electron trajectories entering and leaving the side-attached quantum dots, the 
one that giving rise, to the so-called Fano-Andreev antiresonances, and the second, the interference between the 
states of two side-attached quantum dots, the one that giving rise to a Dicke-like effect.

Additionally, we found that when we consider the intradot interaction, the Dicke spectrum split into two 
symmetric sets equidistant to the electron-hole symmetry point. On the other hand, dramatic changes in the 
charge are produced when a subradiant state falls below the Fermi energy. This property could be used to store 
charge in quantum dots.

Appendix
T
A

 in the limit � ≫ ǫ. Here we present the Andreev transmittance for a TQD between normal and super-
conducting leads in the limit � ≫ ǫ and zero inter-dot tunneling ( t = 0).

with

On other side

where

and

(33)T(ω) =2TA(ω)+ TQ(ω)

(34)TA(ω) =Ŵ2
N (|Gr

12|2)
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Figure 9.  Scheme of the Andreev processes: equivalent path for the Fano-Andreev and Dicke-Andreev 
transmission. The complete process can be divided in two Fano effects and a transmission through equivalent 
quantum-dots in series.
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where �NS = − 1
2
i(ŴN + ŴSρ) is the self-energy of the leads, and

with ǫ1 = ǫd + η and ǫ3 = ǫd − η

If the real part of ρ(ω) is named “a” and his imaginary part “b”, we can write the above equation as:

where

Consequently, we have

Symmetric Coupling ŴN = ŴS. Substituting these expressions in the equation to G12 and considering t  = 0 , 
and ŴN = ŴS = Ŵ at the limit of � ≫ ω we have:

Then, the first maximum occurs when ω = 0 and the two other maxima values of T(ǫ) occur when 
ω = ±

√

η2 + 2t2.

Asymmetric Coupling ŴS = 2Ŵ. Substituting these expressions in the equation to G12 , considering t  = 0 , and 
ŴS = 2Ŵ at the limit of � ≫ ω we have:

In this case because of this functional structure, TA presents six peaks located symmetrically each side of ω = 0 . 
As before when the coupling to the leads was symmetric, the zeros of T(ω) occur when ω = ±η . At the particular 
case t = 0 and η = 0 , we have:

Then, the maximum value of T(ω) occurs close to ω = ±Ŵ:
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Linear and differential conductance in the limit of low temperature. Linear conductance G in the 
sub-gap limit (eV ≪ �) is written as:

If kBτ → 0 then ∂f
∂ω

→ δ(ω − µ) , so that

Consequently, the peaks of TA as a function of the energy ǫ for a fixed value of ǫd are the same for G as a function 
of µ for a fixed value of ǫd . For this reason, as expected, the graph of G in function of the Fermi energy µ , in the 
case of a quantum dot asymmetric coupling with the leads, presents two peaks as the case of TA as a function 
of the energy.

dI/dV vs T
A

. The general form for the electronic current in the sub-gap limit (eV ≪ �) is

In the limit of low temperature kBτ → 0

Then

Consequently, for a fixed value of ǫd , the peaks of TA as a function of eV are the same as ∂I/∂V  in function of eV.
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