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Climate change as a driver 
of food insecurity in the 2007 
Lesotho‑South Africa drought
Jasper Verschuur1*, Sihan Li1,2, Piotr Wolski3 & Friederike E. L. Otto1

Climate‑induced food production shocks, like droughts, can cause food shortages and price spikes, 
leading to food insecurity. In 2007, a synchronous crop failure in Lesotho and South Africa—Lesotho’s 
sole trading partner—led to a period of severe food insecurity in Lesotho. Here, we use extreme event 
attribution to assess the role of climate change in exacerbating this drought, going on to evaluate 
sensitivity of synchronous crop failures to climate change and its implications for food security 
in Lesotho. Climate change was found to be a critical driver that led to the 2007 crisis in Lesotho, 
aggravating an ongoing decline in food production in the country. We show how a fragile agricultural 
system in combination with a large trade‑dependency on a climatically connected trading partner can 
lead to a nonlinear response to climate change, which is essential information for building a climate‑
resilient food‑supply system now and in the future.

Globally, two billion people are subject to moderate to severe food  insecurity1. Climate variability accounts for 
approximately 30% of the variability in global agricultural  yields2, in turn increasing the uncertainty of food 
production and prices across various geographical scales, threatening food  security3,4,5,6. Climate-induced risks 
to food insecurity are driven by the exposure to climate extremes (e.g. extreme droughts) and the vulnerability 
and response of the food-supply system to production  shocks6–8. The impacts of reduced production and price 
spikes are often felt disproportionately by poor consumers, who spend a larger share of their household budget 
on staple  foods5, potentially leading to them foregoing consumption or being pushed into  poverty9.

Previous work has identified the geographical distribution of climate impacts on agricultural  yields4,6,10,11. For 
adaptation purposes, however, it is important to evaluate how climate change (CC) compares to other drivers of 
food insecurity across various temporal and spatial scales. In particular, characteristics of local and regional food 
systems, such as the presence of irrigation, trade dependencies, crop diversity and socio-demographic factors 
will determine to what extent climate shocks will ultimately affect food security in a certain region. Understand-
ing the influence of CC in past events that caused food insecurities can help identify the response of the food 
system to CC and shape adaptation strategies in countries more vulnerable to climate-induced food insecurities.

Here, we lay out a methodology in which an extreme event attribution (EEA)12,13 approach is combined with 
an exploratory modelling framework to extend the evaluation of the role of CC from hazard to food security. We 
apply this methodology to the 2007 drought in Lesotho and South Africa that led to a synchronous maize produc-
tion failure, requiring emergency assistance for 400,000 people in Lesotho (~ 20% population)14. We illustrate 
that Lesotho’s vulnerability to food insecurity shows a nonlinear response to CC, which is essential information 
to consider in building a climate-resilient food-supply system now and in the future.

The 2007 drought
We focus our analysis on maize production in both countries, as maize is the main staple food in Lesotho, con-
stituting 77% of agricultural production and 80% of the rural  diet14. During normal years, around 30% of the 
domestic demand for maize is satisfied by national production, with the remaining being imported duty-free 
from South Africa through the Southern African Customs Union free trading zone.

The 2007 drought was characterised by anomalously low precipitation (compared to 1979–2018) over the 
eastern part of South Africa and Lesotho (Fig. 1a). during the agricultural growing season (January–Febru-
ary–March, JFM)14,15. Although temperature was also anomalously high (1 in 5-year event), we focus on JFM 
total precipitation anomalies as the dominant climatic driver of maize yield during this event given the severity of 
the precipitation anomaly and the predominant rainfed agriculture in this  region14–16. We averaged precipitation 
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data over Lesotho and the main maize growing region of South Africa (boxes in Fig. 1a). From reanalysis data 
 (ERA517) over 1979–2018 (see “Methods”), we estimate the 2007 event to be the most extreme JFM total pre-
cipitation deficit on record in both countries (Fig. 1b,c), resulting in the most severe co-occurring drought on 
record (Fig. S1a). Figure 1d and e show the maize production time series (FAOSTAT 18) in both countries, and 
Fig. 1g shows the maize deficit (minimum maize demand for sufficient calorie intake minus domestic produc-
tion) for Lesotho. Lesotho has seen a large, nonlinear, trend in maize deficit over the last decades (Fig. 1g, black 
line), driven by increasing population, soil erosion, limited agricultural expansion (only 13% of the country is 
arable land), poor land-use practices, decreasing soil fertility, and the high number of HIV/AIDS infections 
that reduces the labour  supply14,19–21. This has increased the reliance on South Africa for maize imports to meet 
its national cereal requirement. Precipitation is highly correlated between South Africa and Lesotho (ρ = 0.94, 
1979–2018), making production anomalies in both countries also correlated (ρ = 0.38, 1981–2013), although this 
has changed over the years (S1 and Fig. S1b). The fact that Lesotho and South Africa are in close proximity to 
each other, and hence subject to the same meteorological conditions and possible future changes in the climate 
system, makes synchronous maize failures likely to happen in this region now and continuously in the future.

In 2007, the maize production was reduced by 40% in Lesotho compared to 2006, whereas in South Africa, 
2007 was the second consecutive production failure, with both 2006 and 2007 witnessing production of 31% 
below average (over the 1981–2013 period). This reduced the maize available for export to Lesotho (~ 2% of 
production in South Africa), resulting in a 35,500 tonnes of maize shortage in  Lesotho14. The production of 
the two substitute crops, sorghum (20% of cropped area) and wheat (10% of cropped area), also decreased by 
42% and 4%, respectively, compared to  200614,15, limiting the dietary substitution to alternative cereal crops. 
Although sorghum is a more drought tolerant  crop14,15,22, farmers still decide to plant maize during dry years 
because of dietary preferences for maize and because markets for sorghum are less well  developed19. On top of 
the production loss, the maize price in South Africa, which drives maize prices and hence purchasing power in 
Lesotho, increased by 41% compared to 2006 and 100% compared to 2005 (Fig. 1f). With the vast majority of 
small scale farmers in Lesotho (~ 60% population) not being self-sufficient, many households are vulnerable to 
price spikes as they rely on the grain markets to buy maize. In particular, the poorest households, that spend up 
to 65% of their total expenditure on staple  foods21, experienced disproportionate  impacts14. Overall, the com-
bined shortage and price spike caused imminent food insecurity for 400,000 people in Lesotho, approximately 
20% of the total population.

Figure 1.  Overview of 2007 drought and impacts. (a) Spatial distribution of the JFM precipitation anomaly 
over South Africa (relative to 1979–2018 average) derived from reanalysis  data17, with the boxes indicating 
the areas that the climate data is averaged over. (b) JFM precipitation time series for South Africa with the 
2007 event highlighted in red. (c) Same as (b) but for Lesotho. (d) Maize production data from the FAOSTAT 
 database18 with the 2007 event in red. (e) Same as (d) but for Lesotho. (f) Price per tonnes for maize in South 
Africa from FAOSTAT. Note only data from 1991 onwards is available. (g) Maize deficit (minimum maize 
demand for sufficient calorie intake minus domestic production) over time in Lesotho, with the black line 
showing the non-linear trend line over the years, derived using a lowess function. Figure (a) was generated 
using the ‘Basemap’ package (https ://matpl otlib .org/basem ap/index .html) and Python Programming Language 
(version 3.7).

https://matplotlib.org/basemap/index.html
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Influence of climate change. We perform a multi-method and multi-model EEA  analysis13,23 to develop 
a synthesis assessment on the role of CC in the occurrence of the drought event in both countries and the co-
occurrence of it. EEA compares the likelihood of a given extreme weather event occurring in the actual world 
(ACT) as observed with its likelihood of occurrence in a counterfactual world (NAT) without human influence 
on the climate system, the ratio between the two likelihoods being the change in probability, or risk ratio (RR), 
of an event due to CC. We employ a multi-method and multi-model approach to account for both model-related 
uncertainties and uncertainties related to methodological  assumptions23. The RRs for each country’s drought are 
derived using long-term observational data (CRU-TS24) as well as a range of climate models (weather@home25,26, 
HadGEM3-A27, as well as ETH-CAM4 and MIROC5 from the HAPPI  experiment28) (see “Methods”). Moreo-
ver, for the joint probability of occurrence, we use the four climate models with a sufficient number of simula-
tions to approximate the tail-end of the distribution (weather@home, HadGEM3-A, ETH-CAM4, MIROC5). 
The joint probability of the 2007 event in Lesotho and South Africa is derived by analysing the bivariate distribu-
tion of the drought in these two countries.

We estimate that CC made the 2007 drought event 5.36 (10–90%: 1.51–32.50, Fig. S5a) times more likely in 
Lesotho and 4.70 (10–90%: 1.53–26.30, Fig. S5b) times more likely in South Africa. The lower tails of the joint 
exceedance distribution (dry–dry) for the four models are empirically derived and shown in Fig. 2a–d, which 
are based on the joint distribution functions for the ACT and NAT (Fig. 2e–h). A clear shift can be observed for 
three out of four models, and overall the likelihood of occurrence of the synchronous drought event increased 
by a factor 2.14 (10–90%: 1.42–3.16, Fig. S5c) due to CC.

The role of climate change in food insecurity. We then build a probabilistic model using a set of regres-
sion models (see “Methods” for validation) that predicts the production and price anomalies (deviation from 
detrended time series) based on the precipitation anomalies. We combine this with an approximation of export 

Figure 2.  Joint probability plot of the 2007 drought. (a) The lower tail (dry–dry) joint probability plot in the 
weather@home model with red showing the ACT world and blue showing the NAT world without CC. The 
horizontal grey bars indicate the 10–90% uncertainty estimates of the event using bootstrapping, with the black 
marker showing the mean estimate. The tails of the distribution are derived empirically. (b–d) Same as (a) but 
for HadGEM3-A (b), ETH-CAM4 (c) and MIROC5 (d). (e) Joint probability plot, with contour lines derived 
from kernel density estimates, in the weather@home model. The black marker indicates the 2007 event. (f–h) 
Same as (e) but for HadGEM3-A (f), ETH-CAM4 (g) and MIROC5 (h). The uncertainty around the 2007 event 
is only visible for weather@home given the larger uncertainty in this model, whereas for the other models the 
uncertainty is not clearly visible relative to the size of the marker.
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fraction (percentage of export over production in South Africa) from South Africa to Lesotho (see “Methods”), 
which varies from ~ 0.9% during normal years to up to 2% during dry years (e.g. 2007). Food availability (< 0 
shortage, > 0 surplus) is quantified as the difference between Lesotho’s domestic maize deficit and what is avail-
able to import from South Africa. The total imported food value is expressed as the maize deficit in Lesotho and 
the price of maize in South Africa, which is used as a cumulative indicator of the impacts of prices on household 
purchasing power. Using the derived RRs, we can construct many plausible counterfactual scenarios of the food 
security situation without CC which we use to stress-test the system. Stress-testing, referring to exploration of 
the vulnerabilities of a system based on many plausible  scenarios29, is used to evaluate the sensitivities of the 
synchronous maize failures to climate shocks, and its implications for food security in Lesotho.

We sample 50,000 possible scenarios using the probabilistic model. The spread in the model predictions 
includes the uncertainties in estimating maize production based on precipitation and, for the NAT simulations, 
the uncertainties in the fraction of exports from South Africa to Lesotho, which are sampled between observed 
bounds (0.5–2.5%). Figure 3a shows the results of the probabilistic model, together with the range of the dis-
tribution. Our probabilistic model approximates the observed food shortage with a mean of -54,086 tonnes 
(10–90%: − 119,477 to 11,288 tonnes, observed shortage is within the 68th percentile of the ACT distribution). 
The NAT distribution plot (blue) has a mean of 8,583 tonnes (10–90%: − 85,802 to 122.760), indicating that a 
large-scale shortage would have been less likely in a world without anthropogenic CC. For illustrative purposes, 
we contrast the climate-induced effects to the existing chronic trend of increasing food insecurity in Lesotho and 
create a hypothetical maize production time series that does not exhibit a declining production trend (NAT + no 
decline). As can be observed from Fig. 3a, this has a considerably larger effect on the shortage than CC, with a 
mean of 118,846 tonnes (10–90%: 30,153 to 238,991 tonnes). Figure 3b tracks the probability of maize surplus 
for four different ranges of fractions of export (F.E.) from South Africa to Lesotho. The probability of maize 
surplus varies from 9.6 to 87.9% for the NAT simulations and 96.8–100% for the NAT + no decline simulations 
across the difference F.E.. The distributions of the ACT and NAT in the upper left panel of Fig. 3b (under the F.E. 
scenario of 0.5–1.0%) are almost identical, indicating that the anthropogenic CC effect is approximately equal 
to a 1.0–1.5% change in export fraction (compared to the original 2.0% in the ACT). Figure 3b also illustrates 
the large sensitivity of Lesotho’s food shortage to the amount of production available for export to Lesotho from 
South Africa. This sensitivity is nonlinear as a less severe drought leads to less crop losses in both countries, and 
a smaller F.E. need to cover this deficit. Moreover, a less severe drought (less maize loss in Lesotho) also means a 

Figure 3.  Illustrative plot showing the sensitivity of the food security situation in Lesotho to the 2007-like 
drought event. (a) Probability density plots of the availability of maize to cover minimum consumption needs 
using the probabilistic model for the ACT (red) and NAT (blue). The horizontal bars at the top illustrate the 
mean (black marker) and 10–90% uncertainty range of the distribution. The grey distribution plot is the NAT 
result added to a scenario without no trend in maize deficit in Lesotho. (b) A breakdown of plot (a) under four 
different ranges of the fraction of exports (F.E., exports from South Africa to Lesotho over total production 
South Africa) with the numbers in blue and grey representing the probability of having a positive maize 
availability value. (c) The monetary value of maize imported from South Africa to cover minimum consumption 
needs in Lesotho. A negative value indicates that the minimum consumption is satisfied, and the surplus maize 
can be either consumed or sold. (d) The cumulative distribution plot of the household expenditure for 13 groups 
of farming households with varying sizes of farmland operation. The black line is based on the 2009–2010 
Agricultural Census of rural households, and the red and blue lines show the model results for the statistical 
model using the ACT and NAT conditions. The thick line is the mean value and the filled shading the 10–90% 
uncertainty range based on the 50,000 realizations of the model. (e) The fraction of rural households that are 
self-sufficient in meeting their minimum maize requirement for the reference period (2009–2010), compared to 
those under ACT and NAT conditions.
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higher probability that maize loss can be substituted with available sorghum and/or wheat crops (provided they 
can fully substitute the sufficient calorie intake). Figure 3c depicts the value of imported maize, which is estimated 
to be 34.7 million USD (10–90%: 26.2 to 43.9 million USD) in the ACT, 21.9 million USD (10–90%: 11.5 to 32.9 
million USD) in the NAT, and -1.7 million USD (10–90%: -12.3 to 8.6 million USD) in the NAT + no decline 
world (negative value meaning that households would be able to consume or sell the surplus maize). Given 
that an average rural household spends 175 USD on food and beverages  annually30, the average per household 
expenditure on imported maize (total value of imported maize divided by the number of households in 2007) 
to cover basic food needs constitutes 50.1% (10–90%: 40.4 to 60.2%) in the ACT world and 31.7% (10–90%: 
19.6 to 43.8%) in the NAT world. In other words, purchasing power per household is ~ 37% lower in the ACT 
compared to the NAT. In particular, small-scale farmers would be hit hardest, as their self-sufficiency level is 
decreased due to lower yield, making them increasingly reliant on food markets (that see higher prices). Using 
data from the 2009/2010 Agricultural Census of rural households in  Lesotho31, we approximate the exposure 
of rural farmers to the combined effect of lower production and price volatility (see “Methods”). 2009/2010 is a 
relatively neutral year, with no large precipitation, production or price anomaly, and the area of maize planted 
was almost equal to 2007. Based on the size of the farmland that households operate on (which are aggregated 
into 13 groups of field sizes), the household size, the yield, and maize price estimates, we evaluate the average 
household expenditure per group of farmers to cover their minimum consumption requirement. Furthermore, 
we estimate the aggregated number of households that are self-sufficient, i.e. household production is larger than 
minimum consumption requirement. As shown in Fig. 3d, the ACT simulations increase the average household 
expenditure for farmers relative to the reference period. The slope of the ACT relative to the reference period 
is steeper, indicating that a large share of farmers experienced a non-linear increase in expenditure. This show-
cases that the majority of rural farmers are affected by a combined effect of production loss and price increase, 
changing a large number of households from net sellers to net buyers. The number of rural households that are 
self-sufficient (Fig. 3e) shifts from 48.2% (10–90%: 35.3 to 54.7%) in the reference period to 14.9% (10–90%: 7.0 
to 22.8%) in the ACT and 33.0% (10–90%: 15.1 to 54.7%) in the NAT world. Although CC made the drought 
more severe, which negatively impacted rural households’ self-sufficiency, the NAT world simulations still show 
a larger number of households that are not self-sufficient relative to the reference period of a relatively neutral 
year. Therefore, climate variability, whether or not driven by CC, induces strong year-to-year variability in the 
level of self-sufficiency of rural farmers. The ability to cope with such variations in expenditure to purchase 
staple foods varies per household and depends on availability of alternative labour income, remittances (main 
source of income for up to 10–15% of households in some  districts30), social safety nets and the ability to reduce 
or change consumption  patterns14,21.

Conclusions and policy implications
By combining an extreme event attribution analysis with a probabilistic model of food production and prices, we 
find that CC increased the likelihood of the 2007 co-occurring drought in South Africa and Lesotho, aggravat-
ing the food crisis in Lesotho. However, the effect of CC only reinforces an already chronically upward trend in 
food shortage in Lesotho that puts the food-supply system of the country in a vulnerable position. In particular, 
the large climate influence on crop production (due to rainfed agriculture), limited domestic production, and 
reliance on a climatically connected trading partner contribute to the nonlinear response of the country’s food 
system to additional climate shocks. Similar system characteristics, such as high import dependency, rain-fed 
irrigation and large climate variability are observed in other southern African  countries16.

In light of expected increase in population and a future decline in maize production in Southern Africa due 
to future  CC4,6,8,10, our work has several policy implications. First, we highlight that EEA should be extended 
from a hazard to an impact perspective to truly understand how anthropogenic CC impacts society and identify 
where and how systems are vulnerable: this type of analysis is much more informative for adaptation decisions 
than looking at the hazard  alone32. To do this, both’ top-down and bottom-up  approaches33, combining large-
scale climate impact analysis with detailed empirical data on household characteristics and household-level 
adaptation to drought events, are essential to understand the interaction between the climate and the human-
environmental system. From our analysis, it becomes clear that diversification, in terms of cereal production 
and trading partners, would lower Lesotho’s vulnerability. However, for Lesotho, and many other landlocked 
countries, access to international grain markets are limited due to high transportation costs. On a local level, 
reversing the declining production trend can help reduce the dire situation of severe food insecurity (like the 
2007 and the more recent 2015/2016 incidents). This may be hard to achieve in the short term, as this trend is 
ingrained within the wider socio-demographic and environmental characteristics of the country, such as the 
high poverty and HIV/AIDS rates, the ecological fragile landscape, and limited budget for agricultural invest-
ments. Therefore, in the short term, implementing adaptation measures, such as improved drought monitoring, 
drought-resilient crops and planting strategies, and emergency support and relief mechanisms (e.g. social safety 
nets, drought insurance)5,7,16, are essential to complement longer-term food security strategies. Our stress-testing 
exercise highlights the potential non-linearities in the regional and local food system, which provides essential 
information when designing adaptation measures, as significant gains can be made to lower such non-linear 
impacts to vulnerable households. For instance, the combined effect of social safety nets (to buffer price shocks) 
and a shift towards drought-resilient crops or irrigation systems should be analysed in an integrated manner to 
evaluate the combined versus the individual benefits.

Future research should expand on this methodology by applying it across multiple events and to different 
regions, data availability permitting. In the current work, we only addressed the role of CC in changing the 
likelihood of a single drought event. Analysing multiple events would strengthen the robustness of the analysis 
and would help disentangling the different drivers of food insecurity under a range of climatic conditions. For 
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instance, other food insecurity events in the region (e.g., 2015/2016) were due to drought events induced by 
strong El Niño episodes. Although the role of CC on changes in the frequency and severity of El Niño itself 
has been  documented35,36, it remains unclear to what extent CC might cause changes in other aspects, such as 
food insecurity, propagated through changes in El Niño. Moreover, our methodology can be easily adapted and 
applied to other regions and crops, including remote production regions that have a climatic teleconnection and 
are thereby prone to synchronous production  failures34. Studying other areas and food systems would improve 
our understanding on the role of CC in changing the likelihood of co-occurring drought events across various 
spatial scales and help determine the vulnerability of these systems to such events. However, current research 
efforts are often limited by data limitations (e.g. food supply assessments and trade and household survey data), 
in particular in data-scarce regions.

Overall, our results suggest that understanding the propagation of CC impacts through trade-dependencies 
is critical for import-dependent countries that are vulnerable to short-term and chronic food insecurities.

Methods
Precipitation and agricultural data. Data on maize production for 1980–2013 is derived from the sta-
tistical database of the Food and Agriculture Organization of the United Nations (FAOSTAT 18). Data on maize 
prices for South Africa is also available from this source, although only for 1991–2017. Trade data between 
South Africa and Lesotho for 2010–2018 is taken from UN  Comtrade37 together with reported production data 
(to fill in data from 2013 on) in South Africa from the South African Department of Agriculture, Forestry and 
 Fisheries38. By dividing the exports over the production in South Africa, the fraction of production available for 
exporting to Lesotho is calculated. The percentage of production that is exported to Lesotho varies between 0.5% 
and 1.7% (for 2010–2018), with higher values during years of anomalously low production in South Africa. In 
2007, the export fraction was 2%14 which was the highest value observed. The per capita maize need is estimated 
to be 328 g/capita/day14,39, which is the minimum maize requirement to meet sufficient calorie intake (2100 cal). 
This maize need is lower than the annual maize consumption, which is in the order of 167 kg/year during non-
drought years. We scale this maize need threshold with the population (based on World Bank data) over the 
years to get a time series of the annual maize requirement. For 2007, this yields an estimated 240,000 tonnes of 
maize, which we adopt as total maize demand in Lesotho to meet food security. The maize deficit is defined as 
total demand minus the domestic production. To define the event threshold, precipitation data is taken from 
Fifth generation of European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalyses 
of the global climate—ERA5, which is chosen because of its higher resolution compared with previous reanaly-
sis precipitation products (0.25°), as well as its improved estimates of the global balance of precipitation and 
evaporation, and better estimates of precipitation in the deep  tropics17. Data is averaged over [lon: 27°–29.5°, lat: 
− 30.5°–− 28.5°] for Lesotho and [lon: 24.5°–30°, lat: − 28–− 26°] for South Africa, over 1979–2018. We compare 
the ERA5 reanalysis data to more established precipitation products, CRU-TS4.0224 and  CHIRPS40, given that 
ERA5 is still relatively new. Supplementary Fig. 1a illustrates the co-occurring JFM total precipitation anomalies 
for Lesotho and South Africa, illustrating that the 2007 event was the most severe on record. Anomalies are 
calculated by first detrending the time series and then deriving the deviation from the 1979–2018 JFM total 
precipitation average. Detrending of the precipitation time series is done using a linear regression. Supplemen-
tary Fig. 1b shows the production anomalies for both countries. The production time series for South Africa is 
detrended using a linear regression, whereas for Lesotho we use a locally weighted polynomial regression (low-
ess) because of the non-linearity in the trend. Overall, the 2007 event was not most severe in synchronous pro-
duction failure. However, the volatility of production in both countries has decreased over the years (as shown in 
Fig. 1d,e), indicating improved crop management practices. This has also decreased the correlation between the 
production anomalies, from ϱ = 0.59 in 1981–1995 to ϱ = 0.21 in 1995–2013. The 2007 synchronous crop failure 
was, however, very severe if compared to the 1995–2013 period. To derive the price anomalies, we detrend the 
maize price using a lowess to effectively capture the nonlinear trend in the data.

Model description and evaluation. We use a set of reanalysis/gridded products and climate models to 
gain some insights in precipitation in Lesotho and South Africa, given that 2007 was the most severe precipi-
tation deficit in both countries on record. To account for model-related uncertainties, and given that climate 
modelling in Africa is especially  troublesome41, we use a diverse set of models from different modelling fami-
lies: a regional climate model from weather@home26,42, a state-of-the-art high resolution global climate model 
HadGEM3-GA6 model, which is the atmospheric component of the Met Office’s Global Environment Model 
version  627,43, and two climate models with large ensembles from the ’Half a degree additional warming, projec-
tions, prognosis and impacts’28 experiment. We picked the two HAPPI models (MIROC5 and ETH-CAM4) 
that have counterfactual simulations available to represent the world without climate change. Details about the 
models are included in Supplementary Table 1. See Supplementary Text for the results of the model validation.

Extreme event attribution. Extreme event attribution seeks to quantify to what extent anthropogenic 
climate change have altered the probability or magnitude of a particular type of extreme  event13. The Risk Ratio 
(RR) of an event is typically used to quantify the role of climate change, which is the ratio of the probability of 
occurrence  (p1) of a particular event compared with its probability of occurrence.

(p0) had the anthropogenic influences on climate been  absent12,13,44

(1)RR =

p1

p0
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We use both long-term observational data and model outputs to estimates RRs for the events in both coun-
tries. We distinguish between the event in the actual world (ACT) and the event in a counterfactual world 
without human influence (NAT). Using the ERA5 re-analysis data, the JFM total precipitation is found to have 
a 1-in-40 year return period, and is henceforth used as the event definition (event threshold). The precipitation 
value corresponding to the 1-in-40 year event is used to find the return period in the modelled world, in order 
to calculate the RR.

The details of the extreme event attribution and the results for both the single and compound event are 
included in the Supplementary Information.

Statistical model. Crop production is driven by a variety of climate, technological and environmental fac-
tors, with a large scatter during normal years. However, in dry years, maize growth becomes constraint by soil 
water availability, affecting processes at the leaf and canopy  scale45 and consequently production. Maize produc-
tion in Lesotho and South Africa is mainly  rainfed7, which results in precipitation during the JFM maize growing 
season being correlated with maize production (ϱ = 0.69 in South Africa and ϱ = 0.56 in Lesotho). A relationship 
between precipitation and maize yields is also found in other regions globally, such as Sub-Saharan  Africa46, the 
 USA47 and  China48.

We create two statistical models that predict crop production anomalies (C) using precipitation anomalies 
(Pr) in (i) Lesotho and South Africa, respectively. Moreover, we create a model that predicts the maize price (P) 
anomalies for South Africa based on precipitation anomalies. The details of the statistical models adopted are 
included in Supplementary Information. We can use this model to predict  Ci in both regions and P in South 
Africa and transform it back to the original scale. In Lesotho, the deficit  (DL) is calculated by subtracting the 
maize demand from  CL. To get the actual shortage in 2007, after accounting for imports, we use the observed 
fraction of export (feSA) in 2007 (2%). The food availability  (AL) then reads:

Additionally we predict the value of imported food  (VL) for Lesotho based on the deficit  DL and P:

The model validation is included in the Supplementary Information.

Probabilistic model food availability and imports. We use an exploratory modelling framework to 
estimate the influence of climate change in the 2007 event. By sampling our identified drivers (precipitation and 
export fraction) from a range of possible values, we can explore many possible realizations of the actual and 
counterfactual world. This can be used to evaluate the sensitivities of the metric in response to different combi-
nations of model input and it can be used to detect critical thresholds for adaptation purposes.

First, using the statistical model we can make predictions of the 2007 food availability and value of imported 
food in the ACT world. To create realisations of the NAT world, we take a few steps. First, using the extreme 
event attribution analysis, we found a range of RRs for both Lesotho and South Africa. We sample the RR from 
a triangular distribution, with the mean values as the most likely value and the 5–95% percentile values as the 
lower and upper bound. This yield T(1.51, 5.36, 32.50) for Lesotho and T(1.53, 4.70, 26.30) for South Africa. We 
fit a GEV distribution to the precipitation data and use this in combination with the RRs to find the precipitation 
values in a NAT world. We feed these new precipitation values for 2007 in the statistical models and predict the 
food availability and value of imported food in the NAT world. The export fraction in the NAT is unknown, and 
as was observed, varies with production and hence rainfall. However, we lack the adequate data coverage to fit a 
model. Instead we use an uniform distribution between the range of observed fractions, with the lowest observed 
value as lower bound (0.5%), and the upper bound of 2.0% as observed in 2007. We increase the maximum frac-
tion to 2.5% to account for the possibility of higher fractions. To get the no decline time series, we simply filter 
out the trend in production data in Lesotho. We repeat the procedure described above, but for 2007, the initial 
maize deficit in Lesotho is considerably less (116,000 tonnes difference). Through Monte Carlo sampling, we 
run 50,000 plausible scenarios of food availability and import values in a counterfactual world without climate 
change and/or production decline.

Household exposure. We look at a first-order proxy of household exposure to the 2007 drought, which 
depends on the size of the farmland households operate on, the maize yield, the maize consumption to satisfy 
basic needs, the household size, and the price of maize. We generate two proxies: (1) the percentage of house-
holds that are self-sufficient, indicating that the maize harvested on a household level is sufficient to cover the 
basic consumption needs of maize (120 kg/person/year), and (2) the household expenditure on maize to cover 
the costs of basic needs in the case that a household is not self-sufficient. In case a household produces more than 
the basic needs, it can either sell or consume the surplus (which we indicate as a positive value). The details of 
this model is included in Supplementary Information.

Data availability
All data input and codes to analyse the data and reproduce the main findings of the article can be found in 
Mendeley Data https ://doi.org/10.17632 /ntjtg 6wd5g .1
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(2)AL,2007 = CSA,2007 ∗ feSA,2007 − DL,2007

(3)VL,2007 = DL,2007 ∗ P2007
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