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From diffusion 
in compartmentalized media 
to non‑Gaussian random walks
Jakub Ślęzak* & Stanislav Burov

In this work we establish a link between two different phenomena that were studied in a large 
and growing number of biological, composite and soft media: the diffusion in compartmentalized 
environment and the non-Gaussian diffusion that exhibits linear or power-law growth of the mean 
square displacement joined by the exponential shape of the positional probability density. We 
explore a microscopic model that gives rise to transient confinement, similar to the one observed 
for hop-diffusion on top of a cellular membrane. The compartmentalization of the media is achieved 
by introducing randomly placed, identical barriers. Using this model of a heterogeneous medium we 
derive a general class of random walks with simple jump rules that are dictated by the geometry of the 
compartments. Exponential decay of positional probability density is observed and we also quantify 
the significant decrease of the long time diffusion constant. Our results suggest that the observed 
exponential decay is a general feature of the transient regime in compartmentalized media.

The Brownian motion is ubiquitous in applications, be it the microscopic motion of molecules1, search patterns 
of animals2, or the prices of financial options3. Following the classical argument of Einstein4, if there exists a 
time scale in which the changes of the investigated variable can be treated as a result of additive, independent 
and homogenous fluctuations with finite second moment, then in larger time scales the observed process is the 
Brownian motion. This insight was later formalised as the functional central limit theorem5.

The Brownian motion became a natural start for theoretical and experimental investigations of more com-
plicated stochastic models. For example, lowering the requirement of finite moments led to the rich theory of 
Lévy flights6; lowering the assumption of independence was one of the cornerstones of the anomalous diffusion 
modelling7. The Langevin theory of diffusion investigates the time scales lower than those required by the central 
limit theorem8 which leads to the motions in which the deviations from Brownian motion appear in the memory 
structure; the probability density of motion is still Gaussian, only with a different scale.

In recent years the influx of experimental data proved the existence of a robust class of systems exhibiting 
non-Gaussian, in particular exponential, tails of the probability density9–11, together with normal or anomalous 
mean square displacement12–14. This common phenomenon is called Brownian, yet non-Gaussian diffusion9,10. Its 
raising prominence and importance in understanding the biochemical nature of the transport stimulated various 
attempts to provide some – at least effective – description. These include works using variants of the Langevin 
equation that use superstatististical15–18 or diffusing diffusivity19–21 approach.

It is commonly suspected that the true source of non-Gaussianity lays in the heterogeneity of the medium9,21–23. 
It is also hypothesised that the correct description may be related to random walks with traps24,25. Yet, formulating 
and solving suitable models is still a challenge far from completion. Here, we attempt to overcome it for systems 
in which the diffusion is locally impeded by barriers, providing a general mechanism for the appearance of the 
non-Gaussian diffusion; for a simplified illustration of the type of medium considered see Fig. 1.

Such restrictions of the molecular motions are ubiquitous in nature26, especially in composite or porous 
materials27,28. For example, according to the fences and pickets model the cellular membrane is compartmen-
talized (likely by actin-based membrane skeleton and various transmembrane proteins29,30), a fact essential in 
understanding its structure and functions31,32. It is also widely agreed that this phenomenon is crucial in deter-
mining the material properties of the biological media, the transport of proteins, lipids and their functions31,33–35.

The transient confinement caused by these obstacles should result in a motion similar to a random walk, with 
a particle jumping between adjacent domains. This phenomenon was experimentally observed and termed hop 
diffusion36,37. Its characteristic property is that the long-time macroscopic effective diffusion coefficient is greatly 
reduced compared to the short-time in-compartment diffusion coefficient with their ratio providing important 
insight into the molecular properties of the system. This ratio was found to be between 10 and 100 in various 
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experiments, see the list in38. Similar results were found for porous materials39–41 and for colloidal particles near 
the glass transition; in the last case what they call the cage effect was observed together with the exponential tails 
of the probability density42–44.

In what follows, we first make a universal observation on how the confinement results in the static form of 
non-Gaussianity (“Non-gaussianity stemming from confinement” section). The argument is quite general and 
shows the time scales at which the increments of the diffusing particle’s position exhibit exponential tails. It does 
not specify the dynamics, but provides a single jump’s distribution, which is a basic building block of the random 
walk models which we derive. We study them using one dimensional model of the system. We start from reducing 
the local diffusivity model to the diffusion equation with interface conditions (“Transiently confined diffusion 
with locally Brownian dynamics” section), which we solve domain-wise in order to derive the transition times of 
the jumps between domains. Consequently, we manage to describe the diffusion using environment-dependent 
random walk (“From the transient confinement to a random walk” section). It can be effectively approximated 
using much simpler model of continuous time random walk (CTRW), yielding the formula which links the effec-
tive diffusion coefficient to the barriers’ permeability (“Bessel and gamma waiting times CTRWS” section). Next, 
we decouple the correlations of this process and reveal its broad-tail non-Gaussian nature using the kurtosis and 
the logarithm of characteristic function (“Compound poisson approximation” section). Finally, we consider a 
more reductive but mathematically elegant approximating CTRW for which we calculate the exact probability 
density; it exhibits exponential tails characteristic for the Brownian, yet non-Gaussian diffusion. The derivations 
presented in “Bessel and gamma waiting times CTRWS” and Compound poisson approximation” sections. show 
the mathematical origin of the analytical predictions presented in Figs. 8-11, but for general understanding of the 
results the form of the reduced model (14) and the leading exponential-tail behaviour (36) suffice. The overview 
of the subject and the results is given in “Discussion” section. We also provide a list of commonly used notation. 
Our simulation code is attached in the supplemental material.

Non‑Gaussianity stemming from confinement
A possible approach for understanding the prevalence of the Gaussian distribution is to look at it through the 
notion of entropy. For all different variables X in free space with a given variance, characterised by the prob-
ability density function (PDF) pX , the ones with Gaussian distributions (with different means) maximise the 
entropy −�ln pX(X)� . Thus, if they are no other constrains (such as potential field), any coordinate coupled to a 
heat reservoir will converge to a Gaussian state45.

This naturally opens up the question in what conditions the Gaussianity is not to be expected. Following the 
entropic argument, the simplest such case is any bounded domain in which the entropy is maximized by the 
uniform, not Gaussian distribution. Physically speaking, it corresponds to particles being confined in some finite 
area by a reflecting barrier. Such a perfect local confinement excludes the diffusion in the macroscopic scale, 
however in a more detailed setting one can think about a system with dynamics dominated by two time scales: 
the relaxation time tr of reaching the domain-wise stationary uniform state, and the average escape time te ≫ tr 
of passing through the barrier. In this setting, for t ≪ tr the scale of the dynamics is too small to be affected by the 
confinement. For t ≫ te as long as there are no “hard” traps it is expected that the system will be again homog-
enised and Brownian (even for the cases when the intra-domain dynamics was not, e.g. was subdiffusive). For 
the time range in-between, the motion is dominated by the confinement in one ( t ≈ tr ) or few ( t ≈ te ) domains 
and always non-Gaussian. This time scale will be in the centre of our discussion.

For t < te the situation is simple: for a given particle its distribution will be a uniform one with the shape 
reflecting the domain it was found in. For the whole ensemble the distribution will be a mixture of uniform 
distributions reflecting the domain shapes all over the medium. As we can see we are in the situation in which 
the observed ensemble distribution is non-Gaussian and completely determined by the random geometry of the 
system, to some extent independently form the details of the dynamics.

Figure 1.   A schematic representation of the diffusion in a two dimensional compartmentalized medium. 
A particle (black trajectory) diffuses freely inside the domains (white areas) but only rarely crosses the thick 
divisions between them (grey area) which are thin compared to the average size of the domains and act as 
barriers.
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This geometry is clearly hard to determine for many real systems and may be very complex, e.g. porous 
media are often fractal-like. However, in many media such as cellar membranes it is reasonable to assume that 
the domains are mostly spherical and they vary mostly in size. Furthermore, the simplest size distribution to 
consider is the exponential one. The argument for this is the lack of dependence. We consider one dimensional 
line in the medium and ask if in any given dx it crosses the barrier or not. If the crossing in dx does not affect 
the distribution of other crossings (they do not “see” each other) they must be located according to the Poisson 
point measure46 and the distances between any two subsequent barriers on this line are exponential.

We are now ready to calculate the stationary PDF which will be observed for the whole ensemble. Let L denote 
the diameter of a given domain. By choosing proper displacement units we can always assume that �L� = 1 and 
its distribution of the sizes is a simple pL(l) = exp(−l) . However, this is not the proper PDF to average over as 
we need to account for the average number of particles in each domain. If the domains are not correlated to any 
kind of a trap, this number will be proportional to the volume of the domain. This leads to the equilibrium PDF47 
p
eq
L (l) = cdl

d exp(−l), cd = 1, 1/2, 1/6 in dimensions d = 1, 2, 3 respectively (these are gamma distributions 
Gam(d + 1, 1) , see the Notation section).

For a given domain with a fixed L the distribution is uniform, for one dimension it is a simple 
pX(x|L) = 1/L, |x| < L/2 , which yields

This simple argument shows how the geometry of the system determines the distribution of L and is reflected 
in the stationary PDF of particles’ displacements, which is found to be the Laplace (also called “two sided expo-
nential”) distribution with mean 0 and variance 1/2, symbolically Lap(0, 1/2) . For two and more dimensions the 
procedure is slightly more complicated: for each coordinate x, y or z we will observe only the projection of the 
total multidimensional probability mass, see Fig. 2. For spheres these are semicircular law for two dimensions, 
and parabolic law for three dimensions (as for each dx we squeeze onto it a circle with surface π((1/2)2 − x2) ). 
The projections and averaged PDFs are shown in the first and second row of Table 1.

The important thing to notice there is that they all decay like exp(−2|x|) multiplied by some power-law 
factor. Integrating by parts shows that this a more universal behaviour, the requirements for its occurrence are 
only that the PDF of the sizes has a tail ∝ lα exp(−l) and the stationary PDF within a fixed domain has a cut-off 
at ±L/2 . However, there is a simplifying assumption in (1) which we did not immediately discuss: the centre of 
the domain is located at x = 0 , whereas in typical experimental data the position of the particle at the start of 
the measurement is taken as 0. This can be fixed with a litte effort and the corrected PDF still has exponential 
tails, see the Ref. 49.

(1)pX(x) =
∫

|x|<l/2
dl
1

l
p
eq
L (l) =

∫ ∞

2|x|
dle−l = e−2|x|.

Figure 2.   Projection procedure applied to an exemplary domain. All the probability mass in two dimensions 
(the oval shape up) is projected onto a given axis, i.e. moved down leaving lengths of the depicted arrows intact, 
resulting in one dimensional mass (schematically shown as grey area below); then it is renormalized.
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The limitation of the practical usefulness of the insights made above is that the stationary distributions 
are visible in experiments only if many data points within the range tr < t < te can be measured. However, 
we can extend our approach if the sampling rate of the measurements is sufficiently smaller than the escape 
time, tr ≪ �t < te . Because �t < te the subsequent values Xt and Xt+�t will most often still be inside the 
same domain. Consequently, the series of increments �Xt := Xt+�t − Xt will consist of long intervals of the 
in-domain differences only rarely interrupted by the jumps to the adjoining domains; these rare spikes can be 
then neglected. Because tr ≪ �t , the values Xt and Xt+�t will be independent (as the particle will transverse 
the domain multiple times during �t ), so its PDF will determined by the difference of two independent vari-
ables with pX(x|L) distribution: this is triangular distribution in one dimension, complicated but elementary 
polynomial distribution in three dimensions and a rather involved one in two dimensions (this is because the 
convolution of two 

√
1− x2 functions is not elementary). In any case their tails can be derived using integration 

by parts, see the third row of Table 1. Using the ergodicity of �Xt , this stationary distribution can be estimated 
using even a single long trajectory, no ensemble averaging is required. For all the cases this PDF also exhibits 
exponentially decaying tails.

The limit of this line of arguments is the time scale t > te in which the dynamics becomes important. We 
need to know how long it takes for the particle to jump from one domain to another and for this a more detailed 
model of the barriers is required. This is the subject of the following sections.

Transiently confined diffusion with locally Brownian dynamics
We imagine the heterogeneous medium as the collection of domains with regular shapes inside which the particle 
moves relatively freely, separated by narrow structures composed of a thick material (e.g. actin meshwork in the 
case of plasma membranes29–32) which impedes the diffusion within (these are grey areas in Fig. 1). We model this 
behaviour by making the diffusion coefficient locally small, which results in the stochastic differential equation

governed by the Brownian increments dBt . The local diffusivity function D(x) appearing here is a combination 
of two microscopic kinematic parameters: mean free path and correlation time. As such, the equation by itself 
is physically ambiguous and requires interpretation. It was previously established that if D(x) is to describe an 
environment with barriers (and no traps) present, the proper choice is kinetic Hänggi–Klimontovich interpreta-
tion in which the PDF of the diffusion solves the Fokker-Planck equation50

In a bounded domain with volume V the constant PDF pX(x) = 1/V  is the unique stationary solution 
( ∂pX/∂t = 0 ) of this equation, so this, and only this, interpretation agrees with our assumption of “no other 
constraints” in the medium and consequently leads to the maximal entropy distribution being uniform.

Up to this moment our considerations were quite general, from now on we will limit ourselves to the one 
dimensional system, which will allow us to simplify the geometry immensely and consequently obtain quite 
straightforward description of the dynamics. In one dimension the barriers are thin �x intervals with a small 
local diffusivity Db ≪ D . Let a barrier be a layer starting at xk and ending at xk +�x . Preservation of the number 
of particles forces the flux D(x)∂pX/∂x to be a continuous function, in particular at the borders of the barrier

When Db ≪ D these conditions cause pX to change rapidly inside the barrier, though this function must still be 
continuous. For the flux to be also continuous the derivative ∂pX/∂x must be discontinuous at x and x +�x , 
but with pX still being smooth inside the barrier. Now, we may express pX on the outside edges of barrier using 
the values inside, then make a Taylor approximation and apply (4)

(2)dXt =
√
2D(Xt)dBt .

(3)
∂

∂t
pX(x; t) = ∇ ·

(
D(x)∇pX(x; t)

)
.

(4)
D

∂

∂x
pX(x

−
k ; t) = Db

∂

∂x
pX(x

+
k ; t),

Db
∂

∂x
pX(xk +�x−; t) = D

∂

∂x
pX(xk +�x+; t).

Table 1.   Confined one-dimensional PDFs for the particles trapped in 1, 2, 3D spheres. The conditional 
(i.e. with fixed trap diameter L) PDFs pX(x|L) in the top row are Wigner n-sphere distributions. Middle 
and bottom rows are the PDFs averaged over the trap sizes, of the displacement X and the increments 
�X := Xt+�t − Xt ,�t ≫ tr respectively. By K1 we denote the modified Bessel function of the second kind 
(see48, Eq. 10.32.8]) which has tails K1(2|x|) ∼ (π/x)1/2 exp(−2|x|)/2 . In the bottom row we show only the 
asymptotics, but in the case of 1D and 3D the exact values of p�X can be calculated by direct integration, the 
formulas are complicated but may be expressed using special function Ei and polynomials.

1D 2D 3D

pX (x|L) 1

L
4

πL

√
1−

(
2x
L

)2 3

2L

(
1−

(
2x
L

)2)

pX (x) e
−2|x| 4|x|

π
K1(2|x|) 1

4
(1+ 2|x|)e−2|x|

p�X (x) ∼ e
−|x| ∼ 8

3π
e
−|x| ∼ 6

|x| e
−|x|
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If we go to the limit �x → 0 and Db → 0 in such a way that Db/�x → κD we end up with a diffusion determined 
by the heat equation within the domains

which breaks at the locations of barriers where two interface conditions are linking the values of the PDF on their 
left and right side. The first one is again the flux continuity, the second one is the reduced form of (5)

The parameter κ here is the barrier permeability; mind that some authors denote κ ′ = κD as permeability instead. 
This argument can be generalized to two or three dimensional domains in a straightforward manner, see51. It is 
also worth adding that the same interface conditions can be derived using the barriers modelled by the bumps 
of potential, but the derivation is quite technical52. Mathematically speaking, this diffusion has a rather peculiar 
PDF: by making barriers’ thickness negligible we caused it to exhibit finite jump discontinuities at each xk but at 
the same time still has continuous directional derivatives everywhere. It is smooth only in the stationary state, 
which (in a finite space V) is uniform as required, pX(x; t → ∞) = 1/V .

Conditions (7) also appear in chemistry53,54 and should come as no surprise: it is nothing but a stochas-
tic version of the Newton’s law of cooling. In the most typical form it states that the heat flux at a boundary 
is proportional to the temperature difference, ∂Q/∂t ∝ −(Tin − Tout) . Combining it with the Fourier’s law 
∂Q/∂t ∝ −∂Tin/∂x we end up exactly with (7). For this reason its commonly called “Newton” or “convection” 
boundary condition. However, our case is far less typical since we look for the solution on both sides of each 
barrier. This is in contrast to the thermal problems in which Tout is most often taken to be a fixed state of the 
environment. For this reason the mathematical difficulty in solving the stochastic variant increases significantly.

If only one barrier is present, let it be at x0 = 0 , the solution is still straightforward to 
obtain. One only needs to split the initial condition into symmetric and antisymmetric terms, 
pX(x; 0) = pSX(x; 0)+ pAX(x; 0) = (pX(x; 0)+ pX(−x; 0))/2+ (pX(x; 0)− pX(−x; 0))/2 . Then the solution 
itself can be split into symmetric and antisymmetric terms which evolve independently with reflective (Neu-
mann), ∂pSX(0+, t)/∂x = 0 , and radiation (Robin), ∂pAX(0+, t)/∂x = 2κpAX(0

+, t) boundary conditions. Both can 
be solved using multiple standard methods. This argument also helps to understand physical meaning of the 
parameter κ . For κ → 0 the boundary conditions converge to the purely reflective one and the particle stops being 
able to transverse the barrier. For κ → ∞ they reduce to the condition pAX(0+; t) = 0 . But as pAX is antisymmetric 
by definition, it only forces pAX to be a continuous function; the interface conditions and the barrier disappear 
altogether. The in-between case of a finite κ is a partially reflective barrier or a semi-permeable barrier; look at 
Fig. 3 for an illustration how the resulting trajectories look like.

(5)

pX(xk +�x+; t)− pX(x
−
k ; t)

= pX(xk +�x−; t)− pX(x
+
k ; t)

= �x
∂

∂x
pX(x

+
k ; t)+O

(
�x2

)

= D
�x

Db

∂

∂x
pX(x

+
k ; t)+O

(
�x2

)
.

(6)
∂

∂t
pX(x; t) = D

∂2

∂x2
pX(x; t), x �= xk

(7)

∂

∂x
pX(x

−
k ; t) =

∂

∂x
pX(x

+
k ; t),

∂

∂x
pX(xk; t) = κ

(
pX(x

+
k ; t)− pX(x

−
k ; t)

)
.

Figure 3.   Exemplary simulated trajectory for κ = 1/50,D = 1 and discretization step �t = 0.01 . Barriers were 
located according to the standard Poisson random measure.
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Alas, for any system with more than one barrier we loose this convenient symmetry55. The heat equation 
and interface conditions (7) are linear, but the dependence on the environment is non-linear, as expected for a 
heterogeneous system. For any finite number of barriers using the Fourier or Laplace transform in the position 
space reduces the problem to solving a system of algebraic equations, but the solutions are quite complicated 
and inverting the transform seems to be beyond reach for more than two barriers present.

Still, there exists a convenient stochastic representation of this diffusion which provides another layer of 
physical meaning and facilitates numerical simulations. In the mathematically impressive series of works Antoine 
Lejay derived such a representation for a system with one barrier56–58 which extends easily to the general case. If 
the space would be discrete the obvious and correct representation would be a random walk for which at each 
visit to the barrier there is a chance of passing or being reflected, see e.g.59,60. For continuous space this approach 
does not work directly because Brownian trajectories are so irregular they pass any threshold infinitely many 
times. The representation becomes valid if we restate this model as “each time the particle spends a unit of time 
at a barrier there is a chance of being reflected”. Now, as we decrease the discretization mesh the occupation times 
converge to the local time random field ℓt(x) :=

∫ t
0 dτ1Xτ (x)

61 (this is basically a histogram calculated from the 
sample trajectory {Xt} ). At the same time the discrete escape times which have geometric distribution converge 
to the smooth exponential variables.

Indeed, Lejay showed that if we take a series of independent and identically distributed (i.i.d.) random times 
τ1, τ2, . . .

d= Exp(κ) the process which is the reflected Brownian motion on the one side of the barrier until 
ℓt(x0) > τ1 , then the reflected Brownian motion on the other side until ℓt(x0) > τ1 + τ2 and so on, has a PDF 
which solves (6) and (7). This makes sense if we come back to the derivation: for a barrier with a finite thickness 
�x the particle must explore the inside of the barrier for the time long enough it will reach the other side. For 
small �x it is no surprise the passing is a Markovian event, thus the waiting time must be exponential.

The joint distribution of the reflected Brownian motion and its local time is known, so the condition ℓt(x) > τ1 
can be directly implemented in a stochastic simulation57. For multiple barriers system only the one on the left and 
the one on the right side of the current domain are important. Because the dynamics is Markovian and local, at 
each step it is only required to look for the closest barrier and check if the particle escaped through it in a given 
�t or not. This is the method used to simulate the trajectory shown in Fig. 3.

From the transient confinement to a random walk
It is natural to suspect that the diffusion dominated by the transient confinement is a type of random walk, which 
is even suggested by the term “hop diffusion”. We will derive the random walk which corresponds to the model 
of the medium described in "Non-Gaussianity stemming from confinement". Similar approach was used as a 
possible explanation for Lévy flights62 in quenched disordered media63,64. However, in contrast to our system, 
for these phenomena the short scale motion is assumed to be ballistic and the distances between barriers have 
a power law distribution.

In our case, the process can be imagined as a particle which at each given time is localised according to a 
uniform distribution in the domain it is in, but after waiting a random escape time it transitions to a uniform 
distribution in one of the adjacent domains with the cycle starting again.

Let us consider one such domain with ends at ±L/2 . The escape time is determined by the solution of the 
diffusion equation if we remove returns to the domain, that is, after the escape event ℓt(±L/2) > τ±1  took place 
the particle becomes absorbed and cannot return. This is equivalent of putting absorbing (Dirichlet) boundary 
conditions just outside the domain walls. By instantly drawing out all the probability mass outside the domain 
this procedure reduces the interface conditions (7) to the radiation boundary conditions

The resulting process is a type of partially reflected Brownian motion65.
Using again the equivalence to thermal problems, the dynamics can be described by two dimensionless 

parameters: the Fourier number Dt/L2 regulating the ratio of diffusive to transport motion and the Biot number 
κB = κL describing the ratio of heat resistance inside to that of the surface. Systems with small Biot number have 
uniform temperature, which is precisely our assumption of the dominance of local equilibria, which can now 
be specified to be the requirement that κB ≪ 1 . There is a nuance here as L and thus κB are domain-dependent, 
but as the distribution of L has short tails, extreme values of κB are improbable and we may just require that the 
average Biot number is small, �κB� ≪ 1.

By rescaling t and x the equation can be reduced to the dimensionless

which we expand into a series of eigenfunctions

The eigenvalues solve tan(�n/2) = κB/�n and cot(βn/2) = −κB/βn . For small κB we can expand the trigonometric 
functions around their zeros and obtain

(8)
∂

∂x
pX((±L/2)∓; t) = ∓κpX((±L/2)∓; t).

(9)

∂

∂t
u(x; t) =

∂2

∂x2
u(x; t),

∂

∂x
u((±1/2)∓; t) = ∓κBu((±1/2)∓; t)

(10)u =
∞∑

n=0

ane
−�

2
nt cos(�nx)+

∞∑

n=0

bne
−β2

nt sin(βnx).
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Due to our assumptions we expect the distribution to be mostly uniform, and it truly is: there is a spectral gap 
between the smallest eigenvalue �0 =

√
2κB +O

(
κ2B
)
 and all the rest, thus the corresponding eigenfunctions 

decay much faster. After a brief relaxation only the mode cos(�0x) = 1− (κB) remains and then it also decays 
with the slower rate exp(−2κBt) . This is the PDF of the escape times for small κB . After coming back to the general 
case with all the physical constants explicitly present this distribution is found to be Exp(2κD/L) . Observe that 
the average time spent in the domain during a visit is proportional to its length L, therefore this approximation 
preserves the globally uniform distribution of particles. We illustrate how the resulting approximation looks like 
for multiple domains in Fig. 4.

We are now able specify the random walk model. First, we need to fix the locations of the domains xk . These 
are drawn independently for each trajectory which corresponds to a typical experiment where we trace multiple 
particles scattered across larger area.

In "Non-Gaussianity stemming from confinement". we noted that if xk are independent from each other hey 
should be drawn from the stationary (i.e. translationally invariant) Poisson point measure. For simulations one 
can use the fact that the standard Poisson measure (corresponding to the first barrier put at point x0 = 0 ) con-
verges to the stationary one rather quickly. It suffices to put barriers one after another until sufficiently large x are 
reached (for domain size 1 few hundred is more than enough) and then move the beginning of the coordinate 
frame there. More elegant approach is to correct the initial domain. The proper choice was described in the Ref. 
49, we draw L0

d= Gam(2, 1),�
d= Unif (0, 1) and put the left end at (�− 1)L0 , the right end at �L0 . The rest of 

the domains is unaffected and they have lengths Lk with i.i.d. Exp(1) distributions.
The random walk starts at domain k = 0 , after T1

d= Exp(2κD/L0) it jumps with probability 1/2 to k = 1 
domain or to k = −1 one. The jumping with the analogical domain-dependent waiting times repeats until we 
reach the final domain kf  for which the sum of waiting times exceeds t. The position of the particle is then drawn 
from the uniform distribution Unif (xkf , xkf +1) where xk denotes the left end of the kth domain.

Conveniently, this approximation decouples parameters κ and D from the dynamics, now they only determine 
the timescale. We may standardise this random walk by saying Xt has Exp(1/Lk) waiting times, the physical 
units are can then be returned considering the process with rescaled time X2κDt . We will use this useful non-
dimensional parameter further on, one can then return to our previous standard example with κ = 1/50 by 
dividing the time by the divisor 25.

This random walk depends on the local barriers’ placement (that is quenched) which makes the analytical 
analysis difficult. Both the domain sizes and waiting times are short-tailed distribution, so in this model the 
particle explores the space relatively freely and it may be expected that the annealing procedure should yield a 
good approximation. Actually, we will make another simplification at the same time by removing the correlation 
between the subsequent jumps and waiting times. For the quenched random walk each transition moves the 
probability mass into a uniform distribution inside some domain and is therefore correlated with the (domain size 
dependent) subsequent escape time. If we think about the quenched random walk as jumping from the middle 
to the middle of the domain, each transition has length Lk/2+ Lk±1/2 . One can just consider annealed random 
walk with this property, but it can be considerately simplified if we just divide all the transition lengths in half.

The annealed model is thus as follows: we draw the initial domain size as L0
d= Gam(2, 1) and the subse-

quent ones as i.i.d. Lk
d= Exp(1) . The corresponding waiting times are drawn as Tk

d= Exp(2/Lk) or equivalently 

(11)
�n = 2nπ +

2κB√
n2π2 + 2κB + nπ

+O
(
κ2B
)
,

βn = �n + π , n ∈ {0, 1, 2, . . .}.

Figure 4.   Schematic comparison of the original PDF (black lines) and the base mode approximation (red 
lines) with gradients exaggerated; for small κ the functions are close to a step function with jumps at the 
barriers (green lines). The approximation has the shape Ak(t) cos(

√
2κ/Lkx) inside each domain, centred 

for the middle. The cosines are then approximated by ones, so the PDF is given by the amplitudes Ak(t) . 
The random walk approximation is equivalent to stating that Ak evolve according to the master equation 
dAk/dt = 2κDL−1

k (−Ak + Ak−1/2+ Ak+1/2) ; one can also think about it as a trap model66, though with traps 
having varying sizes and exponential waiting times.
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Tk = EkLk/2,Ek
d= Exp(1) . Using them we construct a CTRW, i.e. the random sum 

∑Nt
k=0 Jk generated by jumps 

Jk := ±Lk/2 and the counting process Nt := #{k : T1 + . . .+ Tk ≤ t} . This process should approximate the 
centre of the domain the particle is in; to obtain the final position we account for the last local equilibrium by 
adding Unif ((�− 1)L0,�L0) if Nt = 0 or Unif (−LNt /2, LNt /2) if Nt ≥ 1.

We show the positional PDFs, averaged over independent numerical realisations of the environment and the 
particle, in Fig. 5. There we have chosen D = 1 which determines the timescale and �Lk� = 1 which analogically 
fixes the position scale. The comparison proves that the random walk models are quite successful at capturing 
the bulk of the probability. There is a noticeable (but not huge) difference in the rate of exponential decay of the 
annealed process, but it is to be expected in this type of approximation.

The simulations also suggest that all the processes have similar Gaussian limit. For the annealed CTRW the 
Brownian limit can be derived in a formal way using the standard approach. We consider the rescaled process 
Xct/

√
c and then push the parameter c to infinity. In this limit the correction at the last site gets squeezed to zero, 

so it may be ignored. The rescaled counting process Nct/c converges to t/�Tk� = 2t (this is the renewal theorem) 
and the underlying classical random walk Sn :=

∑n
k=0 Jk converges to the Brownian motion, 

Scn/
√
c →

√
�J2k �Bn = Bn/

√
2 . The CTRW Xt is given by subordination of Sn by Nt , so it converges to 

B2t/
√
2

d= Bt
67. Important thing to notice here is because the counting process Nt collapses to a deterministic 

function, the dependence between waiting times Tk and jumps ±Lk/2 becomes irrelevant in the long time limit.
As a consequence, after accounting for all the physical constants, the long time effective diffusion coefficient 

Deff := limt→∞ δ2X(t)/(2t) of the annealed process is

This agrees with the former results which were established for the systems with periodically placed barriers39,68–71. 
A comparison of Deff  observed in the simulations of the transiently confined diffusion and the theoretical value 
(12) is shown in Fig. 6.

(12)Deff = �κB�D.

Figure 5.   Comparison between the Euler scheme simulation ( �t = 0.0005 ) of the diffusion process (6), (7) 
with D = 1, κ = 1/50 , the random walk approximation X2κDt in the quenched environment, and the annealed 
version with the correlated jumps and waiting times. (The PDFs are symmetrical, we only show the right half.) 
In the regime t = 10 the mass contained in the initial domain is dominating; for t = 50 the majority of the PDF 
corresponds to few jumps, t = 100 is the start of the Gaussian regime (in the semi-log space they are nearly 
parabolas).

Figure 6.   Time dependent diffusivity defined as D(t) := δ2X(t)/(2t) calculated from the numerical simulation 
of the transiently confined process (6), (7) with short time D = 1 and �Lk� = 1 . For various permeabilities κ 
the diffusivity D(t) starts at D(0) = 1 and decays, reaching the level close to the value of theoretical prediction 
(12) derived for the annealed process. The range of Deff/D shown was suggested by the experiments of the hop 
diffusion38.
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It is worth to note that this process is Fickian (has linear square displacement), but the transition from short-
time diffusion constant D to the long-time Deff = �κB�D causes the mean square displacement to be a convex 
function. This behaviour can be seen in Fig. 7 and bears great resemblance to contemporary experimental results 
for porous media38,41. The observed shape is easy to be mistaken for subdiffusion (MSD ∝ tα ,α < 1 ); this “inter-
mediate subdiffusive transport”72 suggest paying strong attention towards this possibility in the applied works 
as it could be misleading when observed without the entire six orders of magnitude shown on the time axis.

Figure 7 also indicates the time range in which we can expect the non-Gaussian behaviour. For short times 
the particle did not yet explore its initial domain and behaves like undisturbed Brownian motion with diffusivity 
D. For very long times the particle crossed a large number of domains, the environment becomes homogenised 
in this scale and the movements are again Brownian, but with lowered diffusivity Deff  . But, in the range between, 
where the MSD in Fig. 7 bends, the particle’s movements are strongly affected by the local environment, which 
originates the non-Gaussianity.

Bessel and gamma waiting times CTRWs
It seems reasonable that the dependence between waiting times and jumps may not be a crucial aspect of the 
dynamics. We will remove it and analyse the resulting CTRW revealing its non-Gaussian behaviour.

For a particle exploring a medium with no long time correlation sources (such as strong traps) the depend-
ence becomes irrelevant at long times and even at short times its is much weaker than in models such as Lévy 
walks. For the latter class, the amplitudes of jumps and waiting times are identical and the joint distribution 
is degenerate73. In our case it has a smooth PDF pJ ,T (x, τ) = exp(−2|x|) exp(−τ/|x|)/|x| and the correlation 
between the jump amplitudes and waiting times has a lower value around 0.5.

Similarly, we may ignore the uniform distribution within the last domain and say that the particle just stops in 
the middle of the last domain. Using the same line of thought, we can say that the particle started in the middle 
of the first domain which therefore has form [−L0/2, L0/2] . Conveniently, it makes the distribution of the initial 
stationary state and of the subsequent jumps the same, that is the Laplace distribution Lap(0, 1/2) derived in 
(1). It clearly introduces noticeable error for very short times when there is a significant probability mass in the 
initial domain. The uncorrelated CTRW PDF pX can be easily corrected by the formula

where pstatX  is the stationary PDF in the uncentred domain, see the Ref. 49. For the clarity of the presentation we 
will ignore this correction further on, but we note it makes the agreement shown in Fig. 10 better for the short 
times.

After all these steps, we end up with a CTRW​

with jumps Jk
d= Lap(0, 1/2) and independent waiting times Tk = EkLk/2 . The sum starting from k = 0 accounts 

for the initial distribution. Conditioning and direct integration shows that Tk have PDF which can be expressed 
by the Bessel function, pT (τ ) = 4K0(

√
8τ ) . This distribution or the distribution of 

√
Tk appear in various sources 

as the Bessel distribution or K-distribution74,75, we will use the former term. Its peculiar property is that this PDF 
has logarithmic singularity at 0+.

The obtained Bessel waiting times CTRW is simple enough that one can use Montroll-Weiss formula to 
obtain expressions for the moments and PDF in Laplace and Fourier-Laplace spaces7. In particular it shows that 
the MSD has a logarithmic cusp ∝ t ln(1/t) at small times t → 0+ , see blue line in Fig. 8. However, we will not 

(13)p′X(x; t) = P(T1 < t)pstatX (x; t)+ P(T1 ≥ t)pX(x; t),

(14)Xt =
Nt∑

k=0

Jk , Nt = #{k : T1 + · · · + Tk ≤ t}

Figure 7.   The MSD of the simulated transiently confined diffusion, D = 1, �Lk� = 1, κ = 1/50,�t = 0.001 
(blue line) together with the short time prediction of the unconstrained Brownian motion with δ2X(t) ∼ 2Dt 
(red dashed line) and the long time prediction (12) with δ2X(t) ∼ 2κDt (green dashed line).



10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5101  | https://doi.org/10.1038/s41598-021-83364-0

www.nature.com/scientificreports/

pursue this route, instead we will use a method which circumvents the use of Laplace transform and provides 
formulas which work globally with respect to t.

This is made possible if we approximate the waiting times distribution with a similar one for which the PDF 
of the counting process can be more easily managed. Counting processes with infinitely divisible waiting times 
are known to be well-studied; from this class short tailed processes are commonly modelled using gamma 
distribution (especially in finance76). From those, Gam(1/2, 1) is remarkably close to the Bessel PDF which is 
reflexed in very small Kolmogorov distance ≈ 0.0395 . To put this number in a perspective, in standard hypothesis 
testing setting, we would need samples with around 2000 observations to notice the difference. Crucially, this 
distribution also has the same mean, which is necessary to preserve the Brownian limit of the original process.

We remark that such a significant similarity seems to stem from deeper properties of the distributions in 
question. Gamma distribution has wrong both x → 0+ asymptotics ( 1/

√
x instead of logarithmic) and x → ∞ 

asymptotic (exponential instead of exp(−
√
x) ). However, it nearly does not matter, as Gam(α, 1) for α = 1/2 

balances these two discrepancies so they cancel themselves out for the vast majority of the probability mass. 
The simple value of the parameter α = 1/2 seems to be a coincidence, careful numerical study suggests that the 
value α ≈ 0.494 is marginally better. For any practical purpose the difference is insignificant but it is worth to 
add that the rest of the argument below does not depend on this particular value α = 1/2 but rather only on α 
being sufficiently close to 1.

We start with a counting process Nt with G(1/2, 1) waiting times. Knowing the exact distribution of the sums 
T1 + · · · + Tn we can determine the PDF of Nt using the relation

here Ŵ̃ is the regularised gamma function, Ŵ̃(a, t): =
∫∞
t dssa−1 exp(−s)/Ŵ(a) . From this we get PDF expressed 

as a forward difference

The PDF of the whole CTRW can be linked to pN if we condition it by the number of jumps performed,

where Sn is, as before, a partial sum process, Sn := J0 + · · · + Jn . To obtain its PDF we represent each jump as 
a difference of two independent exponential variables J d= J + − J − , J ± d= Exp(2) . Because of this their sum 
can also be split into Sn = (J +

0 + · · · + J +
n )− (J −

0 + · · · + J −
n ) = S+

n − S−
n  . Now, we can use the fact that 

S±
n  have a simple distribution, i.e. Gam(n+ 1, 2) , and calculate pS as a convolution

(15)
P(Nt ≥ n) = P(T1 + · · · + Tn ≤ t)

= P(Gam(n/2, 1) ≤ t) = Ŵ̃(n/2, t);

(16)
pN (n; t) = P(Nt = n) = P(Nt ≥ n)− P(Nt ≥ n+ 1)

= Ŵ̃(n/2, t)− Ŵ̃((n+ 1)/2, t).

(17)pX(x; t) =
∞∑

n=0

pS(x; n)pN (n),

Figure 8.   Comparison of the MSD and LCF with ω = 1/2, 1 for simulations of Bessel waiting times CTRW, 
gamma waiting times CTRW, and their analytical approximations (22) and (23). LCF being lower than MSD 
shows that the distribution has more spread out bulk than Gaussian.
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Finally, (16) and (18) substituted into (17) form the exact series representation of the PDF of CTRW with gamma 
waiting times and Laplace jumps. It can be easy plotted and compared with the data. Alas, because of the com-
plicated form of (16) and (18) it is unwieldy for analytical investigation. To proceed, we will introduce another 
two approximations. The first yields the Fourier transform of the PDF and moments.

We will exploit the fact that the Poisson counting process has a simple PDF tn exp(−t)/n! and survival func-
tion Ŵ̃(n, t) . It has the same shape of graph as the distribution (15), i.e. Ŵ̃(n/2, t) , as we see it is only rescaled by 
1/2. So, for the PDF expressed as a forward difference between this function at n+ 1 and n we can replace the 
result by the Poisson PDF rescaled by 1/2

As mentioned previously, the same argument works also for more general G(α,β) waiting times for which the 
PDF would be rescaled by α instead of 1/2. What we did here is basically a perturbation of the counting process 
around the Poisson one which states that as long as the power law tα−1 at t → 0+ is not to far away from α = 1 
the obtained distribution is the Poisson one rescaled.

This procedure does not preserve the normalisation of the PDF. Correcting it leads to

where E1/2 is the Mittag-Leffler function; for this particular parametrisation it can be also expressed as 
E1/2(x) = exp(x2) erfc (−x).

The error we make in this approximation is a differentiation error; it depends only on the smoothness of the 
underlying function. Therefore, it will become smaller when t increases and the distribution spreads. So for large 
times this correction of normalisation is unimportant, but it helps for the small times, making the approxima-
tion globally efficient.

To simplify the formulas, for the remainder of this section let us mark out the initial condition, i.e. decom-
pose Xt = Xt + X0 . By conditioning, we relate the distribution of Xt in the Fourier space to the transform of the 
jumps’ PDF p̂J (ω) = 1/(1+ ω2/4),

where for brevity we denoted z :=
√
t/(1+ ω2/4) . This formula can be directly compared against experimental 

data by using the sample estimate of 〈cos(ωXt)〉.
We want to reveal the non-Gaussian nature of the process and a convenient form to do is log-characteristic 

function (LCF) ζω
X
(t) := −2 ln �cos(ωXt)�/ω2 . It measures dispersion of the displacements like MSD but gives 

bigger emphasis of the spread of probability bulk, so it is expected to be smaller than MSD for processes with a 
broader tails and more peaky PDF (for any ω)77. Indeed, for

the first linear term is dominating for the large times and the second one ∼
√
tπ−1/2/(1+ ω2/4) is dominat-

ing for the short times; both have scaling coefficients smaller than those of the MSD, which we calculate as the 
second derivative of (21)

(18)

pS(x; n) =
∫ ∞

−∞
dypS+(y; n)pS−(−(|x| − y); n)

=
∫ ∞

0
dzpS+(|x| + z; n)pS−(z; n)

= 4e−2|x| 4n

(n!)2

∫ ∞

0
dz(z + |x|)nzne−4z

=
1

n!

n∑

k=0

(2n− k)!
k!(n− k)!4n−k

|x|ke−2|x|.

(19)pN (n; t) ≈
1

2

tn/2

Ŵ(n/2+ 1)
e−t .

(20)pN (n; t) ≈
tn/2

Ŵ(n/2+ 1)

1

E1/2
(√

t
) ,

(21)

p̂X (ω; t) =
∞∑

n=0

(
p̂J (ω)

)n
pN (n; t)

≈
∞∑

n=0

zn

Ŵ(n/2+ 1)

1

E1/2
(√

t
) =

E1/2(z)

E1/2
(√

t
) ,

(22)ζωX (t) ≈ t
1+ ω2/8

(1+ ω2/4)2
+ ln

erfc (−z)

erfc
(
−
√
t
)

(23)
δ2X (t) = �X 2

t � = −
∂2

∂ω2
p̂X (ω; t)

∣∣∣
ω=0

≈ t + π−1/2

√
t

erfc
(
−
√
t
) e−t .
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Variable Xt corresponds to X0 = 0 initial condition, but to account for the non-zero one we only need to add 
�X2

0 � = 1/2 to the MSD and −2 ln �cos(ωX0)�/ω2 = 2 ln(1+ ω2/4)/ω2 to the LCF (it is as expected always 
≤ 1/2 ). For an illustration of the behaviour of these dispersion measures see Fig. 8. It is also interesting to note 
that the MSDs shown there prove that in practice it is very hard to see the difference between the logarithmic 
cusp (at t → 0+ ) of the Bessel waiting times CTRW and the square-root cusp of the gamma waiting times CTRW 
whereas the difference in asympotics might have suggested otherwise.

Continuing the analysis of non-Gaussianity, it can be also described using higher moments and one of par-
ticular interest is the excess kurtosis

For any Gaussian variable it is 0; variables with tails broader than Gaussian are expected to have positive excess 
kurtosis (to be “leptokurtic”) and in particular for any Laplace variable it equals 3. We get the fourth moment 
from the fourth derivative,

Substituting the calculated averages into (24) leads to a rather bulky, but purely elementary formula for KX(t) , 
which is compared against simulations in Fig. 9. This function starts from KX(0) = 3 and then monotonically 
decays, at the beginning with rate dKX/dt = 6(1− 4/π) and as time grows the decrease becomes faster, reach-
ing asymptotic ∼ 9/(2t) . This behaviour reflects the initial Laplace regime which transitions to the long-time 
Gaussian relaxation.

As a side remark, we note that the kurtosis of Xt diverges at 0, KX (0+) = ∞ and then it converges to 0 in the 
same manner as KX(t) . This happens because kurtosis measures the broadness of the distribution’s tails and also 
its spikiness at x = 0 . In this case the latter is the culprit: the initial condition X0 = 0 causes the distribution of 
Xt to have Dirac delta at x = 0 as Xt = 0 unless T1 > t . For a system like ours it is clearly an unphysical artefact, 
which shows the importance of a proper choice of the initial condition.

Compound Poisson approximation
The methods which we used in the former section were successful in revealing the broad tails of the studied 
diffusion, but it would be beneficial to show the exponential decay of the PDF directly78. To achieve this we are 
introducing a second CTRW approximation with a very simple memory structure which will yield a full asymp-
totic series expansion of the PDF.

The insight that we use is a particular interpretation of the gamma waiting times CTRW. The PDF of the 
gamma waiting times process agrees with the Poisson counting process at even n. This is because a sum of any pair 
of Gam(1/2, 1) waiting times has exponential waiting time, Tk + Tk+1

d= Gam(1/2, 1)+ Gam(1/2, 1)
d= Exp(1) . 

Essentially, if we ignore odd numbers of jumps, the process behaves exactly like the one with exponential waiting 
times which makes double jump each time. Previously, we accounted for the odd numbers of jumps by interpo-
lating the PDF with the Poisson formula.

The second possibility is to replace the counting process with double jumps by the one with twice the intensity 
but only single jumps. This way the average number of jumps remains the same (we just spread them), however 
we distort their variability. For this reason the second approximation is expected to be less accurate than the first 

(24)KX(t) :=
�X4

t �
�X2

t �
2
− 3 =

�X 4
t � − 3�X 2

t �
2 + �X4

0 � − 3�X2
0 �

2

(
�X 2

t � + �X2
0 �
)2 .

(25)
�X 4

t � =
∂4

∂ω4
p̂X (ω; t)

∣∣∣
ω=0

≈ t(t + 9/2)+ 3π−1/2 (t + 1)
√
t

erfc
(
−
√
t
) e−t .

Figure 9.   Excess kurtosis calculated from the simulations of CTRW with Bessel waiting times, gamma waiting 
times compared with the approximation (23),(25). This type of shape is shows relaxation from Laplace to 
Gaussian distribution.
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one, but it makes up for it by providing useful representation of the PDF. For a comparison of this process to the 
other CTRWs considered in this work see Fig. 10, which proves that the approximation error mainly affects the 
low probability tails, whereas the bulk is preserved.

Thus, we have come to consider the CTRW with Laplace jumps and the Poisson counting process Poiss(2t) . 
In the decomposition Xt = Xt + X0 the term Xt now belongs to the class of compound Poisson processes. These 
processes are very regular, being Markovian, infinitely divisible and having independent increments. As one 
of the consequences, Xt must have linear MSD, precisely δ2

X
(t) = t . It means that in this approximation we 

completely neglect the non-linearity of the MDS present in the more detailed models. However even in those, 
the linear range was appearing quickly (even when the motion was still highly non-Gaussian), see Fig. 8, so the 
error caused by this is not huge.

The Fourier space representation of the compound Poisson PDF often has a sleek form; in our case

Again, we may use it to calculate excess kurtosis, which is a simple rational function

This function decays to 0 even slower than in the case of the gamma waiting times, dKX/dt = 0 at t = 0+ and 
the asymptotic decay is ∼ 3/t , but overall the shape of this function is not much different than before.

Now, to get the PDF of Xt in the position space we will use a particular representation available only for the 
compound Poisson processes. Instead of dividing each jump into the difference of two variables like before, we 
separate them into two categories corresponding to which are positive and which are negative for a given trajec-
tory; the same is made to the initial condition. This can always be done, but only for the Poisson process the two 
thinned counting processes obtained, N+

t := #{k : T1 + · · · + Tk , Jk > 0} and N−
t := #{k : T1 + · · · + Tk , Jk < 0} 

are independent and Poisson with the twice smaller intensity, N±
t

d= Poiss(t) (this is a particular consequence 
of the process being Markovian). Thus, we may represent the total displacements as a difference of two positive, 
independent processes, Xt = X+

t − X−
t  , where

We again use the fact that J0 + · · · + Jn
d= Gam(n+ 1, 2) ; conditioning by the number of jumps leads to a 

surprisingly elegant formula for the PDF of X±
t

79,

From this we immediately determine the part of pX corresponding to the series of jumps in a one direction, these 
far tails are given by P(X0 > 0)pN−(0; t)pX+ (x; t) = I0(2

√
2tx)e−2xe−2t . Of course the full PDF is significantly 

broader. As in (18) it is given by the convolution

(26)p̂X (ω; t) = exp

(
2t

(
1

1+ ω2/4
− 1

))
.

(27)KX(t) =
3t + 3/4

(t + 1/2)2
.

(28)X±
t =

N±
t∑

k=0

J
±
k , i.i.d. J ±

k
d= |Jk|

d= Exp(2).

(29)

pX±(x; t) =
∞∑

n=0

pGam(n+1,2)(x)pN±(n; t)

= 2

( ∞∑

n=0

(2xt)n

(n!)2

)
e−2xe−t = 2I0

(
2
√
2tx

)
e−2xe−t .

Figure 10.   Comparison of the correlated CTRW and further approximations. Bessel and gamma waiting times 
CTRWs are nearly undistinguishable, all others are also close. These random walks have the same Gaussian 
limit, as shown for t = 8 . Due to using non-dimensional time in CTRW approximations, the plots here 
correspond to the same time regimes as in Fig. 5.
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Let us denote the integral on the right in the above by I = I(x; t) . As Bessel function I0 increases monotonically, 
but slower than exponentially, I(x; t) is also increases slower than exponentially with respect to t and x. The 
dominating factor of the tails is thus exp(−2|x|) which is completely static and is inherited from a single jump 
PDF, the rest is some time dependent factor and second order correction with respect to x. These are important 
as they contain information about the dynamics. The rest of the section is devoted to their derivation.

The integral I  can be expanded into a series. One method is using Taylor expansion of I0 ; this leads to a 
formula similar to the one shown in the previous section. However, more efficient expansion can be obtained 
if we integrate by parts.

It is easier to explain the general method first: under mild regularity assumptions on f, an integration with 
exponent can be expressed as the infinite order differentiation operator

In our specific case we need to take f (z) = I0
(
2
√
2t(|x| + z)

)
× I0

(
2
√
2tz

)
 and a = 4 . Function I0

(√
z
)
 is 

absolutely monotonic, so the obtained series consists of positive terms, i.e. we divide the probability mass into 
Bessel-like modes.

It can be further simplified if one notes that the derivatives of I0
(
2
√
2tz

)
 reduce to factors depending only on 

t. We expand each derivative using the binomial formula

and then rearrange the terms according to the order of derivative acting on I0
(
2
√
2t(|x| + z)

)
 . The coefficient 

before the nth one is

where 1F1 is Kummer’s function and (x)k is Pochhammer symbol. Denoting the polynomial on the right by qn(t) 
the integral of interest takes the form

Alternatively, instead of using In , one can also repeatedly apply equalities dI0(z)/dz = I1(z) , 
dI1(z)/dx = I0(z)− I1(z)/z and express the result as a mixture of I0 and I1 multiplied by powers of t and x. 
In any case, the Bessel modes decay with respect to n and have prefactors of type tα/xβ , which shows that this 
expansion may converge slowly for large t and small x but will converge quickly for small t and large x.

Going back to the PDF under consideration, the expansion becomes

Using the tail asymptotic In(z) ∼ ez/
√
2πz we get the leading behaviour for large |x|

(30)
pX(x; t) =

∫ ∞

0
dzpX+(|x| + z; t)pX−(z; t)

= e−2|x|e−2t

∫ ∞

0
dzI0

(
2
√

2t(|x| + z)
)
I0
(
2
√
2tz

)
4e−4z.

(31)

∫ ∞

0
dzf (z)ae−az = f (0)+

∫ ∞

0
dz

d

dz
f (z)e−az

= f (0)+
1

a

d

dz
f (z)

∣∣∣
z=0

+
1

a

∫ ∞

0
dz

d2

dz2
f (z)e−az = . . .

=
∞∑

n=0

1

an
dn

dzn
f (z)

∣∣∣
z=0

=
1

1− 1
a
d
dz

f (z)
∣∣∣
z=0

.

(32)
dm

dzm
(
f (z)g(z)

)
=
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k=1

(
m
k

)
dk

dzkk
f (z)
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(33)
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(
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(
2
√
2tz
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=
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(
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)
1

4k
(2t)k−n
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=
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(
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,

(34)

I = et/2
∞∑

n=0

qn(t)

4n
dn

dxn
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(
2
√

2t|x|
)
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(
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(
2
√

2t|x|
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.

(35)

pX(x; t) =
∞∑
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4n

(
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confirming the exponential decay of the PDF visible from the simulations, see Fig. 11 for a comparison.
Equation (36) is similar to the large deviation property. We have shown that ln pX(x; t) ∼ −tf (|x|/t) with the 

rate function f (y) = 3/2+ 2y − 2
√
2y . This works for large |x| and any t, but for the larger t the convergence 

becomes progressively slower; this is caused by the coefficients qn(t) increasing with t. Nonetheless, it is not 
always necessarily the best formulation of the problem. For small t the rate function f(|x|/t) diverges, but we can 
still use Eq. (35) because it is exact. For example, if |x| → ∞ and t|x| → ∞ the result is the same, but if we go 
with t → 0 fast enough such that t|x| → 0 we get ln pX(x; t) ∼ 2t|x| − 2|x| − 3t/2.

In any case, the most important factor is the exponential decay exp(−2|x|) exp(−3t/2) which dominates the 
shape of the PDF in the semi-log scale. The rest are corrections which mostly move the straight line −2|x| − 3t/2 
around the coordinate frame. This non-Gaussian Laplace behaviour is observed in the “interim” regime in which 
the particle explores the neighbourhood of several domains and the effective diffusivity has already been reduced 
close to its long-time limit; it is the middle part of the range shown in Figs. 6 and 7 and middle plots in Figs. 5 
and 10 . As a reminder, the results shown here are presented in the non-dimensional time t which is related to 
the physical time t̃ by scaling t = 2κDt̃ as explained in "From the transient confinement to a random walk". The 
displacement unit is the mean distance between the barriers.

Discussion
A robust and growing class of observations is exhibiting linear or power-law mean-square displacement joined 
by the pronouncedly non-Gaussian probability density, which most commonly has the exponential (Laplace) 
shape9–14 (see also the list of references in21). Explaining this phenomena related to Brownian, yet non-Gaussian 
diffusion is crucial for understanding transport within these media and their biochemical properties, a timely 
issue especially in biology and medicine. In spite of this demand, most of the studied analytical models are very 
case-specific80,81 or do not provide description which would reflect the real structure of the considered material, 
the most prominent examples being the superstatistical15–18 and the diffusing diffusivity19–21,82 approaches. The 
line of research presented here follows the widespread conviction that the physical origin of these observations 
lays in the heterogeneity of the studied media and try to emulate it by randomizing the parameters which appear 
in the dynamical equations of the diffusion.

In this work we solve a microscopical model of the heterogeneous medium which is compartmentalised by 
the thick and thin barriers that strongly impede diffusion and cause the transient-confinement of the diffusing 
particles. This choice of model is motivated by the ubiquity of measurements showing this so-called hop dif-
fusion observed in biology29–32,36–38 and the cage effect in chemistry42–44. Non-Gaussian diffusion was observed 
together with these phenomena in multiple works, see the review72. In many other experiments the researchers 
were restricting their attention to only one of these two aspects of transport, which leaves an open and intriguing 
possibility of this link being much more prominent.

In our model the exponential tails of the probability density essentially stem from the lack of spatial cor-
relations in the random medium. For media with more ordered microscopic structure, in particular with the 
periodically placed barriers, the observed probability density is expected to be much more Gaussian41 (see68 
for theoretical discussion). However, if the barriers are placed independently, the distances between them are 
exponential. Any given temporarily trapped particle then has uniform distribution over its current domain, 
but the whole ensemble of particles scattered across the environment is a mixture of uniform distributions and 
exhibits exponential tails.

The simplicity of this argument makes it quite general, but it is not enough to specify the dynamics. For this 
we show how the local behaviour of the particle is equivalent to a classical heat transfer problem and then derive 
the escape times from the domains.

(36)pX(x; t) ∼
(
4π

√
2t|x|

)−1/2
e2

√
2t|x|e−2|x|e−3t/2

Figure 11.   Comparison of the simulated compound Poisson process, expansion (35) and asymptotical 
formula (36) for t = 2 . For smaller times t � 1 the fit is even better. For larger t, as Gaussian regime starts the 
exponential behaviour is pushed towards larger |x|.
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With the known domain sizes and transitions between them it becomes straightforward to interpret the 
“hops” of the hop diffusion as the jumps of a random walk with their distribution directly determined by the 
system’s geometry. Given this approximation, Monte Carlo simulations then show that it is indeed close to the 
original diffusion and preserves the non-Gaussian shape of the probability density bulk. Both are also the cases 
of non-Gaussian diffusion which at long times reaches Brownian limit with the same effective diffusivity.

This process is Fickian in both short and long timescales, but they differ by the diffusivity, which transitions 
from the initial “unhindered” short-time D to the lower Deff = �κB�D ; Such decay of diffusivity was reported 
in numerous experimental works38. The mean Biot number 〈κB〉 is determined by distances between barriers 
and their permeability, �κB� = κ�L� and our results extends the analytical proofs for the systems with periodi-
cally placed barriers68,69. This link between micro- and macroscopic properties of the system may be verified 
experimentally by comparing the estimated diffusivity to the measured parameters of the barriers and their 
distribution in space.

It also causes the mean square displacement to be a convex function and the diffusion becomes subdiffusive 
in the transient time range of the diffusivity decrease. This is a well known phenomenon72, but our model also 
suggest that this behaviour is linked to the non-Gaussian probability density with exponential tails which may be 
observed in the same time regime. Subdiffusive non-Gaussian observations were reported in13,42–44. The derived 
leading behaviour of the probability density (36), formulas for kurtosis (25) and logarithm of the characteristic 
function (22) may be of use in analysing this type of experimental data.

The model which we consider is one-dimensional so one must be careful with applying it to systems with 
higher dimensionality. Nevertheless, it provides strong insights for the crucial aspects of the dynamics applicable 
to the less idealised cases: the random walk behaviour should be observed for more general systems divided 
into the localised, strongly confining domains. What changes are the domain sizes and escape times. But, dur-
ing our analytical calculations of the non-Gaussianity measures and the probability density we introduced few 
subsequent simplifications to the model, removing the dependence of the environment, correlation and even 
approximating transition times. Yet, all the obtained random walks were remarkably similar, showing a surpris-
ing level of universality in our results.

It should be stressed that by this argument we actually establish not one, but three connections, each remark-
able on its own: between systems with barriers and random walks, between random walks and Brownian, yet 
non Gaussian diffusion, and finally, between non Gaussian diffusion and systems with barriers. This approach 
opens new research possibilities in each of these areas, but also offers immediate scientific benefits: we manage to 
express the probability density of the displacements, non-Gaussianity measures and the effective diffusion coef-
ficients using three parameters which describe the medium at microscopic level: in-domain diffusion coefficient, 
the average distance between barriers and their permeability. These relations form a valuable link between the 
molecular structure of the systems in question and the measurements of the non-Gaussian diffusion.

Notation

•	 i.i.d. independent and identically distributed.
•	 d= equal in distribution, has a distribution.
•	 Unif (a, b) uniform distribution, pUnif (a,b)(x) = 1(a,b)(x)/(b− a).
•	 Gam(α, �) gamma distribution, pGam(α,�)(x) = �

α

Ŵ(α)
xα−1e−�x ; it has mean α/�.

•	 Exp(�) exponential distribution, Exp(�) = G(1, �) ; it has mean 1/� thus � is decay rate.
•	 Lap(µ, s) Laplace distribution, pLap(µ,s)(x) = 1

2s e
−|x−µ|/s ; it has variance 2s2.

•	 In(x),Kn(x) modified Bessel functions of the second kind.

Received: 17 February 2020; Accepted: 18 December 2020

References
	 1.	 Feynman, R. P. The Brownian movement. In Feynman Lectures of Physics (Addison-Wesley) 6, 41–45 (1964).
	 2.	 Humphries, N. E. et al. Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature 465, 

1066 (2010).
	 3.	 Merton, R. C. Optimum consumption and portfolio rules in a continuous-time model. J. Econ. Theory 3, 373 (1971).
	 4.	 Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten 

suspendierten Teilchen. Ann. Physik 322, 549 (1905).
	 5.	 Billingsley, P. Convergence of Probability Measures 2nd edn. (Wiley, New York, 1999).
	 6.	 Shlesinger, M. F., Klafter, J. & Zumofen, G. Above, below and beyond Brownian motion. Am. J. Phys. 67, 1253 (1999).
	 7.	 Metzler, R. & Klafter, J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1 (2000).
	 8.	 Coffey, W. T., Kalmykov, Y. P. & Waldron, J. T. The Langevin Equation (Word Scientific, Singapore, 1996).
	 9.	 Wang, B., Kuo, J., Bae, S. C. & Granick, S. When Brownian diffusion is not Gaussian. Nat. Mater. 11, 481 (2012).
	10.	 Metzler, R. Gaussianity fair: the riddle of anomalous yet non-Gaussian diffusion. Biophys. J. 112, 413 (2017).
	11.	 Bhattacharya, S. et al. Plasticization of poly(vinylpyrrolidone) thin films under ambient humidity: insight from single-molecule 

tracer diffusion dynamics. J. Phys. Chem. B 117, 7771 (2013).
	12.	 Hapca, S., Crawford, J. W. & Young, I. M. Anomalous diffusion of heterogeneous populations characterized by normal diffusion 

at the individual level. J. R. Soc. Interface 6, 111 (2009).
	13.	 Lampo, T. J., Stylianidou, S., Backlund, M. P., Wiggins, P. A. & Spakowitz, A. J. Cytoplasmic RNA-protein particles exhibit non-

Gaussian subdiffusive behavior. Biophys. J. 112, 532 (2017).
	14.	 Wang, B., Anthony, S. M., Bae, S. C. & Granick, S. Anomalous yet Brownian. Proc. Natl. Acad. Sci. USA 106, 15160 (2009).
	15.	 Beck, C. & Cohen, E. G. Superstatistics. Phys. A 322, 267 (2003).
	16.	 Beck, C. Superstatistical Brownian motion. Prog. Theor. Phys. Suppl. 162, 29 (2006).



17

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5101  | https://doi.org/10.1038/s41598-021-83364-0

www.nature.com/scientificreports/

	17.	 Beck, C. Generalized statistical mechanics for superstatistical systems. Philos. Trans. R. Soc. A 369, 453 (2011).
	18.	 Ślęzak, J., Metzler, R. & Magdziarz, M. Superstatistical generalised Langevin equation: non-Gaussian viscoelastic anomalous dif-

fusion. New J. Phys. 20, 023026 (2018).
	19.	 Chubynsky, M. V. & Slater, G. W. Diffusing diffusivity: a model for anomalous, yet Brownian, diffusion. Phys. Rev. Lett. 113, 098302 

(2014).
	20.	 Lanoiselée, Y., Moutal, N. & Grebenkov, D. S. Diffusion-limited reactions in dynamic heterogeneous media. Nat. Commun. 9, 4398 

(2018).
	21.	 Chechkin, A. V., Seno, F., Metzler, R. & Sokolov, I. M. Brownian yet non-Gaussian diffusion: from superstatistics to subordination 

of diffusing diffusivities. Phys. Rev. X 7, 021002 (2017).
	22.	 Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. Ann. Rev. Phys. Chem. 51, 99 (2000).
	23.	 He, W. et al. Dynamic heterogeneity and non-Gaussian statistics for acetylcholine receptors on live cell membrane. Nat Commun. 

7, 178 (2016).
	24.	 Sokolov, I. M., & Stratonovich, I. Hänggi and all the rest: the thermodynamics of interpretation. Chem. Phys. 375 (2010)
	25.	 Postnikov, E. B., Chechkin, A., & Sokolov, I. M.: Brownian yet non-Gaussian diffusion in heterogeneous media: from superstatistics 

to homogenization. New J. Phys. 22, 063046
	26.	 Novikov, D. S., Fieremans, E., Jensen, J. H. & Helpern, J. A. Random walks with barriers. Nat. Phys. 7, 508 (2011).
	27.	 Song, Y.-Q., Ryu, S. & Sen, P. N. Determining multiple length scales in rocks. Nature 406, 11701 (2000).
	28.	 Mair, R. W. et al. Probing porous media with gas diffusion NMR. Phys. Rev. Lett. 83, 3324 (1999).
	29.	 Fujiwara, T. K. et al. Confined diffusion of transmembrane proteins and lipids induced by the same actin meshwork lining the 

plasma membrane. Mol. Biol. Cell 27, 1101 (2016).
	30.	 Sadegh, S., Higgins, J. L., Mannion, P. C., Tamkun, M. M. & Krapf, D. Plasma membrane is compartmentalized by a self-similar 

cortical actin meshwork. Phys. Rev. X 7, 011031 (2017).
	31.	 Chein, M., Perlson, E. & Roichman, Y. Flow arrest in the plasma membrane. Biophys. J. 117, 1 (2019).
	32.	 Kusumi, A. et al. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned 

fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34, 351 (2005).
	33.	 Syková, E. & Nicholson, C. Diffusion in brain extracellular space. Physiol. Rev. 88, 1277 (2008).
	34.	 Cory, D. G. & Garroway, A. N. Measurement of translational displacement probabilities by NMR: an indicator of compartmenta-

tion. Magn. Reson. Med. 14, 435 (1990).
	35.	 Yablonskiy, D. A. et al. Quantitative in vivo assessment of lung microstructure at the alveolar level with hyperpolarized 3 He dif-

fusion MRI. Proc. Natl. Acad. Sci. USA 99, 3111 (2002).
	36.	 Krapf, D. Compartmentalization of the plasma membrane. Curr. Opin. Cell Biol. 53, 15 (2018).
	37.	 Fujiwara, T., Ritchie, K., Murakoshi, H., Jacobson, K. & Kusumi, A. Phospholipids undergo hop diffusion in compartmentalized 

cell membrane. J. Cell Biol. 157, 1071 (2002).
	38.	 Murase, K. et al. Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques. Biophys. 

J. 86, 4075 (2004).
	39.	 Latour, L. L., Svoboda, K. & Mitra, P. P. Time-dependent diffusion of water in a biological model system. Proc. Natl. Acad. Sci. USA 

91, 1229 (1994).
	40.	 Sen, P. N. Time-dependent diffusion coefficient as a probe of the permeability of the pore wall. J. Chem. Phys. 119, 9871 (2003).
	41.	 Wang, D., Wu, H., Liu, L., Chen, J. & Schwartz, D. K. Diffusive escape of a nanoparticle from a porous cavity. Phys. Rev. Lett. 123, 

118002 (2019).
	42.	 Weeks, E. R. & Weitz, D. Subdiffusion and the cage effect studied near the colloidal glass transition. Chem. Phys. 284, 361 (2002).
	43.	 Chaudhuri, P., Berthier, L. & Kob, W. Universal nature of particle displacements close to glass and jamming transitions. Phys. Rev. 

Lett. 99, 060604 (2007).
	44.	 Weeks, E. R., Crocker, J. C., Levitt, A. C., Schofield, A. & Weitz, D. A. Three-dimensional direct imaging of structural relaxation 

near the colloidal glass transition. Science 287, 627 (2000).
	45.	 Ebeling, W. & Sokolov, I. M. Statistical Thermodynamics and Stochastic Theory of Nonequilibrium Systems (World Scientific, Sin-

gapore, 2005).
	46.	 Kallenberg, O.: Poisson and related processes. In Random Measures, Theory and Applications, Chap. 3, 70–108 (Springer, Cham, 

2017)
	47.	 Cox, D. R.: Renewal Theory (Methuen & Co., 1962)
	48.	 DLMF, NIST Digital Library of Mathematical Functions. Release 1.0.21 of 2018-12-15, f. W. J. Olver, A. B. Olde Daalhuis, D. W. 

Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller and B. V. Saunders, eds. http://dlmf.nist.gov/.
	49.	 In this more realistic scenario the left end of the initial domain lays at �L and the right one at (�− 1)L ; variable � has the uni-

form distribution Unif (0, 1) . Calculation analogical to (1) yields incomplete gamma PDF pX (x) = Ŵ(0, |x|)/(2|x|) which has 
tails ∼ exp(−|x|)/(2|x|) , they are even thicker than exp(−2|x|) . On the other hand this distribution has logarithmic singularity 
at x = 0 which make the motion more constrained at short distances.

	50.	 Sokolov, I. M. & Stratonovich, I. Hänggi and all the rest: the thermodynamics of interpretation. Chem. Phys. 375, 359 (2010).
	51.	 Sánchez-Palencia, E.: Non-Homogeneous Media and Vibration Theory. Lecture Notes in Physics, Vol. 127 (Springer, 1980).
	52.	 Mandrekar, V. & Pilipenko, A. On a Brownian motion with a hard membrane. Stat. Probil. Lett. 113, 62 (2016).
	53.	 Erban, R. & Chapman, S. J. Reactive boundary conditions for stochastic simulations of reaction-diffusion processes. Phys. Biol. 4, 

16 (2007).
	54.	 Andrews, S. S. Accurate particle-based simulation of adsorption, desorption and partial transmission. Phys. Biol. 6, 046015 (2009).
	55.	 In the overall valuable work of Powles et al. [69] a system with the regularly placed barriers at xk ∈ {. . . ,−1, 0, 1, 2, . . .} is consid-

ered. They claim they obtained the exact PDF for this particular case but no proof is provided and the result may be doubted.
	56.	 Lejay, A. On the constructions of the skew Brownian motion. Probab. Surv. 3, 413 (2006).
	57.	 Lejay, A. The snapping out Brownian motion. Ann. Appl. Probab. 26, 1727 (2016).
	58.	 Lejay, A. A Monte Carlo estimation of the mean residence time in cells surrounded by thin layers. Math. Comput. Simulat. 143, 

65 (2018).
	59.	 Nagylaki, T. Clines with variable migration. Genetics 83, 867 (1976).
	60.	 Barton, N. H. The effect of a barrier to gene flow on patterns of geographic variation. Genet. Res. 90, 139–149 (2008).
	61.	 Borodin, A. N.: Brownian local time. In Stochastic Processes 359–438 (Birkhäuser, 2017).
	62.	 Barthelemy, P., Bertolotti, J. & Wiersma, D. A. A lévy flight for light. Nature 453, 495 (2008).
	63.	 Burioni, R., Caniparoli, L. & Vezzani, A. Lévy walks and scaling in quenched disordered media. Phys. Rev. E 81, 060101 (2010).
	64.	 Burioni, R., Ubaldi, E. & Vezzani, A. Superdiffusion and transport in two-dimensional systems with lévy-like quenched disorder. 

Phys. Rev. E 89, 022135 (2014).
	65.	 Grebenkov, D. S. Partially reflected Brownian motion: a stochastic approach to transport phenomena. In Focus on Probability 

Theory 135–169 (Nova Science Publishers, 2006).
	66.	 Bouchaud, J.-P. & Georges, A. Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. 

Phys. Rep. 195, 127 (1990).
	67.	 Magdziarz, M., Scheffler, H., Straka, P. & Żebrowski, P. Limit theorems and governing equations for Lévy walks. Stoch. Proc. Appl. 

125, 4021 (2015).



18

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5101  | https://doi.org/10.1038/s41598-021-83364-0

www.nature.com/scientificreports/

	68.	 Tanner, J. E. Transient diffusion in a system partitioned by permeable barriers: application to NMR measurements with a pulsed 
field gradient. J. Chem. Phys. 69, 1748 (1978).

	69.	 Powles, J. G., Mallett, M. J. D., Rickayzen, G. & Evans, W. A. B. Exact analytic solutions for diffusion impeded by an infinite array 
of partially permeable barriers. Proc. R. Soc. A 436, 391 (1992).

	70.	 Crick, F. Diffusion in embryogenesis. Nature 225, 420 (1970).
	71.	 Grebenkov, D. S., Van Nguyen, D. & Li, J.-R. Exploring diffusion across permeable barriers at high gradients–I: narrow pulse 

approximation. J. Magn. Reson. 248, 153 (2014).
	72.	 Höfling, F. & Franosch, T. Anomalous transport in the crowded world of biological cells. Rep. Prog. Phys. 76, 046602 (2013).
	73.	 Zaburdaev, V., Denisov, S. & Klafter, J. Lévy walks. Rev. Mod. Phys. 87, 483 (2015).
	74.	 Jakeman, E. & Pusey, P. N. Significance of K distributions in scattering experiments. Phys. Rev. Lett. 40, 546 (1978).
	75.	 Kotz, S., Kozubowski, T. J. & Podgórski, K. The Laplace Distribution and Generalizations (Springer, Berlin, 2001).
	76.	 Papapantoleon, A. An introduction to Lévy processes with applications in finance. arXiv:0804.0482 (2008).
	77.	 Ślęzak, J., Metzler, R. & Magdziarz, M. Codifference can detect ergodicity breaking and non-Gaussianity. New J. Phys. 21, 053008 

(2019).
	78.	 We note that this route will bring stronger results than using the Fourier transform (21) directly, as it is unfortunately hard to 

inverse analytically. One can use the method of steepest descent to uncover the tail behaviour of pX , but the result does not seem 
to be very practical, describing only a far away range not easily available in experiments.

	79.	 Buchak, K. & Sakhno, L. Compositions of Poisson and Gamma processes. Mod. Stoch. Theory Appl. 4, 161 (2017).
	80.	 Kurtuldu, H., Guasto, J. S., Johnson, K. A. & Gollub, J. P. Enhancement of biomixing by swimming algal cells in two-dimensional 

films. Proc. Natl. Acad. Sci. USA 108, 10391 (2011).
	81.	 Menzel, A. M. & Goldenfeld, N. Effect of Coulombic friction on spatial displacement statistics. Phys. Rev. E 84, 011122 (2011).
	82.	 Sposini, V., Grebenkov, D. S., Metzler, R., Oshanin, G. & Seno, F. Universal spectral features of different classes of random-diffusivity 

processes. New J. Phys. 22, 063056 (2020).

Acknowledgements
This work was supported by the Pazy foundation Grant 61139927.

Author contributions
J.Ś. and S.B. wrote the main manuscript text. J.Ś. made the numerical simulations and plots. S.B. made the final 
corrections and adjustments.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.Ś.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2021

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	From diffusion in compartmentalized media to non-Gaussian random walks
	Non-Gaussianity stemming from confinement
	Transiently confined diffusion with locally Brownian dynamics
	From the transient confinement to a random walk
	Bessel and gamma waiting times CTRWs
	Compound Poisson approximation
	Discussion
	Notation
	References
	Acknowledgements


