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Determination of the composition 
of heterogeneous binder solutions 
by surface plasmon resonance 
biosensing
Jimmy Gaudreault1, Benoît Liberelle1, Yves Durocher2, Olivier Henry1,3* & 
Gregory De Crescenzo1,3*

Surface plasmon resonance-based biosensors have been extensively applied to the characterization 
of the binding kinetics between purified (bio)molecules, thanks to robust data analysis techniques. 
However, data analysis for solutions containing multiple interactants is still at its infancy. We here 
present two algorithms for (1) the reliable and accurate determination of the kinetic parameters of 
N interactants present at different ratios in N mixtures and (2) the estimation of the ratios of each 
interactant in a given mixture, assuming that their kinetic parameters are known. Both algorithms 
assume that the interactants compete to bind to an immobilized ligand in a 1:1 fashion and 
necessitate prior knowledge of the total concentration of all interactants combined. The effectiveness 
of these two algorithms was experimentally validated with a model system corresponding to mixtures 
of four small molecular weight drugs binding to an immobilized protein. This approach enables the 
in-depth characterization of mixtures using SPR, which may be of considerable interest for many drug 
discovery or development applications, notably for protein glycovariant analysis.

In the last three decades, Surface Plasmon Resonance (SPR)-based biosensors have become the method of choice 
to study binding between an immobilized (bio)molecule—referred to as the ligand—and its soluble partner—the 
analyte. The said analyte may be  purified1 or in a crude  extract2–4. Through the years, important advances were 
made in the development of optimized experimental  protocols5 and data analysis  methods6–12. Robust data 
analysis software packages were created and contributed to the success of this label-free  technology13–16. Recent 
efforts have brought the SPR technology at the forefront of drug development for (i) the off-line17 or at-line18 
characterization of the critical quality attributes of biotherapeutics or (ii) for the screening of large libraries of 
drug  candidates19. On that specific note, our group recently demonstrated that the throughput of a SPR-based 
experiment could be improved by injecting two analytes simultaneously, since the binding kinetics of both 
analytes could be identified in only one set of  experiments10,12. These methods have yet to be expanded to the 
study of more than two analytes. We also demonstrated that analyte concentration could be identified from a 
SPR sensorgram, provided that the kinetics of its interaction to its immobilized ligand are  known20. However, 
this approach, which uses parameter identification techniques, only considered pure analyte injections.

The SPR identification of the kinetic parameters for each individual analyte within a complex analyte mixture 
would also be of great interest to determine the individual kinetic parameters of various (bio)molecules that 
are hard to separate from each other. Such is the case, for instance, for the various glycoforms of therapeutic 
monoclonal antibodies produced in mammalian cell cultures, for which binding to their receptors is affected by 
their glycosylation  state21–27. Hence, SPR data analysis techniques that can extract specific kinetic parameters 
for different glycoforms are required for the analysis of antibody SPR sensorgrams.

The present study aims at providing a twofold framework enabling the treatment of mixtures of more than two 
analytes. In a first part, we present an algorithm to extract meaningful kinetic parameters from SPR sensorgrams 
corresponding to the injections of N mixtures of N analytes. In a second part, we exploit the prior knowledge 
of the kinetic parameters of a set of analytes to estimate the composition of a mixture of these analytes by per-
forming a sensorgram analysis. We validated our algorithms using a well-characterized model  system10–12,20,28, 
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which consists of four small molecular weight drugs all binding to immobilized carbonic anhydrase II (CAII) 
with different kinetics and affinities.

Materials and methods
Materials. Biacore T100 biosensor, research-grade CM5 sensor chips, HBS-EP buffer (HEPES Buffered 
Saline with 30 mM EDTA [ethylenediaminetetraacetic acid] and 0.5% (v/v) surfactant P20), 70% v/v glycerol 
in water and ethanolamine were purchased from Cytiva (formerly GE Healthcare, Baie d’Urfe, QC). N-ethyl-
N′-(3-dimethylaminopropyl) carbodiimide (EDC), N-hydroxysuccinimide (NHS), carbonic anhydrase isozyme 
II (CAII) purified from bovine erythrocytes, glacial acetic acid, sodium acetate, 4-carboxybenzenesulfonamide 
(CBS), 1,3-benzene-disulfonamide (BDS), sulfanilamide, furosemide and dimethyl sulfoxide (DMSO) were pur-
chased from Sigma-Aldrich Canada Ltd (Oakville, ON).

Biosensor surface preparation. The biosensor surface preparation was performed according to previ-
ously published  protocols28. Briefly, sensor chip surfaces were activated at 25 °C with an injection of 1:1 0.4 M 
EDC and 0.1  M NHS during 7  min at 20μL/min. CAII (0.1  g/L in 10  mM acetate buffer, pH 5.0) was then 
injected (30 s pulses at 20μL/min) until a density of immobilized CAII of approximately 5000RU was reached. 
Next, a 4 min injection of ethanolamine (1 M, pH 8.5) at 20μL/min was performed to block the remaining 
activated sites. Ultimately, the whole process led to approximately 4500RU of immobilized CAII. Blank sur-
faces were generated using the same activation/deactivation protocol but omitting CAII injections. After ligand 
immobilization and blank surface preparation, the system was extensively primed with running buffer (HBS-EP 
containing 3% of DMSO) and normalized with a solution of 70% v/v glycerol in water.

Biacore sample injections. Analyte preparation. HBS-EP containing 3% of DMSO (HBS-EP + 3%DMSO) 
was used as running buffer. All the analytes were dissolved in DMSO and aliquoted at the following concentra-
tions: [CBS] = 596.42 mM, [BDS] = 118.51 mM, [sulfanilamide] = 563.30 mM, [furosemide] = 3075.30 mM. For 
each experiment, one aliquot of each analyte was dissolved in HBS-EP + 3%DMSO to reach the following con-
centrations: [CBS] = 52.98 μM, [BDS] = 10.49 μM, [sulfanilamide] = 50.27 μM, [furosemide] = 50.52 μM. Each of 
these stock solutions were then used to prepare the different dilutions and mixtures used in this study.

Single‑analyte injections. All injections were performed in duplicate at a flow rate of 85μL/min. The data col-
lection rate was set to 10 Hz and the temperature to 18 °C. For ‘classical’ single-analyte kinetic experiments, CBS, 
BDS, sulfanilamide and furosemide were injected alone at 5 different concentrations ranging from 1.06 μM to 
52.98 μM, 210 nM to 10.49 μM, 1.01 μM to 50.27 μM and 1.01 μM to 50.52 μM, respectively. For double-refer-
encing purposes, 2 buffer injections per analyte were also performed. The injection time was set to 60 s for all 
analytes and the dissociation time was 420 s for CBS, 240 s for BDS and sulfanilamide and 300 s for furosemide. 
No regeneration step was needed between injections as the dissociation was complete in every case. This agrees 
with previous studies that used this system 10–12,20,28. The SPR biosensor used in this study (Biacore T100) uses a 
detection mode based on varying the incident angle while keeping the wavelength constant. The biosensor uses 
the geometry proposed by Kretschmann and  Raether29,30.

Multiple‑analyte injections. The four analytes were combined to create 12 mixtures each containing the 4 ana-
lytes, as described in Table 1. Four mixtures were rich in one analyte (70–10–10–10 mixtures, A–D), 4 mixtures 
had a dominating presence of one analyte, but at lower purity (40–20–20–20 mixtures, E–H) and 4 mixtures 
were created with random compositions (Random mixtures, I–L). The mixture creation was intended to mimic 
different types of mixtures one could wish to study in a practical application. For all mixtures, the analyte and 
the buffer injection phases were set to 240 and 320 s, respectively. Each mixture was injected in duplicate at 18 °C 
with a flow rate of 85μL/min at 7 different concentrations comprised between 300 nM and 15 μM with a data 
collection rate of 10 Hz. Again, no regeneration was necessary.

Data analysis. In the case of ‘classical’ single-analyte experiments, each double-referenced set of sensor-
grams was fitted to a 1:1 Langmuir model using a standard ‘global fit’ approach. Briefly, sensorgrams correspond-
ing to different concentrations were simultaneously analyzed to obtain a set of global parameter estimates via a 
least square minimization using a custom program developed with the Matlab R2018b software platform (The 
Mathworks, Natick, USA)9. The parameters obtained with our platform matched closely those obtained with the 
Biacore T100 Evaluation  Software15 with deviations ranging from 0 to 2% for CBS, BDS and sulfanilamide and 
from 1 to 9% for furosemide (data not shown). The algorithms we developed to (1) extract the kinetic param-
eters from the sets of sensorgrams corresponding to the various analyte mixtures (Tables 1) and (2) estimate 
the composition of a given mixture based on the prior knowledge of the kinetic constants of each analyte are 
presented in detail in the next section. Both algorithms assumed that each analyte bound to CAII according to 
a 1:1 Langmuir model. Fitting the multi-analyte data and estimating mixture composition was also performed 
using custom-designed Matlab scripts. As sensorgrams corresponding to the different dilutions of the different 
mixtures needed to be analyzed simultaneously within the fitting procedure, this type of analysis will be further 
described in the text as the ‘global–global’ approach.

Multi-analyte modeling and kinetic parameter identification
The interaction model. We assume a Langmuir 1:1 interaction between each analyte ( Ai ) and the ligand 
( L):
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With ka,i and kd,i corresponding to the association and dissociation rate constants of the ith analyte, respectively. 
For N analytes, the system is described by the following ordinary differential equation (ODE) system:

Rmax,i is the theoretical SPR response that would be obtained if an infinite concentration of analyte i  were 
injected. Fi is the fraction of analyte i in the injected mixture and CTOT is the total concentration of all analytes. 
We can then compute the predicted SPR response ( RTOT ) and the contribution of each analyte to the response 
( Ri ) by solving the system of ODE in (2). Furthermore, it can be shown that the contribution of every analyte 
at equilibrium is given by:

where KA,i is the affinity of a given analyte for the immobilized ligand. Note that, for generality purposes, we here 
consider that each analyte has its own Rmax,i.

Identification of equilibrium parameters. The following algorithm was developed to identify the 
kinetic parameters ( ka,i and kd,i ) and the corresponding Rmax,i of N analytes. Some conditions on the data set to 
be analyzed must be met:

• At least N sets of sensorgrams must be recorded with analyte mixtures of different compositions (at least N 
mixtures).

• The composition of the N mixtures must be known and be linearly independent.
• Each mixture must be injected at least 3 times at different known CTOT.
• The sensorgrams must reach equilibrium.
• The sensorgrams must return to zero during the dissociation phase.

For a given mixture injected at known dilutions, the observed equilibrium responses can be described analo-
gously to a single-analyte experiment by a set of observed equilibrium parameters ( KA,obs and Rmax,obs):

(1)Ai + L

ka,i
→

←
kd,i

AiL, ∀i = 1, . . . ,N

(2)dRi
dt = ka,iFiCTOTRmax,i

(
1−

∑N
j=1

Rj
Rmax,j

)
− kd,iRi ,Ri(0) = 0,∀i = 1, . . . ,N

RTOT =

N∑

i=1

Ri

(3)Req,i =
Rmax,iCTOTFiKA,i

1+CTOT
∑N

j=1 FjKA,j
∀i = 1, . . . ,N

(4)Req,obs =
Rmax,obsKA,obsCTOT

1+CTOTKA,obs
+ RO

Table 1.   Molar composition of the 4 single-analyte solutions and 12 mixtures used in this study. For clarity, 
the mixtures are regrouped in sets named according to the relative fraction of each drug.

Data set Mixture % CBS % BDS % Sulfanilamide % Furosemide

Single-analyte

CBS 100 0 0 0

BDS 0 100 0 0

Sulfanilamide 0 0 100 0

Furosemide 0 0 0 100

70–10–10–10 mixtures

A 70 10 10 10

B 9 71 10 10

C 10 10 70 10

D 10 10 10 70

40–20–20–20 mixtures

E 40 20 20 20

F 20 40 20 20

G 20 20 40 20

H 20 20 20 40

Random mixtures

I 30 32 6 32

J 43 5 18 33

K 14 29 26 31

L 41 18 34 7
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When fitting the model, adding an offset parameter ( RO ) can lead to better fits as it can account for bulk 
refractive index contributions. KA,obs and Rmax,obs can be obtained by simple nonlinear least square regression. 
This optimization problem and all others in this manuscript were solved using an interior-point algorithm 
(‘fmincon’ function in MATLAB).

By combining ( Req,obs =
∑N

i=1 Req,i ), we then have:

Equations (5) and (6) imply that, given the experimental plateau values for the sets of sensorgrams of N 
mixtures of analytes, one can obtain the individual KA,i and Rmax,i by solving two systems of linear equations:

where bold font indicates a matrix or a vector and a dot ( · ) denotes an element-wise multiplication. Each line of 
F corresponds to a mixture and each column to a given analyte (i.e., each line sums to unity). KA,obs and Rmax,obs 
are column vectors containing the observed parameters (1 per mixture). Solving (7) for KA returns a column 
vector containing each KA,i . Solving (8) for R , we can obtain the vector of Rmax,i ( Rmax):

Equations (7) and (8) highlight the need to use mixtures of independent compositions, as the F matrix needs 
to be invertible to solve the systems of linear equations, as previously mentioned.

Identification of kinetic parameters. During the dissociation phase, only buffer is injected, so that 
CTOT = 0 . If the equilibrium is reached during the analyte injection phase, the system of ODE further simplifies 
to:

Here, toff  is the time point at which buffer injection starts. This ODE system has a straightforward analytical 
solution:

With the previously obtained estimates of the KA,i and Rmax,i , we can compute the Req,i for each analyte and 
each sensorgram in the data set using (3). We then take the integral of the signal during the dissociation phase 
(11):

If tend − toff  is sufficiently large, i.e. if the dissociation phase lasts long enough that the observed signal tends 
to 0 towards the end of the sensorgram, the integral can be simplified to:

The integral in (13) can be computed numerically using the trapezoidal method, for example. We can obtain 
an estimate of the dissociation rate constants ( kd,i ) by a simple linear regression over all sensorgrams of all 

(5)KA,obs =
∑N

i=1 FiKA,i

(6)Rmax,obs =

∑N
i=1 FiKA,iRmax,i

KA,obs

(7)FKA = KA,obs

(8)FR = Rmax,obs · KA,obs

(9)Rmax = R · 1
KA

(10)dRi
dt = −kdiRi ,Ri

(
t = toff

)
= Req,i , ∀i = 1, . . . ,N

RTOT =

N∑

i=1

Ri

(11)Ri(t) = Req,ie
−kd,i

(
t−toff

)
, ∀i = 1, . . . ,N

RTOT =

N∑

i=1

Ri .

∫ tend

toff

RTOT (t)dt =

∫ tend

toff

N∑

i=1

Ri(t)dt =

∫ tend

toff

N∑

i=1

Req,ie
−kd,i

(
t−toff

)
dt

=

N∑

i=1

−Req,i

kd,i
e−kd,i

(
t−toff

)
∣∣∣∣∣

t=tend

t=toff

(12)=
∑N

i=1
Ri,eq
kd,i

(
1− e−kd,i

(
tend−toff

))

(13)
∫ tend
toff

RTOT (t)dt =
∑N

i=1
Req,i
kd,i
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mixtures of the data set. Note that the kd,i can be said to be ‘global–global’ parameters because they apply to all 
the sensorgrams of all the analyte mixtures in the data set. We can finally obtain an estimate of the association 
rate constants ( ka,i ) from the definition of the affinity:

In theory, we then have extracted all the relevant kinetic parameters of the N  analytes. However, as N 
increases, more sensorgrams are required. The parameter identification can be sensitive to the amount of noise 
contained in the sensorgrams. To make the approach more robust, two nonlinear optimization routines were 
added.

The first optimization pertains to the dissociation phase. Using the previously estimated kd,i as a starting 
point, we can obtain better estimates by least squares:

where S and T are the numbers of sensorgrams and of time steps in a sensorgram, respectively, and kd is a column 
vector containing estimates of the kd,i . A better estimate of the ka,i can then also be obtained using (14).

The second optimization takes the whole sensorgram into account. We first consider a bulk refractive index 
contribution term ( RI ) such that:

RI is a local offset parameter (1 per sensorgram). A first estimate for RI can be obtained by taking the differ-
ence between the observed and predicted equilibrium signals:

We then proceed by least square over whole sensorgrams:

With ka and RI being column vectors containing the association rate constants and the refractive bulk contribu-
tions. Estimates obtained in (9) ( Rmax,i ), (16) ( ka,i and kd,i ) and in (18) ( RI ,s ) are used as a starting point for this 
optimization routine. The solution to the optimization problem in (19) gives the final estimates of the kinetic 
parameters of the N  compounds. Figure 1 summarizes the kinetic parameter identification algorithm. Note 
that obtaining adequate starting points is critical to solve the optimization problem in Eq. (19). Otherwise, the 
optimization algorithm may remain trapped in a local minimum (data not shown). Evans et al.31 showed that the 
2-analyte heterogeneous mixture model is not structurally globally identifiable. Rather, it is structurally locally 
identifiable, but only if the concentration of each analyte is known. This implies that it is possible to obtain a 
global minimum to our optimization problem, but only if the starting point for the optimization routine is 
adequate. The proposed algorithm can provide such starting points using a negligible amount of time (less than 
a minute for N = 4 ) and computing capacity. One could also verify that a similar optimum is reached even if 
the starting point is slightly altered but remains adjacent to what is suggested by our method.

Composition of an N-analyte mixture. The kinetic parameters and the Rmax,i obtained from a training 
data set can now be used to infer the composition of an unknown mixture of the same N compounds. For this 
algorithm to be applied, the following conditions must be met:

• The ka,i , kd,i and Rmax,i are known for the N compounds.
• Sensorgrams reaching plateaus are available for the unknown mixture.
• The total concentration of all the analytes being combined ( CTOT ) is known for all sensorgrams.

The problem of identifying the composition of a mixture comes down to determining the set of Fi that best 
fit the data. With no prior information, the starting point is chosen to be:

(14)kai = KAikdi

(15)Ri,pred(t) = Req,pred,ie
−kdpred,i

(
t−toff

)

RTOT ,pred(t) =

N∑

i=1

Rpred,i(t)

(16)minJ(θ) =
∑S

s=1

∑T
t=toff

(
Rs,t
TOT,meas − Rs,t

TOT,pred

)2

θ = kd

(17)RTOT ,pred =

{∑N
i=1 Ri + RI , t ≤ toff∑N

i=1 Ri , t > toff

(18)RI ,s = Rmeas,eq −
∑N

i=1 Req,pred,i

(19)minJ(θ) =
∑S

s=1

∑T
t=1

(
Rs,t
TOT,meas − Rs,t

TOT,pred

)2

θ =

[
k
′

a, k
′

d
R

′

max ,R
′

I

]′
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A first optimization is carried out by considering only the dissociation phase, as analytical solutions can be 
easily obtained for this part of the sensorgrams (see (15)).

(20)Fi,start =
1
N ∀i = 1, . . . ,N

(21)minJ(θ) =
∑S

s=1

∑T
t=toff

(
Rs,t
TOT,meas − Rs,t

TOT,pred

)2

Figure 1.   Algorithm for the estimation of the kinetic parameters of N analytes. The algorithm starts by 
providing a legitimate starting point for a nonlinear optimization routine over the dissociation phase before a 
second optimization routine over the whole sensorgrams leads to the final estimates. Estimates of ka,i , kd,i and 
Rmax,i for i = 1, . . . ,N can be obtained from SPR sensorgrams of M mixtures of the N analytes (M ≥ N) . The fit 
is said ‘global–global’ as sensorgrams corresponding to different overall concentrations and different mixtures 
are used simultaneously in the fitting procedure.
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With the following constraints:

where F is a column vector containing the Fi . This provides coarse estimates for the Fi that can be used as starting 
points for a second optimization routine performed over the whole sensorgrams:

With the same constraints given in (22). Note that terms accounting for the bulk refractive contributions 
( RI ,s ) were added for every sensorgram. These are optimized together with F in (23). Initial estimates for these 
parameters can be obtained using (18). Figure 2 summarizes the composition identification algorithm.

Confidence intervals on the kinetic parameters. The confidence intervals can be computed based on 
the standard  error7,9. For the kth parameter, the standard error is given by:

where H is the hessian matrix and 
[
H

−1
]
k,k

 corresponds to the kth element on the diagonal of the inverse of H . 
χ2 , which depends on the number of estimated parameters ( p = 3N + S ) and on the number of data points 
( n = ST ), is calculated as follows:

θ = F

(22)0 ≤ Fi ≤ 1∀i = 1, . . . ,N

N∑

i=1

Fi = 1

(23)minJ(θ) =
∑S

s=1

∑T
t=1

(
Rs,t
TOT,meas − Rs,t

TOT,pred

)2

θ = F

(24)SE(k) =
√[

H−1
]
k,k
χ2

(25)χ2 =

∑S
s=1

∑T
t=1

(
Rs,tTOT ,meas−Rs,tTOT ,pred

)2

n−p

Figure 2.   A two-step algorithm for the estimation of the composition of an unknown mixture of N analytes 
with known kinetic parameters. The starting point for the fraction of each analyte is set to 1/N for the first 
optimization routine. This optimization uses only the dissociation phase of the sensorgrams. The results of the 
first step are used as the starting points of the second optimization routine. Note that the total concentration 
( CTOT ) of analytes in the mixture is known, but not the mixture composition (fraction of each analyte).
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Details on the computation of the hessian matrix are given in Supplementary Appendix A. Once the stand-
ard error of a given parameter has been computed, a 100(1− α)% confidence interval can be obtained using 
Student’s T distribution:

Confidence intervals on the fractions. Because the optimization problems for mixture composition 
estimation involve inequality constraints (all fractions must be between 0 and 1), it is necessary to obtain non-
symmetrical confidence intervals for the fractions. We have applied a method based on the Fisher F  statistic32. 
Considering the optimization problem given in (23), we have:

With J
(
θ̂

)
 being the value of the objective function at the optimum point (estimated fractions) and J(θ)|Fi=Fi0 

the value of the objective value obtained by optimizing with an added constraint Fi = Fi0 . The boundaries of the 
100(1− α)% confidence interval are such that:

F1−α is a quantile of the Fisher law with the appropriate number of degrees of freedom. The method consists 
in changing each Fi progressively (to F ′

i ) starting from its estimated value. The optimization is performed with 
the added constraint Fi = F

′

i . If the condition in (28) is met, F ′

i corresponds to Fi0 , which is the boundary of 
the confidence interval of Fi . Otherwise, a bigger disturbance needs to be applied. By disturbing in turn each Fi 
positively and negatively, we can obtain non-symmetrical confidence bounds of the estimated fractions. More 
details on the algorithm are provided in Supplementary Appendix B.

Results
For the purpose of testing our data analysis algorithms for multiple-analyte SPR injections, carbonic anhydrase II 
(CAII) was immobilized at the surface of a SPR biosensor. CAII was selected because its interactions with many 
small molecular compounds have been extensively characterized by SPR. Among known and well-characterized 
CAII binders, CBS, BDS, sulfanilamide and furosemide were selected because they encompass a broad range of 
kinetic constants and refractive index increments (RII)12. In order to account for these RII discrepancies, our 
model considers an individual Rmax,i for each analyte.

A total of 16 SPR experiments were performed. The 4 compounds were first injected alone at 5 different 
concentrations, then 12 mixtures all containing the 4 compounds were injected at 7 different total concentra-
tions. To determine if it is possible to extract reliable kinetic parameters from mixtures of analytes at any molar 
ratio, various sets of experiments were performed. First, we injected mixtures in which one of the analytes is 
dominant (i.e. 70% on a molar basis) while the other 3 analytes account for 10% each (mixtures A to D, Table 1). 
Second, to investigate whether mixtures of lesser purity would also allow to extract kinetics, each analyte was 
injected at a proportion of 40% while the others completed the mix (20% each, mixtures E to H, Table 1). Third, 
4 mixtures (I to L, Table 1) were created with random compositions to determine if a non-orthogonal mixture 
set could lead to accurate kinetic estimations. Sensorgrams corresponding to these 16 experiments are shown 
in Fig. 3. Sensorgrams corresponding to single-analyte experiments (CBS, BDS, sulfanilamide and furosemide) 
were globally analyzed with a 1:1 Langmuir model. The three sets of sensorgrams obtained for analyte mixtures 
(i.e. those shown in panels A–D, E–H and I–L) were fitted assuming that (1) each mixture composition was 
known and (2) each analyte within each mixture competed to bind to CAII according to a 1:1 Langmuir model. 
In these cases, the fits can be said to be ‘global–global’ because sensorgrams of different concentrations and dif-
ferent mixtures are simultaneously analyzed to extract the kinetic parameters. In all cases, to mimic an automated 
data preparation routine, data were control-corrected without excluding any data point prior to fitting. This is 
reflected by the presence of spikes at the beginning of each injection (i.e., analyte and buffer) phase in Fig. 3. 
The fits are otherwise excellent ( χ2 in the order of 0.1 for all data sets) with no prevalent trends in the residuals 
(see residual plots, Fig. 3).

Table 2 shows the estimated kinetic parameter values and their 95% confidence intervals as well as the esti-
mated affinity of each analyte for each fit. The width of the confidence intervals is less than 5% of the estimated 
parameter value for most cases. Using these estimated parameters and Eq. (2), it is possible to compute the 
contribution of each analyte to the SPR response. The contribution of each analyte is shown in Fig. 4 to facilitate 
the understanding of the competitive phenomena occurring at the surface during the multiple-analyte injection 
phase. Of considerable interest, BDS, the analyte with the highest association rate ( ka ) always binds to CAII 
first, before being progressively replaced by an analyte with slower kinetics but higher affinity for CAII (i.e., 
furosemide) or by analytes present in higher proportions in the injected mixture. Sulfanilamide, which has the 
lowest affinity for CAII among the analytes we used, has small to almost negligible contributions to the response 
in most mixtures, except for mixtures C and G where it is present in a dominating proportion (see Table 1).

Is it possible to extract kinetic parameters from a mixture of analytes? Figure 3 showed good fits 
between the calculated and observed SPR responses. In order to evaluate the accuracy of the kinetic parameter 

(26)k = kpred ± tn−p,α/2 ∗ SE(k)

(27)
J(θ)|Fi=Fi0

−J
(
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)

J
(
θ̂

)
/(n−p)
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(
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)
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determination when the parameters are extracted from mixtures of analytes, we compared them to the kinetic 
parameters determined from single-analyte experiments. For comparison sake, the deviation (or relative error—
see Table 3) was calculated as follows for a given parameter k:

The deviation between parameters obtained with single and multiple-analyte experiments should ideally be 
close to 0. The deviations for the 70–10–10–10 data set (mixtures A to D) were of the same magnitude as the 
repeatability errors. Those were evaluated by performing 3 independent single-analyte experiments using the 
same stock solution of CBS and the same CAII surface and ranged from 0 to 10% (data not shown). The error 
in the estimation of the kinetic parameters made by the fitting algorithm is indiscernible from the experimental 
error made by producing the 4 independent mixtures of analytes, thus indicating that the fitting algorithm was 
able to properly extract the kinetic parameters of the 4 analytes using the 70–10–10–10 data set.

How pure do the mixtures need to be? The limits of the approach were then tested with mixtures of 
lesser purity (the 40–20–20–20 data set, mixtures E to H). Once again, the estimated parameters were very close 

deviation(%) =

∣∣ksingle − kmulti

∣∣

ksingle
∗ 100

Figure 3.   Kinetic analysis of the injection of the 4 compounds and the 12 mixtures of compounds. Black dots 
correspond to control-corrected and double referenced sensorgrams for all experiments. Red lines correspond 
to global fits for the single-analyte experiments (CBS, BDS, sulfanilamide and furosemide) and to ‘global–global’ 
fits for each data set for 70–10–10–10 mixtures (A to D, see Table 1 for exact composition), 40–20–20–20 
mixtures (E to H, see Table 1 for exact composition) and random proportion mixtures (I to L, see Table 1 for 
exact composition). For the single-analyte experiments, the concentrations of CBS, BDS, sulfanilamide and 
furosemide varied respectively from 1.06 μM to 52.98 μM, 210 nM to 10.49 μM, 1.01 μM to 50.27 μM and 
1.01 μM to 50.52 μM. The total concentrations ( CTOT ) of the mixtures varied from 300 nM to 15 μM for all 
mixtures. Here, the composition of each mixture is assumed to be known. The related residual plot is given 
below each sensorgram data set. This figure was generated with the Matlab R2018b software platform (The 
Mathworks, Natick, USA, www.mathw orks.com/produ cts/matla b.html).

http://www.mathworks.com/products/matlab.html
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to those obtained by single-analyte experiments for 3 of the analytes (Table 3). A bigger deviation was observed 
for sulfanilamide. This can be attributed to its low affinity for CAII, which leads to a limited or negligible con-
tribution in the sensorgrams corresponding to the 40–20–20–20 mixtures data set (see plots E–H in Fig. 4). The 
goodness of fit of the model is then less sensitive to the quality of the estimated parameters of sulfanilamide. 
This leads to wider confidence intervals, especially for sulfanilamide (see Table 2), thus complicating the extrac-
tion of the kinetic parameters of this analyte. Nonetheless, our results indicate that reliable parameters could be 
obtained for CBS, BDS and furosemide even with mixtures of a lower purity.

Can a non-orthogonal set of mixtures be used? We then tested the method with a non-orthogonal 
mixture set. Here, ‘non-orthogonal’ refers to the fact that the F matrix is not orthogonal (see Eqs. 7 and 8), 
although it needs to remain invertible. The compositions of the mixtures within this data set are given in Table 1 
(Random mixtures data set, mixtures I–L). One could expect that mixtures for which none of the analytes has a 
dominating proportion would lead to confounding the effects of the different analytes, and hence poor estimates. 
However, Table 3 shows that this is most likely not an issue, as small deviations were observed for CBS, BDS and 
furosemide. Only the estimates for sulfanilamide deviated significantly, more likely because of the small contri-
bution of sulfanilamide to the sensorgrams in the data set (see plots I to L in Fig. 4).

We validated that our algorithm can extract the kinetic parameters of a group of analytes from sensorgrams 
corresponding to various mixtures of these analytes. The main limitation is that each analyte must have a non-
negligible contribution to the recorded SPR response in at least one of the mixtures being fitted. Failure to comply 
with this requirement leads to bigger estimation errors (especially for the analyte that contributes the less), and to 
larger confidence intervals. Better estimates (i.e. smaller deviations, narrower confidence intervals) are obtained 
when low-affinity compounds are present in higher proportion in at least one mixture of the data set being fitted.

Can we estimate the composition of a mixture of analytes? We then explored if prior knowledge of 
the kinetic parameters of each analyte could be used to infer the composition of each mixture of analytes. Using 
a given set of kinetic parameters we previously determined (see Table 2), we estimated the composition of all 16 
mixtures. Figure 5 compares the estimated fractions to the actual ones. Note that vertical error bars on Fig. 5 cor-
respond to the 95% confidence bounds for the estimated fractions and horizontal bars represent the uncertainty 
on the real fractions. The latter comes from the propagation of systematic instrument errors during weighting 

Table 2.   Kinetic parameters identified from single- and multiple-analyte injections of mixtures of known 
composition. 95% confidence interval are given in parentheses. The estimated affinity ( KA ) is also reported.

Data set Compound ka

(

104s
−1

M
−1

)

kd

(

10−3
s
−1

)

Rmax(RU) KA

(

106M−1
)

Single-analyte

CBS 2.16
(2.15; 2.16)

17.5
(17.4; 17.5)

16.42
(16.41; 16.44) 1.23

BDS 10.02
(9.98; 10.06)

70.1
(69.9; 70.2)

17.01
(16.98; 17.04) 1.43

Sulfanilamide 1.41
(1.41; 1.42)

66.8
(66.7; 67.0)

18.68
(18.65; 18.72) 0.21

Furosemide 4.22
(4.21; 4.22)

23.0
(23.0; 23.1)

29.21
(29.20; 29.23) 1.83

70–10–10–10 mixtures

CBS 2.36
(2.35; 2.37)

17.2
(17.1; 17.2)

16.42
(16.40; 16.45) 1.37

BDS 9.41
(9.37; 9.46)

71.8
(71.4; 72.2)

17.24
(17.19; 17.30) 1.31

Sulfanilamide 1.44
(1.43; 1.46)

62.5
(61.5; 63.5)

18.40
(18.24; 18.56) 0.23

Furosemide 4.13
(4.11; 4.14)

23.0
(23.0; 23.1)

28.63
(28.59; 28.66) 1.80

40–20–20–20 mixtures

CBS 1.96
(1.93; 1.99)

16.5
(16.4; 16.6)

16.97
(16.93; 17.02) 1.19

BDS 9.86
(9.79; 9.93)

73.0
(72.2; 73.8)

16.40
(16.30; 16.50) 1.35

Sulfanilamide 1.63
(1.58; 1.67)

60.5
(57.6; 63.3)

18.83
(18.40; 19.26) 0.27

Furosemide 4.17
(4.14; 4.20)

23.7
(23.7; 23.8)

27.86
(27.78; 27.95) 1.76

Random mixtures

CBS 2.22
(2.19; 2.24)

18.2
(18.2; 18.3)

15.89
(15.85; 15.92) 1.22

BDS 9.25
(9.17; 9.32)

77.1
(76.1; 78.1)

16.00
(15.91; 16.08) 1.20

Sulfanilamide 2.05
(1.98; 2.11)

72.8
(68.9; 76.6)

14.92
(14.61; 15.24) 0.28

Furosemide 4.22
(4.19; 4.25)

24.6
(24.5; 24.6)

27.64
(27.55; 27.73) 1.72
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and pipetting. Of considerable interest, prior knowledge of the kinetic parameters, as estimated from any data 
set, allowed us to predict the compositions of every mixture with good accuracy.

To investigate whether prior knowledge of the kinetic parameters, as estimated from a given data set, led to 
more accurate fraction estimates, we computed the Root Mean Square Error (RMSE) between the estimated 
and actual fractions independently for each set of kinetic parameters (see Fig. 6). The RMSE can be strongly 
influenced by the presence of a few large errors, so we also computed the Mean Absolute Error (MAE), which 
can temper their  contribution33,34.

We computed the mean prediction error for one analyte at a time and then for all the analytes at once. Results 
are shown in Fig. 6. For a given set of parameters, only the mixtures which were not used to identify the kinetic 

Figure 4.   Kinetic analysis of the contribution of CBS (red), BDS (green), sulfanilamide (cyan) and furosemide 
(purple) to the SPR response of each mixture. The kinetic parameters identified from each data set (see Table 2) 
were used to obtain the contributions to related sensorgrams. The sum of these contributions gives the ‘global–
global’ fits shown in Fig. 3, minus the bulk refractive index contribution RI . The total concentrations ( CTOT ) 
ranged from 300 nM to 15 μM for all mixtures. This figure was generated with the Matlab R2018b software 
platform (The Mathworks, Natick, USA, www.mathw orks.com/produ cts/matla b.html).

Table 3.   Deviation between the parameters identified from single-analyte experiments and parameters 
identified by fitting the multi-analyte model independently to the 3 data sets (70–10–10–10, 40–20–20–20 and 
random mixtures).

Data set Compound ka(%) kd(%) Rmax(%) KA(%)

70–10–10–10 mixtures

CBS 9.3 1.7 0.0 10.0

BDS 6.1 2.4 1.4 9.1

Sulfanilamide 2.1 6.4 1.5 8.4

Furosemide 2.1 0.0 2.0 2.2

40–20–20–20 mixtures

CBS 9.3 5.7 3.4 3.9

BDS 1.6 4.1 3.6 5.8

Sulfanilamide 15.6 9.4 0.8 21.7

Furosemide 1.2 3.0 4.6 4.3

Random mixtures

CBS 2.8 4.0 3.2 1.2

BDS 7.7 10.0 5.9 19.1

Sulfanilamide 45.4 9.0 20.1 25.0

Furosemide 0.0 7.0 5.4 7.0

http://www.mathworks.com/products/matlab.html
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parameters were used to compute the mean error (each set of kinetic parameters was thus identified using 4 
mixtures and tested across 12 other mixtures).

Figure 6 shows similar trends for the RMSE and the MAE. No apparent difference is perceived between the 
performance of the different sets of kinetic parameters in predicting the mixture compositions when considering 
all the compounds. This is of considerable interest as it indicates that, even when using mixtures of a lesser purity 
to identify the kinetic parameters (which leads to larger deviations in the estimated kinetic parameters—see 
Table 3), mixture compositions can still be estimated with similar accuracy. All sets of kinetic parameters except 
the one obtained with random mixtures led to larger errors in estimating the fraction of sulfanilamide. This is 
because of its low affinity to CAII and therefore small contribution to the recorded SPR response.

Discussion
An algorithm for the identification of the binding kinetics of multiple analytes from the SPR sensorgrams cor-
responding to mixtures of these analytes has been proposed (Fig. 1). Furthermore, we postulated that, using the 
identified kinetics, the composition of other mixtures of the same analytes could be estimated (Fig. 2). As a proof 
of concept, the binding kinetics of four small molecular-weight compounds (CBS, BDS, sulfanilamide and furo-
semide) to the enzyme CAII were studied. The kinetic parameters derived from classical single-analyte experi-
ments (analyzed via standard numerical methods) and the kinetic parameters derived from multiple-analyte 

Figure 5.   Estimated fractions of CBS (red), BDS (green), sulfanilamide (cyan) and furosemide (purple) with 
respect to the true fraction values in each of the 16 mixtures. The fractions were estimated using the kinetic 
parameters and Rmax,i identified from different data sets, corresponding to (A) Single-analyte injections; (B) 
70–10–10–10 mixtures (mixtures A to D); (C) 40–20–20–20 mixtures (mixtures E to H); (D) Random mixtures 
(mixtures I to L). The horizontal error bars were obtained by propagating the systematic error of the pipettes 
(Pipetman Neo P10, P20, P200 and P1000 and Microman M1000E) and the balance (Dever Instrument 
Company AA-160) that were used to conduct the experiments. The vertical error bars correspond to 95% 
confidence intervals computed using the Fisher F statistic. Here, we assumed that the total concentration of all 
analytes ( CTOT ) is known, but the composition of each mixture (fraction of each analyte) is not. This figure was 
generated with the Matlab R2018b software platform (The Mathworks, Natick, USA, www.mathw orks.com/
produ cts/matla b.html).

http://www.mathworks.com/products/matlab.html
http://www.mathworks.com/products/matlab.html
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experiments (Fig. 3) analyzed using our algorithm were shown to match. This remained true even when mixtures 
of lower purity were used for the identification (Table 3). Additionally, the kinetic parameters obtained from one 
data set could be used to estimate the compositions of the other mixtures with excellent accuracy (Figs. 5, 6). 
Indeed, we generated 16 mixtures of 4 analytes, of which 4 were used for training (identification of the kinetic 
parameters), while the remainder was used for validation (estimating the composition of the other 12 mixtures). 
We pushed the study further by performing 3 other rounds of study in which the 4 mixtures used for training 
were changed and the remaining 12 were used for validation. For example, we identified kinetic parameters 
using mixtures A–B–C–D (as reported in Table 2), then used the estimated parameters obtained with mixtures 
A–B–C–D to estimate the composition of mixtures E–F–G–H–I–J–K–L and pure solutions (Fig. 5). With this 
approach, we were able to show that our algorithm was extremely robust since, no matter which data set were 
used for training, validation was good, or even excellent, with the other mixtures (Fig. 6).

In contrast to the previous body of work we proposed on kinetic parameter  identification10,12 or concentra-
tion  determination20, the goal of the algorithms presented here is not to increase the throughput of SPR-based 
experiments. Indeed, for the identification of the kinetic parameters of N  analytes, our approach requires N 
sets of sensorgrams, as for a classical single-analyte approach. Rather, we here demonstrate that for mixtures of 
macromolecules that are hard to purify, one may determine the kinetic parameters of each individual binder 
without any further purification. For instance, it is well-known that immunoglobulin G (IgG) production in 
bioreactors typically results in a heterogeneous distribution of glycoforms of the same  IgG26, in turn impacting 
the IgG interactions with their Fcγ receptors, and the IgG therapeutic  efficacy21–27. Hence, an algorithm similar to 
ours could potentially uncover meaningful binding kinetics of different IgG glycoforms without having access to 
pure IgG glycoform solutions. To uncover the kinetics of N different glycoforms, one would require N (potentially 
heterogeneous in terms of glycoforms) different samples with different known compositions (relative abundance 
of the glycoforms). Producing N  differently glycosylated samples can be achieved by varying the cell culture 
conditions or through the use of various cellular and protein engineering  strategies35. The compositions could 
be determined via mass spectroscopy, as it has already been performed  in21–27. Once the glycoform kinetics have 
been uncovered, unknown glycoform mixtures could then be characterized.

The absence of mass transport limitations (MTL)36,37 and the Langmuirian behavior of each analyte/ligand 
interaction we assumed was verified for the model system we used in this study (CAII/small molecular weight 
drugs). However, these assumptions may not always apply. It may thus be necessary to adjust the model to other 
mechanisms of binding so as to fit the experimental data. In the case of MTL, as plateau values of the sensor-
grams would remain the  same36,37, the determination of the equilibrium constants ( KA ) would still be possible 
with our approach.

High molecular weight analytes, such as proteins, usually have similar refractive index increments (RII), 
thus implying that the ratio of their respective Rmax,i should be proportional to the ratio of their molecular 
 weights10,15,38–40. Knowledge of the molecular weights of every analyte would then reduce the number of param-
eters to optimize using our strategy, as including only one Rmax value would be sufficient. In contrast, small 

Figure 6.   Residual mean square error (RMSE, top) and mean absolute error (MAE, bottom) calculation. The 
composition of each mixture was estimated using the kinetic parameters and Rmax,i values identified from 
different data sets (single-analyte, 70–10–10–10 mixtures, 40–20–20–20 mixtures and random mixtures). The 
estimated composition was compared to the actual composition of the mixtures outside of the data set used to 
identify the kinetic parameters. The residual mean square error (RMSE, top) and the mean absolute error (MAE, 
bottom) were calculated on an analyte basis for CBS, BDS, sulfanilamide and furosemide and by considering all 
the estimates at once (all analytes). This procedure was repeated for all data sets.
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molecular weight compounds often exhibit varying RII. Such is the case for those used in the present  study12. 
Thus, it was necessary to account for one Rmax,i per analyte.

We found an affinity between sulfanilamide and CAII that is almost an order of magnitude lower than that 
of the other compounds tested. An analyte with a considerably lower affinity for the ligand will often have a 
negligible contribution to the SPR response, especially in mixtures where it is not present at a high purity. This 
presumably explains why bigger deviations were observed in the identified kinetic parameters of sulfanilamide. 
Larger errors were also made for sulfanilamide when estimating mixture compositions. This phenomenon could 
be even more noticeable in systems where two or more analytes are found to have considerably lower affinities 
than the rest of the analytes. In such a system, the kinetic parameters identified for the low-affinity analytes could 
exhibit significant deviations and large confidence intervals. When possible, a mixture containing a high purity 
of at least one of these analytes should be added to the training data to facilitate the kinetic parameter identifica-
tion process. If such a thing is not possible, we suggest pooling low affinity analytes together, i.e. treating two or 
more analytes as a single one. Pooling analytes with very similar kinetics could also be preferable, as it might be 
difficult to distinguish their respective effect on the SPR response. The kinetics obtained would then be slightly 
biased, but still usable to partially characterise an unknown mixture.

It is important to note that the experiments in this study aimed at validating the method and were not 
intended to be optimal in terms of experimental time and material consumption. Notably, the analyte injection 
time was kept very long to ensure that equilibrium was reached. This resulted in longer sensorgrams with more 
data points, in turn narrowing the confidence intervals on the kinetic parameters and decreasing uncertainties 
on the estimated compositions. Also, the number of sensorgrams used (7 duplicates per mixture) was intended 
to survey the experimental space (from a low concentration that gives a minimal observable response to a high 
concentration that is close to saturation of the surface). However, this may not be optimal and previous stud-
ies with single-analyte injections have shown that using a lower number of injections does not always result in 
larger parameter  uncertainty7. One may thus minimize experimental time and material consumption necessary 
to apply our strategy in a similar fashion as performed for single-analyte9 and for two-analyte  experiments10.

Conclusion
We suggested a framework for the analysis of multiple-analyte injections over an SPR biosensor surface. The 
proposed algorithms were shown robust and efficient to extract the kinetics of at least four analytes, as well as to 
use these parameters to estimate the composition of unknown mixtures from their SPR sensorgrams. The limita-
tions of the framework are its simple 1:1 competitive Langmuir binding scheme and the fact that knowledge of 
the total concentration of all analytes combined is required. However, the total concentration could be added 
as a variable to optimize when characterizing an unknown mixture. Our framework broadens the application 
of SPR biosensing to the detailed characterization of complex analyte mixtures, particularly in contexts where 
separating the constituents is challenging or impossible. Given the increased use of SPR biosensing, especially in 
the field of drug discovery and development, the findings of this study may be of interest to a broad community 
in both academia and industry.
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