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Radiomics signature on CECT 
as a predictive factor 
for invasiveness of lung 
adenocarcinoma manifesting 
as subcentimeter ground glass 
nodules
Wufei Chen1,3, Ming Li1,3,4*, Dingbiao Mao1, Xiaojun Ge1, Jiaofeng Wang2, Mingyu Tan1, 
Weiling Ma1, Xuemei Huang1, Jinjuan Lu1, Cheng Li1,3, Yanqing Hua1,4 & Hao Wu1

Controversy and challenges remain regarding the cognition of lung adenocarcinomas presented as 
subcentimeter ground glass nodules (GGNs). Postoperative lymphatic involvement or intrapulmonary 
metastasis is found in approximately 15% to 20% of these cases. This study aimed to develop and 
validate a radiomics signature to identify the invasiveness of lung adenocarcinoma appearing as 
subcentimeter ground glass nodules. We retrospectively enrolled 318 subcentimeter GGNs with 
histopathology-confirmed adenocarcinomas in situ (AIS), minimally invasive adenocarcinomas 
(MIA) and invasive adenocarcinomas (IAC). The radiomics features were extracted from manual 
segmentation based on contrast-enhanced CT (CECT) and non-contrast enhanced CT (NCECT) images 
after imaging preprocessing. The Lasso algorithm was applied to construct radiomics signatures. 
The predictive performance of radiomics models was evaluated by receiver operating characteristic 
(ROC) analysis. A radiographic-radiomics combined nomogram was developed to evaluate its clinical 
utility. The radiomics signature on CECT (AUC: 0.896 [95% CI 0.815–0.977]) performed better than 
the radiomics signature on NCECT data (AUC: 0.851[95% CI 0.712–0.989]) in the validation set. An 
individualized prediction nomogram was developed using radiomics model on CECT and radiographic 
model including type, shape and vascular change. The C index of the nomogram was 0.915 in the 
training set and 0.881 in the validation set, demonstrating good discrimination. Decision curve 
analysis (DCA) revealed that the proposed model was clinically useful. The radiomics signature built 
on CECT could provide additional benefit to promote the preoperative prediction of invasiveness in 
patients with subcentimeter lung adenocarcinomas.

The development of computed tomography (CT) and widespread implementation of lung cancer screening 
programs has led to a frequently reported incidence of small-sized lung adenocarcinomas presented as ground 
glass nodules (GGNs)1. As suggested by the eighth version of the TNM classification of lung cancer, the prog-
nosis of small lung cancer is significantly different depending on tumor size. Even c-T1 (subcentimeter) lung 
cancers do not always indicate early  stage2. Postoperative lymphatic involvement or intrapulmonary metastasis 
is found in approximately 15% to 20% of these  cases3, 4. However, controversy and challenges remain regarding 
the cognition of these lesions.

According to the classification proposed by the International Association for the Study of Lung Cancer/
American Thoracic Society/European Respiratory Society in  20115, cases of lung adenocarcinomas with pure 
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lepidic growth pattern (adenocarcinomas in situ, AIS) and the invasive area less than 5 mm (minimally inva-
sive adenocarcinomas, MIA) have a good prognosis after surgical resection. In this study, we regard these two 
subtypes as non-invasive group. While those with invasive foci larger than 5 mm (invasive adenocarcinomas, 
IAC) are associated with a risk of recurrence via lymphatic, vascular and pleural invasion, thus have a poor 
outcome for  patients6. It is therefore important to meticulously diagnose invasiveness of lung adenocarcinomas 
for personalized clinical decision.

Radiomics analysis could assess the intratumoral biological heterogeneity using a large number of high 
dimensional mineable features extracted from imaging data mathematically, thereby could give an important 
prognostic information regarding the differentiation of benign and malignant tumors, and to assess tumor 
 microenvironment7–9. It has revealed potential medical application values for evaluating the invasiveness of 
lung cancer in many  studies10, 11. However, most of the previous researches extracted radiomics features from 
non-contrast enhanced CT (NCECT) images. The efficiency of radiomics analysis based on contrast-enhanced 
CT (CECT) images, which could provide additional intelligence on the intratumoral physiology of blood supply, 
is less commonly reported.

We hypothesize that this information could reflect by radiomics analysis, thus giving rise to a better predic-
tion model. Hence, the aim of this study was to develop a radiomics approach based on CECT to differentiate 
invasive lung adenocarcinomas from non-invasive ones in patients with subcentimeter GGNs.

Materials and methods
Ethical approval. This retrospective study was approved by the institutional review board of Huadong Hos-
pital. Patients’ informed consent was performed under a waiver of the authorization for that the retrospective 
research using anonymous data. All procedures were performed under the relevant guidelines and regulations.

Study population. Between January 2014 and August 2018, we retrospectively evaluated 1625 patients 
with surgically resected c-T1a lung adenocarcinomas through pathology databases and transverse CT images in 
our hospital. The inclusion criteria were as follows: (1) adenocarcinomas manifested as GGNs on lung window 
setting (level, − 500 Hounsfield unit [HU]; width, 1500 HU); (2) thin-sections (1–1.25 mm) NCECT and CECT 
scans were obtained at one examination; (3) lesion ≤ 1 cm in axial CT images. The exclusion criteria included 
(1) histologic diagnosis other than adenocarcinoma (e.g. atypical adenomatous hyperplasia or squamous cell 
carcinoma); (2) noticeable motion artifacts on CT images; (3) adenocarcinoma manifested as a solid nodule. 
Finally, 318 subcentimeter GGNs in 318 patients fulfilled the criteria and were randomly assigned to the training 
set and the validation set.

CT scan parameters. CT examinations were performed with one of the two scanners: GE Discovery 
CT750 HD scanner (GE Healthcare, USA) and Somatom Definition flash (Siemens Medical Solutions). All 
patients were asked to hold the breath at the end of inspiration. NCECT images were acquired in the supine 
position. The details of the scanning parameters were as follows: tube voltage 120kVp, tube current 120-200 mA, 
collimation 0.6 or 0.625 mm*64, rotation time 0.33 or 0.5 s/rot, SFOV 50 cm, slice thickness of reconstruction 
1or 1.25 mm, slice interval of reconstruction 1or 1.25 mm, reconstruction algorithm STND and Medium sharp, 
matrix 512 × 512. After NCECT scanning, a dose of 80–100 ml non-ionic IV contrast material (350 mg iodine/ 
ml, Optiray, Mallinckrodt) was injected into the antecubital vein at a rate of 3.0–4.0 ml/s using a powerful auto-
mated injector. The CECT scanning was performed at 35 to 60 s after the injection.

VOI segmentation and radiographic characteristics assessment. The 3D VOI was segmented 
manually layer-by-layer by one experienced thoracic radiologist on NCECT and CECT raw DICOM format 
images.The radiologist was blinded to the histopathological results of the tumors. Large vessels and bronchus 
were erased from the VOI. The regional label was marked in LW settings with a commercially available segmen-
tation software (Yizhun CIPS, version 4.0; http://www.yizhu n-ai.com/Conte nt/47757 2.html) and its pulmonary 
nodule advanced analysis tool. During the segmentation procedure, the radiographic characteristics were evalu-
ated simultaneously based on NCECT images. To ensure the accuracy, the consensus of segmentation and evalu-
ation was reached by discussion with another experienced thoracic radiologist in case of dilemmatic situations. 
A third radiologist with 15 years of experience in chest CT interpretation segmented a random set of 20 nodules 
on NCECT and CECT images independently to assess the interobserver reproducibility of radiomics feature 
extraction. The features with intraclass correlation coefficients (ICC) > 0.80 were considered in good consistency 
and then input to the least absolute shrinkage and selection operator classifier (LASSO) classifier to establish the 
radiomics signature for the distinction between non-invasive and IAC groups.

Radiomics feature extraction. The radiomics features were extracted from both NCECT and CECT 
images using pyRadiomics (https ://doi.org/10.1158/0008-5472.CAN-17-0339). Each radiomics feature was 
applied with a Z-score normalization so that the maximum value will be 1.0. Before the feature extraction, the 
images were resampled to 0.5 mm resolution in all three directions with the cubic convolution interpolation 
algorithm to normalize the voxel distribution. We used five filters in the experiment to remove the undesired 
signals.

Feature selection. The LASSO classifier was used to select the most non-redundant and predictable radiom-
ics features from NCECT and CECT images. Features with nonzero coefficients were rectified by fivefold cross-
validation for 100 times.Then we calculated an independent variable correlation matrix of coefficient based on 
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the mean importance of features in previous experiments. The highly correlated features were removed. Patients 
were randomly segregated into the validation set by step sampling with a ratio of 5:1. Finally, two radiomics 
signatures built on NCECT and CECT respectively were established for each patient via a linear combination 
of selected features in the training set. The predictive performance of the two radiomics signature models was 
evaluated by the Receiver Operating Characteristic (ROC) curve analysis. Area Under the Curve (AUC) value 
was used to quantify the performance of each model. The optimal signature was selected for further analysis.

Construction of the radiomics nomogram. Multivariate logistic regression was applied to establish a 
combined model with independent factors between radiomics signature and radiographic model. The variance 
inflation factor (VIF) was performed to checkout the collinearity. An individualized prediction nomogram was 
then constructed based on the multivariate logistic regression model.

Statistical analysis. The statistical analyses were conducted with R software (version 3.6.2; ACCEPTED 
MANUSCRIPT 12 http://www.Rproj ect.org) and SPSS 21.0 (IBM, Chicago, IL, USA). Lasso binary logis-
tic regression was done using the “glmnet” package. Nomogram was performed with the “rms” package. The 
C-index calculation was done with the “hmisc” package. DCA was performed with the “rmda” package. Mul-
tivariate binary logistic regression was done with forward parameter strategy. Categorical variables of radio-
graphic features were compared with Pearson  X2 tests or Fisher’s exact test. Independent t-test was used to 
assess the difference in radiomics signatures among the training set and the validation set. ROC analysis was 
performed to evaluate the efficiency of radiomics signatures. The DeLong’s test was applied to test the statistical 
significance of AUC values. Variance inflation factor (VIF) was used to evaluate the collinearity. The Hosmer–
Lemeshow test was performed to assess the goodness-of-fit of the nomogram. A two-sided P value < 0.05 was 
considered statistically significant.

Results
Patients characteristics. The radiographic characteristics of all patients were detailed in Table 1. Of these 
patients with subcentimeter GGNs, 113 (35.5%) were pathologically diagnosed as AIS, 141 (44.3%) were MIA, 
while 64 (20.1%) were IAC. In univariate analysis, statistically significant differences were observed in type, 
shape, vascular change and pleural attachment (P < 0.05). According to the multivariate logistic regression analy-
sis, type, shape and vascular change were statistically significant independent differentiators (P < 0.05). Subse-
quently, all three parameters were chosen to establish a radiographic model. The AUC of the radiographic model 
was 0.736 (95% CI 0.669–0.802).

Radiomics features selection, signature building. 254 cases including 203 AIS/MIA and 51 IAC were 
grouped in the training set. 64 cases (51 AIS/MIA and 13 IAC) were grouped in the validation set. After assess-
ing the reproducibility based on the resegmentation data, a total of 622 features for NCECT and 573 features 
for CECT with ICC > 0.8 were selected. The workflow of radiomics analyses was indicated in Fig. 1. Finally, 33 
potential predictors with nonzero coefficients were conducted into a radiomics signature on NCECT in the 
training set. While 31 potential predictors were selected to establish a radiomics signature on CECT. The details 
of the radiomics signature formula were presented in the Supplementary data.

The invasive group had significantly higher radiomics signature than the non-invasive group both in NCECT 
and CECT in the training set (− 1.519 ± 1.334 vs. 0.314 ± 1.075 and − 1.213 ± 0.758 vs. 0.490 ± 1.037, P < 0.0001, 
respectively). This difference was then verified in the validation set (− 1.755 ± 1.072 vs. − 0.065 ± 1.324 and 
− 1.164 ± 0.851 vs. 0.430 ± 0.950, P < 0.0001, respectively). The radiomics signature yielded an AUC of 0.868 
(95% CI 0.820 to 0.916) for NCECT and 0.917 (95% CI 0.880 to 0.954) for CECT in the training set. Further, we 
performed DeLong’s test to analyze the difference between the AUC of two radiomics models in the validation 
set. The result showed that there was a significant difference between two radiomics models (0.851 vs 0.896, 
P < 0.001) (Fig. 2), which indicated that the radiomics model on CECT performed better than the radiomics 
model on NCECT. Subsequently, the radiomics model on CECT was selected for further analyses.

Individualized prediction nomogram and diagnostic validation. The VIF between radiographic 
model and radiomics model was 1.235, which indicated that there was no multicollinearity between the poten-
tial factors identified by radiographic analysis and radiomics signature. According to the multivariate logistic 
regression analysis with forward stepwise selection, both radiographic model and radiomics model were signifi-
cantly independent differentiators for invasive groups. Subsequently, the two models were integrated to develop 
an individualized prediction nomogram (Fig. 3). The Hosmer–Lemeshow test yielded no significant statistical 
difference in the training set and the validation set (P = 0.057 and P = 0.585), which suggested that there was 
good agreement on the prediction and observation. The calibration curve of the nomogram in the two sets 
demonstrated in Fig. 4A,B. The C-index of the prediction nomogram was 0.915 in the training set and 0.881 in 
the validation set. 

Clinical utility. DCA for the individualized prediction nomogram was presented in Fig. 5, which showed 
that using the nomogram model to predict invasiveness of subcentimeter GGNs added more benefit than the 
treat-all scheme or the treat-none scenario when the threshold probability of a patient or doctor was 15% to 80%.

http://www.Rproject.org
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Discussion
Our study developed and validated a radiomics signature built on CECT to discriminate invasive adenocarci-
noma from non-invasive ones manifesting as subcentimeter GGNs. Then, we developed a prediction nomogram 
integrating the radiomics signature with the radiographic model for clinical application. The C-index of the 
prediction nomogram was 0.935 in the training set and 0.917 in the validation set.

According to the results of radiographic evaluation in our study, mixed GGNs and vascular changes showed 
more frequently in subcentimeter IAC. In addition, noninvasive lesions demonstrated more round shape. Our 
observation indicated that for the tumor less than 1 cm, the presence of the solid component was also a prog-
nostic factor for IAC owing to its invasive nature. Moreover, our results showed that the vascular distortion or 
dilation was associated with the invasiveness of subcentimeter GGN. For that vascular changes within the GGN 
were more sensitive and accurate in reflecting the histopathologic evolution  process12. With the morphological 
basis regarding the difference of the solid component and vascular changes, the prognostic examination of CECT 
could provide additional information on the subcentimeter GGNs. But previous studies did not focus on the 
important correlation between CECT and radiomics characteristics in subcentimeter lesions.

Radiomics is an emerging field that offers information on tumour phenotype as well as its  microenvironment13. 
A recent study from Coroller et al.14 investigated radiomics signature predicting distant metastasis in lung adeno-
carcinoma. This frontier research was further evaluated by Song’s study on progression-free survival prediction 
in non-small cell lung cancer patients with EGFR  mutations15. In our study, we investigated radiomics features 
based on CECT and NCECT data separately and compared their diagnostic efficiency. Depending on the results, 
CECT showed better diagnostic capability than NCECT. We eventually selected the CECT data for subsequent 

Table 1.  Radiographic parameters of all patients in non-invasive and invasive groups. Values are presented as 
no. (%) or mean ± SD. P value is derived from the univariable association analyses between each of the basal 
variables and the invasive extent. *Fisher’s exact test.

Parameters Non-invasive Invasive Data P

Gender 0.010 0.921

Male 85 (33.5) 21 (32.8)

Female 169 (66.5) 43 (67.2)

Age 53.79 ± 11.95 55.98 ± 12.25 0.577

Location 7.430 0.115

Right upper lobe 87 (34.3) 11 (17.2)

Right middle lobe 27 (10.6) 9 (14.1)

Right lower lobe 38 (15.0) 13 (20.3)

Left upper lobe 71 (28.0) 20 (31.3)

Left lower lobe 31 (12.2) 11 (17.2)

Type 18.701 0.0001

pGGN 190 (74.8) 30 (48.4)

mGGN 64 (25.2) 34 (51.6)

Shape 3.553 0.0001

Round 168 (66.1) 21 (32.8)

Irregular 86 (33.9) 43 (67.2)

Spiculation 0.755 0.385

Present 33 (13.0) 11 (17.2)

Absent 221 (87.0) 53 (82.8)

Lobulation 0.023 0.879

Present 30 (11.8) 8 (12.5)

Absent 224 (88.2) 56 (87.5)

Bubble lucency 0.190 0.663*

Present 11 (4.3) 2 (3.1)

Absent 243 (95.7) 62 (96.9)

Vascular change 14.102 0.0001

Present 53 (20.9) 28 (43.8)

Absent 201 (79.1) 36 (56.3)

Bronchiole change 0.690 0.406

Present 23 (9.1) 8 (12.5)

Absent 231 (90.9) 56 (87.5)

Pleural attachment 6.681 0.010

Present 20 (7.9) 12 (18.8)

Absent 234 (92.1) 52 (81.3)
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analysis. We believed that our result could provide a alternative way of thought in dealing with subcentimeter 
GGNs. CECT can reveal the increased intratumoral microvascular density along with the deepening of tumor 
invasion degree and provide extra information on the physiology. These information can be reflected by radiom-
ics analysis. Previous studies provided evidence that radiomics was related to a series of tumor histopathologic 
process and regarded radiomics as a potential tool for assessing tumor microenvironment  noninvasively16, 17. In 
contrast, different opinion showed that texture features extracted from CECT provided no significant benefit 
in the diagnosis of invasive lung adenocarcinoma compared with  NCECT18. However, with a larger population 
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Figure 1.  The workflow of radiomics analysis.

Figure 2.  Comparison of ROC curves between radiomics model on CECT (rad line) and radiomics model on 
NCECT (blue line) in the validation cohort.
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and a relatively smaller threshold inclusion criteria in our study, we could provide more references for future 
relative studies.

To build an efficient radiomics signature, our study calculated higher-order textural parameters from grey-
level run-length matrix (GLRLM), grey-level co-occurrence matrices (GLCM), grey-level size zone matrix 
(GLSZM), neighbouring grey-tone difference matrix (NGTDM) and grey-level dependence matrix (GLDM). 
These combined application of different matrix features could give a more accurate description of the charac-
teristics of the tumor image in different dimensions, so that reflected the heterogeneity within the  tumor19. Oth-
erwise, the radiomics features were extracted not only on original CT images but also the images derived from 
image filters. In this study, we used five different filters: exponential, square, square root, logarithm and wavelet 
(wavelet-LLL,wavelet-HHH,wavelet-HLL,wavelet-HHL,wavelet-LLH,wavelet-HLH,wavelet-LHL,wavelet-LHH). 
This filtration process was used to reduce the effect of photon noise while enhancing biologic heterogeneity, 
which is regarded as a feature of malignancy.

Nomogram emerges as a pragmatic and reliable graphical statistics tool that makes complicated calculations 
 easy20. In this study, we built a multi-information nomogram integrating radiomics signature with radiographic 
model. The combined model demonstrated good calibration and the discrimination power was much better than 
the traditional image characteristics-based model, relatively higher than previous similar  study21. However, no 
significant difference was found in compare with CECT-based radiomics signature (Table 2). We suspected that 
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radiographic.model
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0.1401403
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Total Points
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0.1 0.20.30.40.50.60.70.8 0.9

Figure 3.  The nomogram was developed incorporating radiomics model on CECT with radiographic signature.

Figure 4.  (A) Calibration curve of the nomogram in the training set. (B) Calibration curve of the nomogram in 
the validation set.



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:3633  | https://doi.org/10.1038/s41598-021-83167-3

www.nature.com/scientificreports/

the radiomics feature Shape, which were incorporated in our analysis, were contribute equally to the radiographic 
features. With its high-throughput characteristics, it may provide more accurate information in assessment of 
invasiveness than imaging phenotypes. This may also demonstrate that radiomics features were superior to 
phenotypic characteristics. To balance the vulnerabilities of radiomics, in this cohort, we incorporated the radio-
graphic features into the nomogram. In order to avoid the multi-collinearity with the first-order characteristics of 
radiomics, we discarded the continuous variables of radiographic features such as diameter and mean CT value. 
Our study adopted decision curve analysis to assess the clinical application of our radiomics nomogram-assisted 
medical treatment of small adenocarcinoma. Decision curve analysis is an appropriate alternative way for mul-
ticenter validation to offer insight into clinical consequences on the basis of threshold  probability22. According 
to the result in this study, if the risk threshold probability of a patient or doctor was 15% to 80%, our nomogram 
could add more benefit than a treat-all-patients scenario or a treat-none scheme.

Our study has several limitations. First, this retrospective study was performed in a single-center. Potential 
data selection bias was inevitable. Second, manual segmentation of VOI has a risk of observer bias compared 
with semi-automatic segmentation. However, previous studies have reported a high degree of intra- and inter-
observer reproducibility for manual segmentation and regarded it as the current  reference23, 24. Third, two dif-
ferent CT vendors were adopted in the current study. Potential interference caused by the different phantom 
parameters was existed. Future trials with multicenter and standardized CT phantom parameters are needed to 
further verify the reported findings.
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Figure 5.  DCA for the individualized prediction nomogram. The y-axis represented the net benefit. The red 
line represented the nomogram. The blue line represented the hypothesis that all patients with subcentimeter 
GGNs were invasive lesions. The green line represented the hypothesis that all patients with subcentimeter 
GGNs were preinvasive lesions. The x-axis represented the threshold probability.

Table 2.  The performance of the radiographic, radiomics and combined model in all patients. AUC  area under 
curve; ACC  accuracy; SEN sensitivity; SPE specificity; PPV positive predictive value; NPV negative predictive 
value.

Signature score (mean ± SD)

AUC (95% CI) ACC SEN SPENoninvasive group IAC

Radiographic model 0.175 ± 0.126 0.304 ± 0.170 0.736 (0.669–0.802) 0.616 0.844 0.621

Radiomics model on NCECT − 1.566 ± 1.287 0.237 ± 1.129 0.864 (0.816–0.912) 0.730 0.859 0.831

Radiomics model on CECT − 1.213 ± 0.758 0.490 ± 1.037 0.911 (0.878–0.945) 0.714 0.797 0.906

Combined model 0.114 ± 0.171 0.547 ± 0.305 0.908 (0.871–0.944) 0.701 0.766 0.913
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In conclusion, radiomics analysis on CECT images may have the potential to act as imaging correlates for 
tumor angiogenesis and provide incrementally predictive information for patients with subcentimeter adeno-
carcinomas. The individualized prediction nomogram derived from radiomics features on CECT in combina-
tion with radiographic features could serve as a convenient clinical tool to facilitate early prediction of small 
adenocarcinomas.
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