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Dimensionality reduction using 
singular vectors
Majid Afshar1 & Hamid Usefi2*

A common problem in machine learning and pattern recognition is the process of identifying the most 
relevant features, specifically in dealing with high-dimensional datasets in bioinformatics. In this 
paper, we propose a new feature selection method, called Singular-Vectors Feature Selection (SVFS). 
Let D = [A | b] be a labeled dataset, where b is the class label and features (attributes) are columns 
of matrix A. We show that the signature matrix S

A
= I − AA can be used to partition the columns of 

A into clusters so that columns in a cluster correlate only with the columns in the same cluster. In the 
first step, SVFS uses the signature matrix S

D
 of D to find the cluster that contains b . We reduce the 

size of A by discarding features in the other clusters as irrelevant features. In the next step, SVFS uses 
the signature matrix S

A
 of reduced A to partition the remaining features into clusters and choose the 

most important features from each cluster. Even though SVFS works perfectly on synthetic datasets, 
comprehensive experiments on real world benchmark and genomic datasets shows that SVFS exhibits 
overall superior performance compared to the state-of-the-art feature selection methods in terms 
of accuracy, running time, and memory usage. A Python implementation of SVFS along with the 
datasets used in this paper are available at https ://githu b.com/Majid 1292/SVFS.

With the extraordinary advancements in high throughput gene expression profiling and DNA sequencing tech-
nologies, we are presented with the challenge of interpreting high-dimensional datasets. Nonetheless, this pre-
sents an opportunity for discovery of biological biomarkers that in turn can help for early detection of  disease1 
and identification of predictive and prognostic factors in disease  management2. Genome-wide association studies 
(GWAS) can be performed on single-nucleotide polymorphism (SNP) arrays to identifying associations between 
loci and traits. Even though GWAS are proved to be  useful3, there are some drawbacks as well. GWAS identifies 
loci so that each locus is statically significant (on its own). However, complex diseases are extremely polygenic and 
it therefore important to identify a subset of SNPs or genes that cumulatively explain the disease. Furthermore, 
most GWA studies require thousands of samples which can pose as a significant challenge.

Feature selection (FS) is another alternative for biomarker discovery. FS involves filtering and determining 
the relevant features from numerous irrelevant and redundant features, so FS can decrease the learning costs 
and improve the classification performance in many applications such as genomic data and remote sensing by 
turning the high-dimensional data into a lower  dimension4. Features can be embedded into a lower-dimensional 
subspace in which different patterns appear to be considerably distinct with lower  cost5. The importance of using 
FS methods on genomic data to supplement and improve the process of disease diagnosis is gaining increasing 
 attention6–9. Hikichi et al.10 applied a correlation-centered approach and proposed a set of 12 predictive genes 
to diagnose cancer metastasis; their selected genes showed higher performance compared to the 76 genes previ-
ously reported by Wang et al.11. Recently, Jiang et al.12 applied a hybrid FS method for analyzing Endometrial 
Cancer data. In another  study13, the authors focused on colon cancer and applied a hybrid FS method to obtain 
the optimal subset of genes using two independent datasets. Among 17,814 genes in the original dataset, 6 top 
relevant genes were selected in two phases. An independent dataset of colon cancer was used to validate the 
selected genes, resulting in 99.9% classification accuracy. Shukla et al.14 present a gene expression analysis on 
lymphoma cancer using several FS methods. Their experimental results showed that the highest classification 
accuracy is achieved using the top 20 selected genes. In a recent study, Sun et al.15 worked on high-dimensional 
microarray datasets and filtered data using the ReliefF  method16 to reduce the dimensionality of gene expression 
data and then applied a modified Ant Colony Optimization  algorithm17 to find the optimal subset of genes for 
colon, leukemia, lung, prostate, and brain cancers.

In this paper, we propose a new FS method based on singular vectors (SVFS). Let D = [A | b] be a dataset, 
where A is an m× n matrix with m instances and n features, and b is the class label. We define the signature 
matrix SA of A by setting SA = I − A†A , where A† is the pseudo-inverse of A. We introduce a two-step irrel-
evant features filtering that maps the given dataset into a lower-dimensional subspace that includes less noisy 
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and more informative features. Using the signature matrix SA , features that have correlations to each other are 
clustered. The most important features are then picked from each cluster. This process can be optimized using 
two thresholds to make our model capable of handling a wide range of high dimensional data types. We view 
the data and interactions between all features globally in the sense that we measure the relevancy of features to 
b all at once and then breakdown the original feature space into a collection of lower dimensional subspaces. In 
contrast, many FS methods apply one or two discriminative concepts locally and at the individual feature level 
to obtain the most important features. Thus, they may perform well on some types of datasets and have inferior 
performances on other types of datasets. For example, as we shall see in Section 4, Fisher  score21 and Trace ratio 
 criterion22 have a good performances on biological benchmark datasets while they produce weak results on the 
image benchmark datasets.

We show in Section 3, that SA is the same as the orthogonal projection P onto the null space of A; hence S or P 
can be constructed using right singular vectors. We define a graph G where the nodes are columns of A and there 
is an edge between columns Fi and Fj if and only if Si,j  = 0 . As we shall explain, each connected component of 
G corresponds to a subset of columns of A that are linearly dependent. In other words, the correlations between 
columns of A are encoded in the signature matrix SA.

We view D as a matrix and form the signature matrix SD = I − D†D . The cluster of D containing b consists 
of relevant features to b and all features in the other clusters are considered irrelevant. After removing irrelevant 
features, we update A and use the graph associated to SA to find the clusters. There are many efficient algorithms 
to find the clusters of a graph. We use Breadth-First Search (BFS)18 to find the features which are directly or 
indirectly connected to the other features. The novelty of our method is to use the signature matrix SD of D to 
detect and remove irrelevant features and then use the signature matrix SA of the reduced matrix A to partition 
the columns of A into clusters so that columns within a cluster correlate only with columns within the same 
cluster. Finally, we rank the features in a cluster based on the entries on the main diagonal of SA and select a small 
subset of top ranked features with the highest Mutual Information (MI) with respect to b.

In order to evaluate the performance and efficiency of our method, we compare it with the state-of-the-art 
FS methods, namely Conditional Infomax Feature Extraction (CIFE)19, Joint Mutual Information (JMI)20, Fisher 
 score21, Trace ratio  criterion22, Least angle regression (LARS)23, Hilbert-Schmidt independence criterion least 
absolute shrinkage and selection operator (HSIC-Lasso)24, Conditional Covariance Minimization (CCM)25, 
and Sparse Multinomial Naive Bayes (SMNB)26 on a series of high dimensional benchmark as well as biological 
datasets.

The rest of this paper is structured as follows. An overview of the existing FS approaches is given in section 2. 
Then, in Section 3, we give a theoretical background along with some examples on synthetic data to show how 
our method removes irrelevant features and finds correlations between the rest of the features using the signature 
matrix S. Section 4 gives an account on specifications of the datasets and reports our experiment results. Finally, 
we provide a summary in Section 5.

Related work
FS methods are categorized as filter, wrapper, and embedded  methods27. The filter methods use some underlying 
and intrinsic properties of the features measured via univariate statistics, while the wrapper methods measure 
the importance of features based on the classifier performances. While optimizing the classifier performance is 
the essential goal of FS, and the wrapper methods have their own efficient internal classifiers, these methods are 
computationally more expensive in comparison with the filter methods due to the iterated learning steps of the 
wrapper methods and their cross-validation to avoid the risk of overfitting the model. The embedded methods 
are similar to the wrapper methods; however, the former mainly uses an intrinsic model building metric during 
the learning process.

Many FS algorithms work based on information-theoretical approaches which utilize various criteria to 
measure and rank the importance of features. The basic idea behind many information-theoretic methods is to 
maximize feature relevance and minimize feature  redundancy21. Since feature correlation with class labels nor-
mally measures the relevance of the feature, most algorithms in this group are applied in a supervised manner. 
A brief introduction to basic information-theoretic concepts is given here.

Shannon entropy, as the primary measurement in information-theoretical approaches, measures the uncer-
tainty of a discrete random variable. The entropy of a discrete random variable X is described as below:

where xi is a specific value of X and P(xi) refers to the probability of xi over all values of X.
Second concept is the conditional entropy of X and Y,  which is another discrete random variable, defined 

as follows:

where P(yi) is the prior probability of yi , P(xi|yj) refers to the conditional probability of xi and yj.
To measure the amount of information shared between X and Y, MI or information gain is used, which is 

defined as follows:

(1)H(X) = −
∑

xi∈X

P(xi)log(P(xi)),

(2)H(X|Y) = −
∑

yi∈Y

P(yi)
∑

xi∈X

P(xi|yi)log(P(xi|yi))
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where P(xi , yj) is the joint probability of xi and yj . MI is symmetric such that I(X;Y) = I(Y;X) and in case X 
and Y are independent, their MI would is zero. Since we applied the MI concept in our proposed method, two 
representative algorithms of information-theoretical based family are selected for comparison, including Con-
ditional Infomax Feature Extraction (CIFE)19, Joint Mutual Information (JMI)20.

Several studies including  CIFE19  and28,29 are based on the idea that the conditional redundancy between 
unselected features and selected features given class labels should be maximized rather than minimizing the 
feature redundancy. Minimum Redundancy Maximum Relevance (MRMR) reduces feature redundancy in the 
feature selection process. In contrast,  JMI20,30 is introduced to increase the MI that is distributed between selected 
features and unselected features. There have been some improvements of JMI,  see31.

Another category of FS methods is the similarity-based approaches that measure the feature relevances by 
their ability to preserve data similarities. The two superior similarity-based methods, i.e. the Fisher  score21 and 
Trace Ratio  criterion22 are selected to provide a basis for comparison with our proposed method.

Fisher score is a supervised feature selection method that explores features with high discriminant capacity. 
For sample points in different classes, Fisher score aims to maximize distances between samples; in contrast, 
it minimizes the distances between sample points in the same class. Trace Ratio criterion has the same idea of 
maximizing data similarity between-class of instances, while minimizing data similarity the within-class of 
instances. It computes a Trace Ratio norm by building two affinity matrices Sw and Sb to designate within-class 
and between-class data similarity.

Some approaches use aggregated sample data to select and rank the  features23,24,32,33. The least absolute shrink-
age and selection operator (LASSO) is an estimation method in linear methods that performs two main tasks: 
regularization and feature selection. For the first task, it calculates the sum of the absolute values of the model 
parameters, and the sum must be less than a prefixed upper bound. Therefore, by applying a regularization 
(shrinking) process, it penalizes the coefficients of the regression variables shrinking, some of them are set to 
zero. For the second task, the features that still have a non-zero coefficient after the regularization process are 
chosen to be part of the model. The goal of this process is to lessen the prediction error.

Least angle regression (LARS) proposed by Efron et al.23 works based on LASSO and is a linear regression 
method that computes all least absolute shrinkage and selection  operator33 estimates and selects those features 
which are highly correlated to the already selected ones. Yamada et al.  in24 proposed a non-linear FS method for 
high-dimensional datasets called Hilbert-Schmidt independence criterion least absolute shrinkage and selec-
tion operator (HSIC-Lasso). By solving a Lasso problem and using a set of kernel functions, HSIC-Lasso selects 
informative non-redundant features. In another  work34 called Least Angle Nonlinear Distributed (LAND), the 
authors have improved the computational power of the HSIC-Lasso. They illustrated through comprehensive 
examinations that LAND and HSIC-Lasso achieve comparable classification accuracies and dimension reduction. 
However, LAND has the advantage that it can be developed on parallel distributed computing.

HSIC-Lasso and LAND are based on a convex optimization problem with a ℓ1-norm penalty on the regression 
coefficients to improve sparsity while having a significantly high computational cost, especially on high dimen-
sional data. Very recently, Askari et al.26 proposed a sparse version of naive Bayes, leading to a combinatorial 
maximum likelihood capable of solving the binary data and providing explicit bounds on the duality gap for 
multinomial data, at a fraction of the computing cost.

We also remark that FS is applied and used in various domains including gene selection, face recognition, 
handwriting identification, and remote  sensing35–38.

Proposed approach
Let A be an m× n matrix of rank ρ and consider the singular value decomposition (SVD) of A as A = U�VT , 
where Um×m and Vn×n are orthogonal matrices and � = diag(σ1, . . . , σρ , 0, . . . , 0) is an m× n diagonal matrix. 
We denote column j of V by vj and row j of V by vj . Furthermore, we partition vj as vj =

[

vj,1 vj,2
]

 , where vj,1 
consists of the first ρ entries of vj and vj,2 is the remaining n− ρ entries. Note that Avj = 0 , for all ρ + 1 ≤ j ≤ n , 
and moreover ker(A) is spanned by all vρ+1, . . . , vn . We denote by Fj the j-th column of A.

Let V̄  be the matrix consisting of columns ρ + 1, . . . , n of V, that is V̄ =
[

vρ+1 · · · vn
]

. Let P = V̄ V̄T . Note 
that Pw = w , for every w ∈ N (A) , where N (A) is the null space of A. Indeed, P is the orthogonal projection onto 
N (A) , that is range of P is N (A) , P2 = P and PT = P . We also let S = I − A†A . By Lemma 2.1  in39, we know 
that S and P are indeed the same. Nevertheless, the computational complexity of computing of S and P might be 
different. For to compute P we just need the right singular vectors of the symmetric matrix ATA . On the other 
hand, if A is full row rank then we know A† = AT (AAT )−1 . So in case A has full row-rank, the complexity of 
computing S is the same as complexity of matrix inversion.

Let D = [A | b] be a dataset, say a binary Cancer dataset, where rows of A are samples (patients), columns of 
A are features (gene expressions) and b is the class label that each of its entries are either 0 (noncancerous) or 1 
(cancerous). In large datasets that are a large number of features that are irrelevant. For example, in gene expres-
sion datasets, there are a large number of genes that are not expressed. So, identifying and removing features that 
have negligible correlation with the class labels is crucial. The aim of FS is to come up with a minimal subset of 
features that can be used to predict the class labels as accurate as possible. There might be redundancies (cor-
relations) among relevant features that must be detected and removed.

As we explain below, we use the matrix S (or P) to divide the set of all features into clusters where features 
within a cluster correlate with each other and different clusters are linearly independent from each other. So, a 
set of linear dependencies defines the correlations within a cluster.

(3)I(X;Y) = H(X)−H(X|Y) =
∑

xi∈X

∑

yi∈Y

P(xi , yi)log

(

P(xi , yi)

P(xi)P(yi)

)
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Without loss of generality, we assume that {F1, . . . , Ft} is a cluster, that is F1, . . . ,Ft are linearly dependent 
and independent of the rest of the Fk , where k ≥ t + 1 . The following theorem  from39, is the first major step to 
identify clusters.

Theorem 1 Suppose that {F1, . . . , Ft} is a cluster. Then Pi,j = 0 , for every 1 ≤ j ≤ t and every i ≥ t + 1.

Example 1 Consider a 100× 80 synthetic matrix A with the only relations between columns of A as follows:

The signature matrix SA (rounded up to two decimals) is:

We note that A is randomly generated and the only constrain on A is the set of dependent relations given 
above. We can see that S has a block diagonal form, where each block corresponds to a cluster. So, features 
F1, . . . ,F4 constitute a cluster. Similarly, {F5, . . . , F11} is another cluster. Note that {Fi} is a singleton cluster, for 
all i ≥ 12 . We provide some details about these facts in the next lemma.

Lemma 1 Let A be the matrix in Example 1. Then, Pi,j = 0 for all 1 ≤ i ≤ 4 and 5 ≤ j ≤ n.

Proof We note that rank of A is ρ = 73 . Hence, Avk = 0 , for every 74 ≤ k ≤ 80 . Since Avk = 0 yields a depend-
ence relation between columns of A and F1, . . . ,F4 are independent from the rest of the columns, we deduce that 
Av̄k = 0 , where v̄k consists of the first 4 entries of vk . Then we form the matrix M =

[

v̄74 · · · v̄80
]

 . Since any 
linear combination of columns of M provides a dependence relation between F1, . . . ,F4 , we can use elementary 
(column) operations to transform M into the matrix C̄1:

Then 
[

F1 · · · F4
]

C̄1 = 0 ; in other words columns of C̄1 give us the minimal relations between F1, . . . ,F4 . 
Let k be in the range 74 ≤ k ≤ 80 . Since Avk = 0 , we have v1,kF1 + v2,kF2 + v3,kF3 + v4,kF4 = 0 . Substituting 
for F1 and F2 in terms of F3 and F4 using the matrix C̄1 , we get

We deduce that

Since the above equations hold for every k in the range ρ + 1 ≤ k ≤ n , we deduce that

Let j be in the range 5 ≤ j ≤ n . Then taking the dot product with vj,2 yields

Let C =

[

C̄1 0
0 0

]

 be an n× n matrix. Let c1, . . . , cn be the columns of C and denote by pj the j-th row of P. 

Since Pci = ci , we deduce that pjci = ci,j = 0 , since j ≥ 5 . Hence,

−F1 + 3F2 + 6F4 = 0, − F6 − 2F10 + 2F5 − 4F11 = 0, − F3 − 6F2 + 3F4 = 0,
−F7 − F10 − 3F11 = 0, − F5 + 3F11 + F10 = 0, − F8 + 3F10 + 2F11 = 0, − F9 + 5F5 − F7 = 0.

(4)















































0.02 − 0.07 0 − 0.13 0 0 0 0 0 0 0 0 · · · 0
−0.07 0.98 0.13 0 0 0 0 0 0 0 0 0 · · · 0
0 0.13 0.02 − 0.07 0 0 0 0 0 0 0 0 · · · 0

−0.13 0 − 0.07 0.98 0 0 0 0 0 0 0 0 · · · 0
0 0 0 0 0.97 0 0.03 0 − 0.16 0.01 − 0.01 0 · · · 0
0 0 0 0 0 0.37 0 − 0.44 0 − 0.19 0.06 0 · · · 0
0 0 0 0 0.03 0 0.97 0 0.16 − 0.01 0.01 0 · · · 0
0 0 0 0 0 − 0.44 0 0.69 − 0.03 − 0.13 0.04 0 · · · 0
0 0 0 0 − 0.16 0 0.16 − 0.03 0.06 0.03 − 0.06 0 · · · 0
0 0 0 0 0.01 − 0.19 − 0.01 − 0.13 0.03 0.94 0.02 0 · · · 0
0 0 0 0 − 0.01 0.06 0.01 0.04 − 0.06 0.02 0.99 0 · · · 0
0 0 0 0 0 0 0 0 0 0 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

... · · ·
...

0 0 0 0 0 0 0 0 0 0 0 0 · · · 0















































C̄1 =







−1.0 0 0 0 0 0
0 − 1.0 0 0 0 0

−0.5 − 0.17 0 0 0 0
7.5 0.5 0 0 0 0






.

v1,k(−0.5F3 + 7.5F4)+ v2,k(−
1

6
F3 + 0.5F4)+ v3,kF3 + v4,kF4 = 0.

−0.5v1,k −
1

6
v2,k + v3,k = 0, 7.5v1,k + 0.5v2,k + v4,k = 0.

−0.5v1,2 −
1

6
v2,2 + v3,2 = 0, 7.5v1,2 + 0.5v2,2 + v4,2 = 0.

(5)0.5P1,j −
1

6
P2,j + P3,j = 0, 7.5P1,j + 0.5P2,j + P4,j = 0.
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Putting together the Equations (5) and (6), we deduce that

where

Since, by Lemma 2.4  in39, B is invertible, we deduce that P1,j = · · · = P4,j = 0.
  �

In general it follows from Theorem 1 that after re-ordering the columns of A, the matrix S has a block-diagonal 
form where each block corresponds to a cluster. Of course, a priori, columns within the same cluster are not next 
to each other in the matrix A. Furthermore, the converse of Theorem 1 is not true in general. In other words, 
Pi,j could be zero even when Fi and Fj are in the same cluster as can be seen in Example 1 where P1,3 = P5,6 = 0.

To find the clusters, we define a graph G whose vertices consists of F1, . . . ,Fn and we define an edge between 
Fi and Fj if and only if Pi,j  = 0 . The graph associated to matrix A in Example 1 is depicted in Figure 1.

Even though, there may not be an edge between two nodes of the same cluster, it turns out there is always a 
path connecting every two nodes in the same cluster. This fact which is Theorem 2.10  in39, can be summarized 
as follows.

Theorem 2 The sub-graph of G consisting of nodes F1, . . . ,Ft and corresponding edges is connected.

As we mentioned, in real datasets there are many irrelevant features. To identify the irrelevants, we construct 
the signature matrix SD of D and identify the cluster that includes b . The remaining clusters consist of features 
that have a negligible correlation with b . So, we can remove all other clusters from A.

Example 2 Let A be the synthetic matrix as in Example 1 and b = F1 − 3F3 + 2F9 − F14 . The last row of signa-
ture matrix SD (rounded up to four decimals) is:

The cluster containing b consists of features Fi such that Si,n+1 �= 0 . So, we identify the columns Fj where 
j = 12, 13 or 15 ≤ j ≤ 100 as irrelevant features and remove them from A.

Alternatively, we can also identify irrelevant features by looking at the least-squares solutions of the system 
Ax = b . Note that x = A†b , where A† is the pseudo-inverse of A. Each component xi of x can be considered as 
an assigned weight to the feature Fi of A. Hence, the bigger the |xi| , the more salient Fi is in correlation with b.

Example 3 Let A be the synthetic matrix as in Example 1 and b = F1 − 3F3 + 2F9 − F14 . We solve Ax = b using 
the least-squares method where the vector x (rounded up to two decimals) is:

(6)−P1,j − 0.5P3,j + 7.5P4,j = 0, − P2,j −
1

6
P3,j + 0.5P4,j = 0.

B
[

P1,j P2,j P3,j P4,j
]T

= 0,

B =







−1 0 − 0.5 7.5
0 − 1 − 0.17 0.5

−0.5 − 0.17 1 0
7.5 0.5 0 1






=

�

−I2 ZT

Z I2

�

, Z =

�

−0.5 − 0.17
7.5 0.5

�

.

(

−0.0364 −0.0170 0.1093 0.0024 −0.0234 0.0006 0.0234 −0.0043 −0.1403 0.0049 −0.0094 0 0 0.0373 0 . . . 0 0.0373

)

(

0.98 0.46 −2.93 −0.07 0.63 −0.02 −0.63 0.11 3.77 −0.13 0.25 0 0 −1 0 . . . 0
)

1

23

4

5

6

7 8

9

10
11

Figure 1.  The graph associated to matrix A demonstrating the two clusters.
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Let x = [x1, . . . , xn] , where each xi is an assigned weight to Fi . Hence, we can approximate b as a linear com-
bination of the form x1F1 + · · · + xnFn . Therefore, xi = 0 implies Fi has no impact on b and that Fi is irrelevant. 
According to vector x , xi = 0 for i = 12, 13 and 15 ≤ i ≤ n and we remove the corresponding Fi from A.

Since, the notion of relevancy is not quantitative and one has to be cautious in removing features, we set 
a soft threshold Thirr and incorporate both the methods explained in Examples 2 and 3. In this paper, we first 
filter out features with minimal weight, that is features with |xi| less than 1n

∑n
i=1 |xi| × Thirr where 1n

∑n
i=1 |xi| 

is the average of the |xi| s. Then we set |Pi,n+1| = 0 whenever |Pi,n+1| < Thirr . Note that the last row of SD reflects 
the correlations with b . We sort the last row of SD as descending and remove the features outside the length of 
1
n

∑n
i=1 |Pi,n+1| × (Thirr + 1) . So, we apply a two-step process with a soft threshold at each step to remove the 

irrelevant features. Note that we still denote by A the reduced matrix obtained after removing the irrelevant 
features.

In the next step, we identify redundant features. To do so, we use the signature matrix SA of A and consider 
the associated graph. There are many efficient algorithms to find the clusters or connected components of a 
graph. One such algorithm is Breadth-First Search (BFS)18. By applying the BFS starting from vertex Fi , we can 
determine its accessible vertices. In other words, different clusters can be specified using BFS on the unvisited 
vertex Fi . For example, in Fig. 1, the first unvisited vertex (feature) is F1 , and applying BFS on F1 would visit 
F2, F4, F3 , respectively. Since there is no unvisited connected feature, the first cluster consists of F1 to F4 . Then, 
BFS should be applied to the next unvisited Fi , and add the consequently visited features to the next cluster until 
all the connected vertices in the current cluster are visited.

From each resulting cluster, a feature that carries the highest MI with b is selected as the output of the SVFS 
method. The selected feature from each cluster is, indeed, the one that best represents that cluster. In real datasets 
we might inherently encounter minor correlations between features, that is in the matrix SA we might see very 
small entries that indicate weak correlations. We use a threshold Thred to map the weak feature correlations to 
zero. Also, in case we encounter a few clusters with numerous vertices, we set a threshold α to split the clusters 
with more than α vertices into sub-clusters with the maximum of α vertices. The features in each sub-cluster are 
then sorted based on the last row of SD , and the top β features are selected to find their highest MI with b . The 
choice of β features in each sub-cluster is with the aim of reducing the computational cost of the MI calculations.

Algorithm. In this section, we present the algorithm and flowchart of SVFS in Figure 2.
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The while loop in the algorithm essentially demonstrates finding the connected components of the graph 
associated to P. The well-known BFS algorithm finds the connected components of a graph G(V, E) with com-
plexity O(|V | + |E|) . In our case, |E| is the number of non-zero entries in P. So, the worst case in the algorithm 
can happen when |E| =

n(n− 1)

2
 . Hence, the complexity of the while loop is O(n2) . We also mention that parallel 

algorithms for BFS have been of great interest, see for  example40.
The complexity of computing S = I − A†A is more delicate. There is extensive research on finding efficient 

and reliable methods to find A† , see for  example41–43. One of the most commonly used methods is the Singular 
Value Decomposition (SVD) which is very accurate but time and memory intensive especially in the case of large 
matrices. The complexity of computing SVD of Am×n is O(min(mn2,m2n)).

Pseudo-inverses are used in neural learning algorithms to solve large least square systems. So, there is a great 
interest in finding the pseudo-inverse efficiently. Courrieu  in44 proposed an algorithm called Geninv based on 
Cholesky factorization and showed that the computation time is substantially shorter, particularly for large sys-
tems. It is noted  in44 that the complexity of Geninv on a single-threaded processor is O(min(m3, n3)) whereas 
in a multi-threaded processor, the time complexity is O(min(m, n)) . The authors  in45 investigated the effective 
computation of the pseudo-inverse for neural networks and concluded that QR factorization with column piv-
oting along with Geninv works well. Since our implementation is single-threaded and m << n , the complexity 
of pseudo-inverse is O(m3) . We can conclude that the complexity of our algorithm is at most O(max(m3, n2)).

Experimental result
We compared our method with eight state-of-the-art FS methods including Conditional Infomax Feature Extrac-
tion (CIFE), Joint Mutual Information (JMI), Fisher score, Trace Ratio criterion, Least angle regression (LARS), 
Hilbert-Schmidt independence criterion least absolute shrinkage and selection operator (HSIC-Lasso), Con-
ditional Covariance Minimization (CCM), and Sparse Multinomial Naive Bayes (SMNB). We used the scikit-
feature library, which is an open-source feature selection repository in Python developed in the Arizona State 

Start

Dataset D= [A | b] Let x = A†b

Remove irrelevant
features based on
x and update A

Remove irrelevant
features based on
SD and update A.

Calculate matrix SA
and generate graph G Perform BFS on G

Cluster size
>� ?

Split cluster into
subclusters of size
α and select first �
features based on SD
of each subcluster

Find a feature with
the highest MI

Return the top k features

Stop

Yes

No

Figure 2.  Flowchart of SVFS.
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University (ASU). It includes the implementation of CIFE, JMI, LARS, Fisher, and Trace Ratio methods. The 
reset of methods, namely, HSIC-Lasso, CCM, and SMNB are implemented in Python by their authors. To have 
a fair comparison among the different FS methods, we take advantage of 5-fold stratified cross-validation (CV) 
of the dataset so that 80% of each class is selected for FS. Then we use the Random Forest (RF) classifier with its 
default setting implemented  in46, to build a model based on the selected features and evaluate the model on the 
remaining 20% of the dataset. We report the average classification accuracy over 10 independent runs (twice 
5-fold CV) using the RF classifier on each dataset.

Datasets. We selected a variety of publicly available datasets from two sources, i.e. Gene Expression Omni-
bus (GEO) which has various real genomic data, and the scikit-feature selection repository at Arizona State 
University which has benchmark biological and face image data to perform feature selection and classification. 
The specifications of these datasets are given in Tables 1 and 2.

The pre-processing of GEO datasets used in this research was carried out by cleaning and converting the NCBI 
datasets to the CSV format. The mapping between the gene samples and the probe IDs has been retrieved using 
 GEO2R47 and the probe IDs that did not have a gene mapping have been removed. For each gene, the expression 
values are obtained by averaging the expression values of all the probe IDs mapped to that specific gene. The 
k-Nearest Neighbors (kNN) imputation method was used to handle the missing values.

Hardware and software. Our proposed method SVFS and other methods described in section 4 have been 
run on an IBM LSF 10.1.0.6 machine (Suite Edition: IBM Spectrum LSF Suite for HPC 10.2.0) with requested 8 
nodes, 16 GB of RAM, and 8 GB swap memory using Python 3.6. Note that we only set 240 GB of RAM for the 
CCM model as it requires a high volume of memory.

Parameters. The input parameters of our proposed SVFS method are k,Thirr ,Thred ,α,β . The parameter k 
denotes the number of selected features and is a common parameter in all the methods evaluated in this study. 
There is no fixed procedure in the literature for determining the optimum value of k, but in many research 
 works48–51, it is set to 50 which seems to be satisfactory in many cases. However, we take k in a wider range from 
10 and 90 to ensure a fairground for comparison. When a subset of k features are returned as the output of a FS 
algorithm, we feed the first t features from the subset to the classifier to find an optimal t so that the subset of 
first t features yields the highest accuracy. This set up is applied across all FS methods. Also, we report average 
classification accuracy of a model over 10 independent runs (we run stratified 5-fold CV twice).

The parameter Thirr is the threshold set to filter out the irrelevant features. In this paper, we set the value of 
Thirr to 3. The parameter Thred is another threshold defined to deal with the low level of sparsity of S. In real-world 
large datasets, the condition Si,j = 0 might rarely be encountered. Indeed, the threshold Thred maps the weak 
feature correlations to zero. Here, we have set the value of Thred to 4 for the biological datasets and 7 for the face 
image datasets. The parameter α is used when facing big clusters to divide the clusters into subclusters with α 
members. The parameter β is the number of features selected from each of the subclusters with α members. In 
this work, we have set the values of α and β to 50 and 5, respectively.

Results. The average classification accuracies over 10 independent runs (twice 5-fold CV) using the RF clas-
sifier on the datasets described in Section 4.1 are presented in this section. In Figure 3, we present the classifica-
tion accuracy of SVFS compared to the other FS methods on 4 benchmark face image datasets. As it can be seen, 
our method attains either the best or second best accuracy compared to other FS methods. It is interesting to 
note that SVFS attains 100% accuracy on all of pixraw10P, warpPIE10P, and orlraws10P with at most 90 features.

Figure 4 shows the classification accuracy performance of SVFS compared to the other methods on bench-
mark biological datasets. As we can see, SVFS has performed consistently well and achieved the highest accuracy 
in 7 out of the 12 cases, while producing reasonably good accuracies in most of the other cases as well. JMI has 
produced the highest accuracy in 3 cases, where Fisher and HSIC-Lasso have shown their best performance in 
GLIOMA and ALLAML datasets, respectively. As we mentioned, the thresholds Thirr and Thred are set for 3 and 
4, respectively for all biological datasets. However, it is possible to tune these thresholds and get better results. 
For example, if we set Thirr = 1.2 and Thred = 2 , we get an average accuracy of 94.52 and 96.37 on ALLAML 
and Lymphoma datasets, respectively, and using at most 50 features ( α = 50,β = 15 ). Similarly, Thirr = 1.1 
and Thred = 2 , gives an average accuracy of 87 on GLIOMA dataset ( α = 50,β = 15 ), while Thirr = 1.2 and 
Thred = 4 , gives an average accuracy of 74.14 on NCI9 dataset ( α = 50,β = 10).

The general superiority of SVFS can be further witnessed on genomics datasets with large number of features 
as shown in Figure 5. Note again that Thirr = 3 and Thred=4 for all these datasets. However, it is possible to tune 
the parameters Thirr and Thred to obtain better results per dataset. This can be particularly useful when we focus 
on specific datasets for disease diagnosis and biomarker discovery.

We conclude from Figures 3, 4, and 5 that our proposed SVFS has achieved the highest accuracy on 12 datasets 
out of the total 25 datasets, while noting that no other method has achieved the highest accuracy for more than 
4 datasets. In cases where SVFS has not produced the highest accuracy, its performance is nonetheless among 
the most accurate ones.

Since IBM LSF is capable of reporting running time, CPU time, and memory usage by each feature selec-
tion model, we depict the running time in seconds for all feature selection methods in Figure 6. As there are 
25 datasets for the evaluation process, Figure 6(a) includes the running time on the benchmark biological and 
benchmark image datasets and Figure 6(b) covers the running time on the genomic datasets. Note that the 
reported running times include the RF classification time. It can be seen that the running times of CIFE and JMI 
are worse than other methods while the running time of CCM method on GEO datasets is high and roughly the 
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same as CIFE and JMI. The other methods including SVFS have comparable and very reasonable running times 
in the sense that these methods can be comfortably run on regular PCs.

Some methods because of their immense cost of computing are implemented in parallel to perform in rea-
sonable running time. Since HSIC-Lasso hired all available core of CPUs, its CPU time is comparable with CIFE 
and JMI methods, as shown in Figure 6(c). Moreover, the CCM model takes advantage of  TensorFlow52 with an 
optimized CPU implementation in a parallel way, leading to a high CPU time on most of the datasets. The rest 
of the methods are implemented in a non-parallelized manner; therefore, their CPU times are relatively similar 
to their running times.

In terms of performance in memory usage, Figure 6(d) shows that CIFE, JMI, Fisher, SMNB, and SVFS are 
efficient and required comparatively low memory. In contrast, CCM, HSIC-Lasso, and Trace Ratio required a 
high volume of memory in the magnitude of thousands.

Conclusion
In this paper, we have proposed a feature selection method (SVFS) based on singular vectors of a matrix. Given 
a matrix A with its pseudo-inverse A† , we showed that the signature matrix SA = I − A†A can be used to deter-
mine correlations between columns of A. To do this, we associate a graph where the vertices are the columns 
of A and columns Fi and Fj are connected if Si,j  = 0 . We show that connected components of this graph are the 
clusters of columns of A so that columns in a cluster correlate only with columns in the same cluster. We consider 
a dataset D = [A | b] , where rows of A are samples, columns of A are features, and b is the class label. Then we 
use the signature matrix SD and its associated graph to find the cluster of columns of D that correlate with b . 
This allows us to reduce the size of A by filtering out the columns in the other clusters as irrelevant features. In 
the next step, we use the signature matrix SA of A to partition columns of A into clusters and then pick the most 
important features from each cluster.

Table 1.  Benchmark Datasets Specifications.

Dataset #Samples #Features Type #Labels

Proportion of labels

1 2 3 4 5 6 7 8 9 10

TOX 171 171 5,748 Biological 4 26.3% 26.3% 22.8% 24.6% – – – – – –

SMK CAN 187 187 19,993 Biological 2 48.1% 51.9% – – – – – – – –

Prostate GE 102 5,966 Biological 2 49% 51% – – – – – – – –

lymphoma 96 4,026 Biological 9 47.9% 10.4% 9.4% 11.4% 6.3% 6.3% 4.1% 2.1% 2.1% –

leukemia 72 7,070 Biological 2 65.3% 34.7% – – – – – – – –

lung 203 3,312 Biological 5 68.5% 8.4% 10.3% 9.8% 3% – – – – –

GLIOMA 50 4,434 Biological 4 28% 14% 28% 30% – – – – – –

GLI 85 85 22,283 Biological 2 30.6% 69.4% – – – – – – – –

CLL SUB 111 111 11,340 Biological 3 9.9% 44.1% 46% – – – – – – –

ALLAML 72 7,129 Biological 2 65.3% 34.7% – – – – – – – –

colon 62 2,000 Biological 2 64.5% 35.5% – – – – – – – –

NCI9 60 9,712 Biological 9 15% 15% 13.3% 8.3% 11.7% 10% 13.3% 10% 3.33% –

pixraw10P 100 10,000 Image 10 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%

warpAR10P 130 2,400 Image 10 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%

warpPIE10P 210 2,420 Image 10 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%

orlraws10P 100 10,304 Image 10 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%

Table 2.  Genomic Datasets Specifications.

Dataset Samples # Original F # Cleaned F # Labels

Proportion of labels

1 2 3 4

GDS1615 127 22,282 13,649 3 33% 20.5% 46.5% –

GDS3268 202 44,290 29,916 2 36.1% 63.9% – –

GDS968 171 12,625 9,117 4 26.3% 26.3% 22.8% 24.6%

GDS531 173 12,625 9,392 2 20.8% 79.2% – –

GDS2545 171 12,625 9,391 4 10.6% 36.8% 38% 14.6%

GDS1962 180 54,675 29,185 4 12.8% 14.4% 45 27.8%

GDS3929 183 24,526 19,334 2 69.9% 30.1% – –

GDS2546 167 12,620 9,583 4 10.2% 35.3% 39.5% 15%

GDS2547 164 12,646 9,370 4 10.4% 35.4% 39% 15.2%
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A comprehensive assessment on benchmark and genomic datasets shows that the proposed SVFS method 
outperforms the state-of-the-art feature selection methods. Our algorithm includes two thresholds Thirr and 
Thred that are used to filter out irrelevant and remove redundant features, respectively. The thresholds have been 
set the same for all the datasets. However, it is possible to further tune the parameters Thirr and Thred to obtain 
better results. This can be particularly useful when we focus on specific datasets for disease diagnosis and bio-
marker discovery.
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Figure 3.  Average classification accuracy of feature selection by CIFE, JMI, Fisher, Trace Ratio, Lars, HSIC-
Lasso, SMNB, CCM and SVFS over 10 runs on benchmark face image datasets.
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Figure 4.  Average classification accuracy of feature selection by CIFE, JMI, Fisher, Trace Ratio, Lars, HSIC-
Lasso, SMNB, CCM and SVFS over 10 independent runs on benchmark biological datasets.
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Figure 5.  Average classification accuracy of feature selection by CIFE, JMI, Fisher, Trace Ratio, Lars, HSIC-
Lasso, SMNB, CCM and SVFS over 10 independent runs on genomic datasets.
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Figure 6.  (a), (b) Running Time, (c) CPU Time and (d) Memory taken by CIFE, JMI, Fisher, Trace Ratio, Lars, 
HSIC-Lasso, CCM, SMNB and SVFS over 10 runs using RF classifier.
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