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Machine learning prediction 
models for prognosis of critically ill 
patients after open‑heart surgery
Zhihua Zhong1,3, Xin Yuan2, Shizhen Liu3, Yuer Yang4 & Fanna Liu3*

We aimed to build up multiple machine learning models to predict 30‑days mortality, and 3 
complications including septic shock, thrombocytopenia, and liver dysfunction after open‑heart 
surgery. Patients who underwent coronary artery bypass surgery, aortic valve replacement, or other 
heart‑related surgeries between 2001 and 2012 were extracted from MIMIC‑III databases. Extreme 
gradient boosting, random forest, artificial neural network, and logistic regression were employed to 
build models by utilizing fivefold cross‑validation and grid search. Receiver operating characteristic 
curve, area under curve (AUC), decision curve analysis, test accuracy, F1 score, precision, and recall 
were applied to access the performance. Among 6844 patients enrolled in this study, 215 patients 
(3.1%) died within 30 days after surgery, part of patients appeared liver dysfunction (248; 3.6%), 
septic shock (32; 0.5%), and thrombocytopenia (202; 2.9%). XGBoost, selected to be our final model, 
achieved the best performance with highest AUC and F1 score. AUC and F1 score of XGBoost for 
4 outcomes: 0.88 and 0.58 for 30‑days mortality, 0.98 and 0.70 for septic shock, 0.88 and 0.55 for 
thrombocytopenia, 0.89 and 0.40 for liver dysfunction. We developed a promising model, presented as 
software, to realize monitoring for patients in ICU and to improve prognosis.

Open-heart surgery is a common surgery in the intensive care unit (ICU) with various complications such as 
acute kidney injury (AKI), sepsis, septic shock, chronic kidney disease (CKD), pneumonia, thrombocytopenia, 
and inflammatory  responses1–7. Lysak et al8 showed that because AKI and CKD are prevalent and generate high 
expenditure, early diagnosis is necessary to prevent these comorbidities from deteriorating. Early predicting 
comorbidities for critically ill patients after cardiac surgery is vital for patients’ prognosis and doctors’ decision 
making.

Compared to traditional methods to build a clinical prediction model by using logistic regression (LR), 
machine learning prediction models have the advantage of higher accuracy and robustness. Traditional algo-
rithms like LR requires researchers to manually select the highly related independent variables X while cutting 
edge machine learning algorithms can find out the relationship between X and Y automatically. Many researchers 
tried to construct prediction models for patients who underwent cardiac surgery. Meyer et al9 used the recurrent 
neural network (RNN) to predict mortality, bleeding, and renal failure after patients received heart surgery. Lei 
et al10, Tseng et al11, and Lee et al12 used acute kidney injury (AKI) as their primary outcome, moreover, Kilic 
et al13 considered prolonged ventilation, reoperation as their prediction objectives. Many researchers paid atten-
tion to the most common complications including AKI and sepsis after cardiac surgery, however, the research on 
other comorbidities such as septic shock, liver dysfunction, severe thrombocytopenia was limited.

Vardon-Bounes et al14 suggested that thrombocytopenia, with a prevalence of 50%, is a common hemostatic 
disorder in ICU, and is associated with bleeding, high illness severity, organ failure, and bad  prognosis15. Moreo-
ver, Kunutsor et al16 demonstrated that alanine transaminase (ALT) and aspartate transaminase (AST), as the 
indicator of liver dysfunction, are inversely associated with coronary heart disease (CHD) and are positively 
associated with stroke. In addition, Ambrosy et al17 showed that the higher the ALT and AST, the lower the sur-
vival rate. The increase of transaminase often indicates that the body is in a state of hypoperfusion or hypoxemia. 
It reminds us that timely intervention is needed, otherwise, patients will have adverse prognoses such as AKI 
or even death. Font et al18 claimed that during septic shock, the body produces a large number of inflammatory 
cytokines, causing multiple organ failures, such as septic cardiomyopathy, acute respiratory distress syndrome, 
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septic encephalopathy, and other complications. Therefore, early prediction of the occurrence of septic shock is 
particularly important to reduce the further deterioration of the patient’s condition.

Therefore, in this study, we aimed to build up multiple machine learning models to predict several risk factors 
of prognosis after open-heart surgery. Our primary outcomes were all-cause 30-days mortality, septic shock, 
severe thrombocytopenia, and liver dysfunction (abnormal AST and ALT).

Result
Study population. Among 6844 patients after heart surgery, 5475 (80%) patients were randomly divided 
into training data and 1369 (20%) patients were in test data. Table  1 showed the characteristics’ differences 
between these two groups’ data, and most of the variables have no significant differences. Among 6844 data 
enrolled in this study, 219 (3.1%) patients died within 30-days after heart surgery. Septic shock, liver dysfunc-
tion, and thrombocytopenia accounts for 32 (0.5%), 248 (3.6%), 202 (2.9%) in respective. Table 2 showed most 
of the input variables have significant difference between positive samples (ill patients) and negative samples 
(normal patients) (P < 0.05).

Machine learning models’ performance. Accuracy, area under the curve (AUC), F1 score, precision, 
and recall of four models of all complications were shown in Table 3, and ROC curves of 4 primary outcomes 
were plotted in Fig. 1.

XGBoost (AUC: 0.99; F1 score 0.70 for septic shock; AUC: 0.88; F1 score 0.58 for 30-days mortality; AUC: 
0.88; F1 score 0.55 for thrombocytopenia; AUC: 0.89; F1 score 0.40 for liver dysfunction) achieved the highest 
AUC and F1 score, which means it is the most robust model.

Compared to other algorithms, XGBoost has overall better performance in terms of AUC, test accuracy, and 
F1 score in respective. In Fig. 2, decision curve analysis showed that, in terms of net benefit, XGBoost and RF were 
better than LR and ANN. Besides, XGBoost is slightly better than RF. Therefore, we selected XGBoost model as 
our final model in this study, and based on XGBoost model files we built up a Windows 10 software, which can 
find the download link from the website https ://githu b.com/Zhihu a-Predi ction Model /ML-Predi ction -Model , to 
present our research results as shown in Fig. 3. Source files of XGBoost for 4 outcomes from Sklearn were also 
uploaded to the website. Other researchers or programmers can easily apply these trained model files (“.model” 
file can be loaded by joblib, a package in Python) to the practical customized use of prediction.

The top 5 predictors that influenced the decision making of XGBoost were calculated as shown in Table 4. The 
first, second, and third predictors of 4 outcomes are as follow. 30-days mortality: vasopressin (first), PH (second), 
and creatinine (third); septic shock: hemoglobin, hematocrit, and lactate; severe thrombocytopenia: vasopressin, 
bicarbonate, lactate; liver dysfunction: partial thromboplastin time, gender, partial pressure of oxygen.

Discussion
In our study, four machine learning models were constructed and compared for 30-days mortality and 3 comor-
bidities after heart-related surgery. Other researchers also conducted many researches on the prediction model 
for patients. Based on 2010 patients in the database of Seoul National University Hospital, Lee et al12 found 
that among machine learning algorithms including decision tree, support vector machine, and random forest, 
XGBoost (Test accuracy: 0.74; AUC: 0.78) has the best performance to predict AKI after cardiac surgery and a 
website was created to process patients’ data in real-time. Kilic et al13 also applied XGBoost to predict multiple 
complications, including operative mortality (AUC: 0.771), renal failure (AUC: 0.776), prolonged ventilation 
(AUC: 0.739), reoperation (AUC: 0.637), stroke (AUC: 0.684), and deep sternal wound infection (AUC: 0.599), 
for adult patients after surgical aortic valve replacement in the Society of Thoracic Surgeons National Database. 
In addition, other researchers usually paid attention to common complications such as AKI, sepsis, and hospital 
mortality. However, researches on other complications were limited. Therefore, our study managed to predict 
30-days mortality, septic shock, liver dysfunction, and severe thrombocytopenia which is also important for 
patients’ prognosis.

Several predictors of different comorbidities were outputted by XGBoost. According to Table 4, among 4 
primary outcomes, lactate and platelet appeared 3 times, vasopressin, creatinine, platelet, appeared 2 times, 
which means they were the important factors for our outcomes. Models built by Kilic et al13 also showed that 
creatinine is an important factor to predict mortality, renal failure after heart surgery.

Our study has some limitations. Firstly, all experiments were conducted on a clinical database of critically ill 
patients called MIMIC-III, which means our machine learning models may have a good performance on those 
who are critically ill and are living in America. However, models may not work that well on people living in 
other regions. Therefore, further study is needed to obtain as much as possible data from various databases to 
construct a more comprehensive model that can work well on any population in any area.

Secondly, sample imbalance problem occurred in the experiment. There is a trade-off between accuracy, F1 
score, precision, recall, and AUC because medical data usually are highly unbalanced that among 100 patients, 
there may be three positive samples and 97 negative samples (normal samples). In this situation, ML algorithms 
tend to classify samples into the class with most data. Therefore, we adjusted the weight of the positive samples of 
complications in the loss function and it improved precision, recall, and F1 score of models at the cost of reduc-
ing AUC and accuracy. And by setting other hyperparameters and using subsample, we make XGBoost keep a 
good balance between precision and recall. Facing with unbalanced medical data, how to improve accuracy, F1 
score, and AUC simultaneously as much as possible remains an open problem.

In conclusion, four machine learning algorithms were built to predict 30-days mortality and 3 comorbidities 
after open-heart surgery. XGBoost model was the most robust model with the highest AUC, F1 score, and net 
benefit. Besides, Windows 10 software was created and is available on the website mentioned above for clinical 
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staff. Moreover, multiple predictors outputted by XGBoost model indicated the relevance between these factors 
and comorbidities, and generated a hypothesis. Besides, whether these factors can be independent biochemical 
indexes remain open problems.

Table 1.  Baseline characteristics and variables 1. Abbreviations: BMI body mass index, CHD coronary 
heart disease, INR international normalized ratio, PCO2 partial pressure of carbon dioxide, PO2 partial 
pressure of oxygen, PTT partial thromboplastin time, PT prothrombin time, SPO2 oxygen saturation, WBC 
white blood cell. All laboratory variables and vital signs mentioned above were measured by the mean value 
during hospitalization. Chi-square test and Wilcoxon rank-sum test were used to compare the differences of 
categorical and continuous variables respectively.

Variables
Total
(6844)

Train
(5475)

Test
(1369) P value Observed, n (%)

Demographics

Age (years) 66 ± 12 66 ± 12 66 ± 12 0.20 6841(100)

BMI(Mean ± SD) 29 ± 12.5 29 ± 14 29 ± 6 0.02 6544(95.6)

Male, n (%) 4700(69) 3770(69) 930(68) 0.53 6841(100)

Vasopressin, n (%) 337(4.9) 272(4.9) 65(4.7) 0.79 6841(100)

Lab variables(Mean ± SD)

Glucose (mg/dL) 130 ± 19 130 ± 19 130 ± 18 0.48 6766(98.9)

Platelet (K/uL) 191 ± 68 191 ± 68 188 ± 69 0.03 6762(98.8)

Potassium (mEq/L) 4.3 ± 0.3 4.3 ± 0.3 4.3 ± 0.3 0.15 6768(98.9)

Sodium (mEq/L) 137 ± 2.3 137 ± 2.3 137 ± 2.4 0.25 6766(98.9)

WBC (K/uL) 11 ± 3.6 11 ± 3.8 12 ± 2.5 0.06 6761(98.8)

Bicarbonate (mEq/L) 24 ± 2.4 24 ± 2.3 24 ± 2.4 0.12 6622(96.8)

Hematocrit 31 ± 4 31 ± 4 31 ± 4 0.23 6587(96.2)

INR 1.4 ± 0.3 1.4 ± 0.3 1.4 ± 0.3 0.24 6475(94.6)

Lactate (mg/dL) 2.3 ± 1 2.3 ± 1 2.3 ± 1 0.01 4447(64.0)

PCO2 (mmHg) 41 ± 4 41 ± 3.8 41 ± 4 0.38 6687(97.7)

PH 7 ± 0.03 7 ± 0.3 7 ± 0.3 0.33 6700(97.9)

PO2 (mmHg) 236 ± 57 236 ± 57 237 ± 57 0.34 6687(97.7)

SPO2 (%) 98 ± 1.5 98 ± 1.5 98 ± 1.3 0.48 6716(98.1)

Base excess (mEq/L) 2.3 ± 1 2.3 ± 1 2.3 ± 1 0.15 5657(82.7)

Total CO2 (mEq/L) 25 ± 2 25 ± 2 25 ± 2 0.31 6687(97.7)

Calcium (mg/dL) 1 ± 0.2 1 ± 0.2 1 ± 0.1 0.42 6557(95.8)

Creatinine (mg/dL) 1.1 ± 0.8 1.1 ± 0.8 1.1 ± 0.7 0.32 6763(98.8)

Urea nitrogen (mg/dL) 22 ± 12 22 ± 12 22 ± 12 0.19 6763(98.8)

Anion gap (mEq/L) 12 ± 2.5 12 ± 2.5 12 ± 2.5 0.14 6013(87.9)

Hemoglobin (g/dL) 10 ± 1.5 10 ± 1.4 10 ± 1.4 0.15 6763(98.8)

PTT (s) 41 ± 16 41 ± 16 41 ± 15 0.25 6491(94.9)

PT (s) 15 ± 2.7 15 ± 2.6 15 ± 3.1 0.47 6477(94.7)

Vital signs(Mean ± SD)

Heart rate (bpm) 84 ± 10 84 ± 10 84 ± 10 0.34 6718(98.2)

Systolic BP (mmHg) 112 ± 9 112 ± 9 112 ± 9 0.05 6709(98.1)

Diastolic BP (mmHg) 56 ± 6 56 ± 6 57 ± 6 0.13 6709(98.1)

Respiratory rate (bpm) 17 ± 3 17 ± 3 17 ± 3 0.24 6716(98.2)

Body temperature (°C) 37 ± 0.5 37 ± 0.5 37 ± 0.5 0.26 6197(90.6)

Comorbidities, n(%)

CHD 5029(73) 4003(73) 1026(75) 0.18 6841(100)

Diabetes 2160(32) 1738(32) 422(31) 0.57 6841(100)

History of stroke 4(0.06) 4(0.07) 0(0) 0.70 6841(100)

Urine output(Mean ± SD) 2262 ± 1123 2265 ± 1137 2249 ± 1062 0.48 6688(97.8)

Primary outcomes, n(%)

30-days mortality 215(3.1) 170(3.1) 45(3.3) 0.80 6841(100)

Liver dysfunction 248(3.6) 197(3.6) 51(3.7) 0.99 6841(100)

Septic shock 32(0.5) 25(0.5) 7(0.5) 0.96 6841(100)

Thrombocytopenia 202(2.9) 153(2.8) 49(3.5) 0.99 6841(100)



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:3384  | https://doi.org/10.1038/s41598-021-83020-7

www.nature.com/scientificreports/

Methods
Data source and participants. Medical Information Mart for Intensive Care (MIMIC-III) is a freely avail-
able database containing critically ill patients who were admitted to the ICU of the Beth Israel Deaconess Medi-
cal Center between 2001 and  201219. Those who were under coronary artery bypass surgery, aortic valve replace-
ment, or insertion of the implantable heart assist system (including ICD9 code 3961, 3615, 3612, 8872, 3521, 
6311, 3522, 3614, 3733, 3524) were enrolled in this study. 6844 related samples were extracted from MIMIC-III 
clinical database by using PostgreSQL and Python 3 (version 3.7.8).

Definition and primary outcomes. The primary outcomes were 30-days mortality, and three comor-
bidities including septic shock, liver dysfunction, and severe thrombocytopenia after heart-related surgery. 
30-days mortality was defined as death after discharge from ICU within 30 days. A patient will be marked as 
liver dysfunction if his/her first test value of aspartate transaminase (AST) and alanine transaminase (ALT) was 
normal (10–45 IU/L for ALT; 10–35 IU/L for AST) and values, tested later, of AST or ALT were greater than 

Table 2.  Baseline characteristics and variables 2. P value of outcomes presents whether a variable has 
significant difference between positive samples (ill patients) and negative samples (normal patients).

Variables P value of mortality
P value of 
thrombocytopenia P value of septic shock

P value of liver 
dysfunction

Demographics

Age  < 0.001  < 0.001 0.007 0.032

Body mass index 0.459 0.025 0.005 0.453

Male 0.226 0.067 0.953 0.536

Vasopressin  < 0.001  < 0.001  < 0.001  < 0.001

Lab variables

Glucose  < 0.001 0.008 0.003 0.065

Platelet  < 0.001  < 0.001 0.057  < 0.001

Potassium 0.187  < 0.001 0.255  < 0.001

Sodium 0.001 0.064 0.251 0.007

White blood cell  < 0.001 0.011  < 0.001  < 0.001

Bicarbonate  < 0.001  < 0.001  < 0.001  < 0.001

Hematocrit  < 0.001  < 0.001 0.293 0.092

International normalized 
ratio  < 0.001 0.005 0.203 0.002

Lactate  < 0.001  < 0.001 0.017  < 0.001

Partial pressure of carbon 
dioxide 0.37  < 0.001 0.346 0.393

PH  < 0.001 0.001  < 0.001  < 0.001

Partial pressure of oxygen  < 0.001 0.001  < 0.001  < 0.001

Oxygen saturation  < 0.001 0.003 0.015  < 0.001

Base excess  < 0.001 0.106 0.143  < 0.001

Total CO2  < 0.001  < 0.001  < 0.001  < 0.001

Calcium  < 0.001 0.29  < 0.001  < 0.001

Creatinine  < 0.001  < 0.001  < 0.001  < 0.001

Urea nitrogen  < 0.001  < 0.001  < 0.001  < 0.001

Anion gap  < 0.001 0.442  < 0.001  < 0.001

Hemoglobin  < 0.001  < 0.001 0.374 0.142

Partial thromboplastin time  < 0.001  < 0.001 0.437  < 0.001

Prothrombin time  < 0.001  < 0.001 0.344 0.003

Vital signs

Heart rate  < 0.001 0.097 0.123 0.126

Systolic BP  < 0.001 0.012  < 0.001  < 0.001

Diastolic BP 0.007 0.014 0.007 0.346

Respiratory rate  < 0.001  < 0.001  < 0.001  < 0.001

Body temperature  < 0.001 0.071 0.008 0.129

Comorbidities

Coronary heart disease 0.051  < 0.001 0.073 0.658

Diabetes 0.423 0.901 0.231 0.092

History of stroke 0.283 0.532  < 0.001 0.343

Urine output  < 0.001  < 0.001  < 0.001  < 0.001
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Table 3.  Model evaluation. Abbreviations: XGBoost extreme gradient boosting, RF random forest, LR logistic 
regression, ANN artificial neural network, AUC  area under curve.

Outcomes Model Accuracy AUC F1 score Precision Recall

30-days mortalit

XGBoost 0.97 0.90 0.58 0.58 0.58

RF 0.97 0.88 0.44 0.50 0.40

LR 0.81 0.86 0.21 0.12 0.75

ANN 0.97 0.64 0.12 0.75 0.07

Septic shock

XGBoost 0.99 0.96 0.70 0.67 0.75

RF 0.99 0.81 0.25 1.00 0.14

LR 0.79 0.93 0.05 0.02 1.00

ANN 0.99 0.88 0.13 0.13 0.14

Thrombocytopenia

XGBoost 0.96 0.89 0.55 0.45 0.72

RF 0.97 0.89 0.37 0.56 0.27

LR 0.83 0.87 0.23 0.14 0.76

ANN 0.89 0.83 0.24 0.16 0.51

Liver dysfunction

XGBoost 0.94 0.89 0.40 0.32 0.53

RF 0.96 0.89 0.20 0.39 0.14

LR 0.81 0.82 0.22 0.13 0.70

ANN 0.96 0.70 0 0 0

Figure 1.  ROC curve of 4 outcomes.
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the max normal value (45 IU/L for ALT; 37 for AST)20. Severe thrombocytopenia was considered as that first 
platelet count was higher than 50 K/uL and one of later platelet count was lesser than 50 K/uL14. Considering 
septic shock is a severe disease with acute symptoms, it was diagnosed by ICD-9 code (785.52) in MIMIC-III 
 database21. Only data of the first time ICU admission for each patient was considered.

Machine learning models. Logistic regression (LR) is a classic classification algorithm that makes a linear 
combination of input variables and uses the sigmoid function to output a probability. Main LR hyperparameter 
is C.

Neurons in artificial neural network (ANN) make a linear combination of the output value from the upper 
layers’ neurons, pass it through sigmoid functions, and finally output a value to the next  neurons22. The width 
and depth of hidden layers influence the performance of ANN.

Compared to a single classifier, the ensemble learning algorithm random forest (RF), merging multiple weak 
classifiers to a strong classifier, showed a more powerful performance in the classification  task23. Main hyperpa-
rameters are n_estimators, max_depth, and max_leaf_nodes.

Extreme gradient boosting (XGBoost) is also an ensemble model of decision  trees24. Main parameters 
are n_estimators, max_depth, reg_lambda, gamma, min_child_weight, scale_pos_weight (when samples are 
unbalanced, this parameter can change the weight of positive samples in loss function), max_delta_step, and 
subsample.

Statistical method. 35 input variables including demographics, use of vasopressin, laboratory variables, 
vital signs, comorbidities, urine output of the first day, and 4 output variables were extracted from the database 
as shown in Table 1. Some important variables such as fraction of inspiration O2 (Fio2) were excluded due to 
too much missing data. Variables that have less than 40% missing data were  retained25. All missing values were 
filled with the average value of this variable. A statistical method called winsorization was used to deal with the 
outliers.

Figure 4 showed the flow chart of data process. After that, 6844 samples were randomly divided into training 
data (5475), and test data (1369) in a ratio of 80–20%. Chi-square test and Wilcoxon rank-sum test were used to 
compare the differences of categorical and continuous variables respectively. They were employed to compare 
the differences between training data and test data to make sure the distributions of two datasets were as same 

Figure 2.  Decision curve analysis of 4 outcomes.
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as possible. In Table 1, P value was calculated and P > 0.05 was considered there were no significant distribution 
differences between training data and test data. In Table 2, Chi-square test and Wilcoxon rank-sum test were used 
to compare the difference between positive samples and negative samples to observe the correlation between the 
independent variables X and outcome variables Y. P < 0.05 was considered there was strong correlation.

Machine learning models training. Training data were evenly split into 5 parts that 4 parts were used 
to train a model of a certain hyperparameter, and the remaining one, also called validation set, was used to test 
the performance of this parameter. This process will conduct 5 times to gain 5 validation scores and the average 

Figure 3.  Windows 10 software for patients who underwent open-heart surgery.

Table 4.  Feature importance outputted by XGBoost. Abbreviations: PH potential of hydrogen, SPO2 oxygen 
saturation, Systolic BP systolic blood pressure, PTT partial thromboplastin time, PO2 partial pressure of 
oxygen. Values in parentheses were frequency score of each independent variable, which represents the ratio 
between the number of times a variable appears in the leaf node and the number of times all variables appear 
in the leaf node.

Outcomes First Second Third Fourth Fifth

30-days mortality Vasopressin (0.0940) PH (0.0553) Creatinine (0.0504) Lactate (0.0415) Platelet (0.0414)

Septic shock Hemoglobin (0.1590) Hematocrit (0.1400) Lactate (0.0818) SPO2 (0.0737) Respiratory rate (0.0713)

Thrombocytopenia Vasopressin (0.1486) Bicarbonate (0.0767) Lactate (0.0547) Platelet (0.0452) Systolic BP (0.0405)

Liver dysfunction PTT (0.1116) Gender (0.0659) PO2 (0.0539) Platelet (0.0481) Creatinine (0.0452)
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score was used to evaluate the performance of the model. Data scientists usually call this method fivefold cross-
validation which usually was used to select the best hyperparameter. 4 machine learning algorithms including 
LR, ANN, RF, and XGBoost were employed to fit the data, and all of these models have many hyperparameters 
that need to be specified as shown in Table 5. By applying grid search techniques, various kinds of parameters 
were searched automatically in Python and the best one was selected. Each model has its own best parameter. By 
comparing four models’ performance, the best one, XGBoost, was picked up to be the final model of our study. 
We continued to fine-turn hyperparameters of XGBoost manually to obtain a better performance.

It will overestimate the model performance if just using the validation set and its score to evaluate the model, 
and because of that, test data, divided at the beginning, will be utilized to obtain a final score whose results were 
presented in Table 3. Besides, decision curve analysis was also applied to evaluate the model as shown in Fig. 2. 
All machine learning experiments were conducted on Python (version 3.7.8).

Data availability
Original data were extracted from the MIMIC-III database by Z.Z., the first author, who passed the online 
training and obtained access to the database, https ://mimic .mit.edu. If needed, related data of this article can be 
obtained by contacting F.L., the corresponding author, on reasonable request.

Received: 22 September 2020; Accepted: 22 January 2021

Figure 4.  Flow chart of data process.

Table 5.  Candidate parameters for grid search and fine-tune of parameters. These parameters came from 
Python machine learning package called Sklearn.

Algorithms Candidate parameters

Logistic regression C: [0.01, 0.1, 1, 10]
class_weight: [‘balanced’]

Artificial neural network hidden_layer_sizes: [(50, 50), (100, 100), (150, 150)]

Random forest
n_estimators: [30, 60 ,90]
max_depth: [30, 60, 90]
max_leaf_nodes: [30, 60 ,90]
class_weight: [‘balanced’]

XGBoost

n_estimators: [3,30,60]
max_depth: [3, 30]
reg_lambda: [0.1, 10]
gamma: [0.1, 10]
min_child_weight: [0.2, 8, 20]
scale_pos_weight: [3,30,300,3000,3300,3600,3900,4000,5000,6000,7000,8000]
subsample:[0.3, 0.6, 1]
max_delta_step:[0, 3]

https://mimic.mit.edu
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