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Identification of epigenetic 
memory candidates associated 
with gestational age at birth 
through analysis of methylome 
and transcriptional data
Kohei Kashima1,2,14*, Tomoko Kawai2,14, Riki Nishimura1, Yuh Shiwa3, Kevin Y. Urayama4,5, 
Hiromi Kamura2, Kazue Takeda6, Saki Aoto7, Atsushi Ito1, Keiko Matsubara8, 
Takeshi Nagamatsu9, Tomoyuki Fujii9, Isaku Omori10, Mitsumasa Shimizu10, 
Hironobu Hyodo11, Koji Kugu11, Kenji Matsumoto6, Atsushi Shimizu3,12, Akira Oka1, 
Masashi Mizuguchi13, Kazuhiko Nakabayashi2, Kenichiro Hata2 & Naoto Takahashi1

Preterm birth is known to be associated with chronic disease risk in adulthood whereby epigenetic 
memory may play a mechanistic role in disease susceptibility. Gestational age (GA) is the most 
important prognostic factor for preterm infants, and numerous DNA methylation alterations 
associated with GA have been revealed by epigenome-wide association studies. However, in human 
preterm infants, whether the methylation changes relate to transcription in the fetal state and persist 
after birth remains to be elucidated. Here, we identified 461 transcripts associated with GA (range 
23–41 weeks) and 2093 candidate CpG sites for GA-involved epigenetic memory through analysis 
of methylome (110 cord blood and 47 postnatal blood) and transcriptional data (55 cord blood). 
Moreover, we discovered the trends of chromatin state, such as polycomb-binding, among these 
candidate sites. Fifty-four memory candidate sites showed correlation between methylation and 
transcription, and the representative corresponding gene was UCN, which encodes urocortin.

Gestational age (GA) and birth weight, particularly low birth weight, are the most important predictors associ-
ated with short- and long-term neonatal adverse outcomes. Low birth weight infants can be classified as either 
preterm infants or small-for-gestational-age (SGA) infants. Preterm infants are defined as those born before 
37 weeks of gestation. They are forced to survive ex utero midst their fetal development, receiving no direct 
nutrient and oxygen supply from their mothers, earlier than term infants. In contrast, SGA infants tend to be 
exposed to hypoxia and malnutrition in utero. Despite differences in etiology and exposure between these two 
conditions of newborns, both involve disturbed oxygen and nutrition during the perinatal period. To date, 
there is growing epidemiological evidence that these newborns may be at higher risk of chronic diseases in later 

OPEN

1Department of Pediatrics, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo 113-8655, 
Japan. 2Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 
Tokyo, Japan. 3Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, 
Disaster Reconstruction Center, Iwate Medical University, Iwate, Japan. 4Department of Social Medicine, 
National Research Institute for Child Health and Development, Tokyo, Japan. 5Graduate School of Public Health, 
St. Luke’s International University, Tokyo, Japan. 6Department of Allergy and Clinical Immunology, National 
Research Institute for Child Health and Development, Tokyo, Japan. 7Medical Genome Center, National Research 
Institute for Child Health and Development, Tokyo, Japan. 8Department of Molecular Endocrinology, National 
Research Institute for Child Health and Development, Tokyo, Japan. 9Department of Obstetrics and Gynecology, 
The University of Tokyo Hospital, Tokyo, Japan. 10Department of Neonatology, Tokyo Metropolitan Bokutoh 
Hospital, Tokyo, Japan. 11Department of Obstetrics and Gynecology, Tokyo Metropolitan Bokutoh Hospital, Tokyo, 
Japan. 12Division of Biomedical Information Analysis, Institute for Biomedical Sciences, Iwate Medical University, 
Iwate, Japan. 13Department of Developmental Medical Sciences, The University of Tokyo, Tokyo, Japan. 14These 
authors contributed equally: Kohei Kashima and Tomoko Kawai. *email: KASHIMAK-PED@h.u-tokyo.ac.jp

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-83016-3&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:3381  | https://doi.org/10.1038/s41598-021-83016-3

www.nature.com/scientificreports/

life, including coronary heart disease, type 2 diabetes, metabolic syndromes, and neurobehavioral  problems1–3; 
higher risk of mortality from coronary heart disease has also been  reported2. In addition, preterm and/or low 
birth weight infants are prone to metabolic shift including BMI  gain4, lower insulin  sensitivity5, and higher blood 
 pressure6compared to normal birth weight infants, even in later childhood. Another line of evidence from the 
Dutch famine birth cohort studies showed that maternal undernutrition during pregnancy caused high morbidity 
of offspring in  adulthood7–9. These findings support the Developmental Origins of Health and Disease (DOHaD) 
 hypothesis10,11 which describes that the adaptation for surviving harsh environment in early life may influence 
the susceptibility to chronic diseases in  adulthood10,11. In other words, restriction of developmental plasticity may 
contribute to these personal  traits12. Considering that epigenetic mechanisms play important roles in tissue dif-
ferentiation and developmental  plasticity11,12, epigenetic memory formed in early development may therefore act 
upon pathways to chronic diseases in later life. However, this hypothesis has not been well-elucidated in humans.

Owing to advances in microarray technology, epigenome-wide association studies (EWAS) are now com-
monly conducted. In the perinatal field, previous studies have investigated methylation alterations related to 
 GA13–17, birth  weight15,18, and birth weight standard deviation (SD) scores for  GA19 by using cord blood sam-
ples. However, these studies have not examined whether DNA methylation changes relate to RNA expression 
levels, and those that were able to examine postnatal blood methylation showed inconsistent results. Two previ-
ous studies reported that certain methylation changes identified at birth among preterm or low birth weight 
infants were no longer observed by  adulthood15,20; however, the results of postnatal methylation persistence 
were  inconsistent15,20. Cruickschank et al. suggested that some methylation alterations among preterm infants 
may persist into  adulthood20. In contrast, no persistence was observed from the age of 7 years in the report by 
Simkin et al. in the ARIES cohort  study15.

The objectives of the current study were to investigate epigenetic alterations associated with preterm birth 
and SGA through DNA methylation and gene expression microarrays, as well as, to identify epigenetic at-birth 
changes which may persist as personal traits after birth. The evaluation of DNA methylation, gene expression, 
and their relationship was performed using both genomic DNA and total RNA samples purified simultaneously. 
This is the first EWAS study targeting Japanese preterm and/or SGA infants.

Results
We generated normalized DNA methylation data from 110 cord blood samples and 47 postnatal peripheral blood 
samples, as well as, normalized gene expression data from 55 cord blood samples as described in Methods, Sup-
plementary Methods, and Supplementary Figures 1–4. The results are described in the order shown in ‘overall 
analysis framework’ (Supplementary Figure 5). Among the 110 mother-infant pairs included in these analyses, 
mean GA was 34.0 weeks and mean birth weight SD score was − 0.6 (Table 1, Supplementary Table 1); 34.5% 
(n = 38) were small-for-GA (SGA; defined as birth weight < 10th percentile, equivalent to − 1.28 SD) and 10.9% 
(n = 12) were large-for-GA (LGA; defined as birth weight > 90th percentile, equivalent to 1.28 SD). Approximately 
81% (n = 89) of total deliveries were by cesarean section. Only 2 mothers (1.8%) smoked during pregnancy, and 7 
mothers (6.4%) had smoked before pregnancy. Further, 3.6% of mothers (n = 4) experienced gestational diabetes 
mellitus, 22.7% (n = 25) had chorioamnionitis, 10% (n = 11) had idiopathic premature rupture of the membrane 
without inflammation (hereinafter referred to as iPROM), and 18.2% (n = 20) experienced preeclampsia.

Covariates associated with GA and/or birth weight SD scores. We evaluated the association 
between pregnancy- and delivery-related variables, infant sex, and GA at birth and/or birth weight SD scores for 
GA (hereinafter referred to as SD scores). Higher SD scores were associated with older GA (Fig. 1, Supplemen-
tary Tables 2, 3; p < 0.05). Male infants, cesarean section, higher maternal pre-pregnancy BMI, maternal smok-
ing before pregnancy, and chorioamnionitis were all associated with earlier GA (Fig. 1a; p < 0.05). Moreover, 
there was a suggestive association between iPROM and earlier GA (Fig. 1a; p = 0.060), and preeclampsia was 
associated with lower SD scores (Fig. 1b; p < 0.05). In multivariate analysis that considered these variables, the 
direction of effect remained similar, and the association with iPROM and preeclampsia became stronger (Sup-
plementary Table 4, 5).

Epigenome-wide association study on GA and/or birth weight SD scores using cord blood 
samples and pathway analysis. The EWAS of GA and SD scores using the cord blood samples utilized 
two linear regression models that differed in the extent of covariate adjustment. Using the false discovery rate 
(FDR)  correction21 for multiple testing (q < 0.05, 410,735 tests), based on “Model 1” we identified 43,930 CpG 
sites associated with GA and 658 CpGs associated with SD score (Fig. 2a,b; Supplementary Fig. 6a, 7a). Based 
on “Model 2” that adjusted for additional covariates, we identified 29,071 sites associated with GA and 163 
sites associated with SD score (Fig. 2a,b; Supplementary Fig. 6b, 7b). We considered candidate CpGs as those 
associated with GA or SD scores in both models in the same direction, resulting in the identification of 27,619 
GA-related CpGs and 150 SD score-related CpGs (Supplementary Tables 6 and 7). We pursued a sensitivity 
analysis approach used similarly in previous studies to assess whether associations were captured sufficiently 
from ”Model 2″ which contained six additional prenatal  covariates22. Regression analysis were pursued adjust-
ing for “Model 1″ covariates in addition to each of these six covariates, in turn, and the number of associated 
CpGs were observed. Results of all sensitivity analyses (FDR < 0.05) showed overlap of 26,202 GA-related CpGs 
(95%) and 141 SD score-related CpGs (94%), all of which were included in the larger set of 27,619 GA-related 
and 150 SD score-related CpGs (Supplementary Table 8, 9). Additionally, we categorized both groups of CpGs 
based on directionality of the regression coefficients. GA-related CpGs consisted of 17,260 positively related 
sites and 10,359 negatively related sites (Fig. 2a,c; Supplementary Table 6). SD score-related CpGs consisted of 
113 positively related sites and 37 negatively related sites (Fig. 2b,d; Supplementary Table 7). GA-related CpGs 



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:3381  | https://doi.org/10.1038/s41598-021-83016-3

www.nature.com/scientificreports/

were more likely to be located in CpG island shores (p < 2.2e−16), the distribution of which was 1.4-fold more 
than that of all CpGs contained in the HumanMethylation450 BeadChip (hereinafter referred to as 450 k array) 
(Supplementary Fig. 8). The distribution of SD-score-related CpGs at open sea (p = 6.9e−08) was 1.5-fold more 
than that of all CpGs contained in 450 k array.

For KEGG pathway enrichment analysis, we selected genes in which the promoter region had at least 2 CpGs 
associated with GA or SD scores. The DAVID bioinformatics  resources23 found no FDR-significant associations 
with genes containing SD score-related CpGs (Fig. 2d). Regarding GA-related CpGs, 9 pathway categories were 
significantly enriched in the analysis for positively GA-related CpGs, and 27 pathway categories were significantly 
enriched in the analysis for negatively GA-related CpGs after filtering for enrichment-FDR ≤ 0.1 (Supplementary 
Table 10). The terms indicating inflammation (for example, “inflammatory bowel disease”), “cytokine-cytokine 
receptor interaction”, and “NF-kappa B signaling pathway” were enriched in the analysis for negatively GA-related 

Figure 1.  Association of prenatal covariates with gestational age and/or birth weight SD scores (n = 110, 
cord blood samples). (a) Association of prenatal covariates with gestational age (GA). Red asterisks with each 
covariate represent p-values for association between predictor (GA or birth weight SD score) and prenatal 
covariate (double red asterisks = p value < 0.05 (univariate linear regression analysis); single red asterisk = p value 
of 0.060 (suggestive)). Regression coefficients (Estimates) and p values are reported as a week’s change in GA 
for two standard deviation increases in continuous prenatal variables, or for comparing the two categories of 
binary prenatal variables. Error bars indicate 95% confidence interval of effect size. (b) Associations of prenatal 
covariates with birth weight SD scores. Estimates are reported as changes in birth weight SD scores for two 
standard deviation increases in continuous prenatal variables, or for comparing the two categories of binary 
prenatal variables. Abbreviations & which covariate is continuous or binary: [Continuous covariates] GA: 
gestational age, SD score: birth weight SD score, maAge: maternal age, maBMI: maternal pre-pregnancy BMI, 
paAge: paternal age, paBMI: paternal BMI [Binary covariates] Male, Parity (> 0 or 0), CS: cesarean section, ART 
: assisted reproductive technology, SmokeB: maternal smoking before pregnancy, GDM: gestational diabetes 
mellitus, CAM: chorioamnionitis, iPROM: idiopathic premature rupture of the membrane, Preeclampsia, Previa: 
placenta previa.
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CpGs, whereas “ECM-receptor interaction” and “PI3K-Akt signaling pathway” were enriched in the analysis for 
positively GA-related CpGs (Fig. 2e,f).

Association analysis of transcription and GA and/or birth weight SD scores and pathway anal-
ysis. Among the 27,701 CpGs associated with GA and/or birth weight SD scores in the cord blood EWAS, we 
matched 15,038 CpGs to 7,369 QC-filtered gene expression probes within a region of 250 kb upstream or down-
stream of CpGs (Fig. 3a,b). Association analysis was performed on these 7,369 transcripts which resulted in the 
identification of 461 FDR-significant GA-related transcripts (1,611 nominally significant transcripts; nominal 
p-value < 0.05). Among these GA-related transcripts, 220 were negatively related (680 at a nominal p < 0.05) and 
241 were positively related (931 at a nominal p < 0.05) (Fig. 3c; Supplementary Table 11). In contrast, there were 
no FDR-significant transcripts associated with birth weight SD score, but six were nominally significant tran-
scripts (Fig. 3d; Supplementary Table 12).

When we conducted pathway enrichment analysis for FDR-significant GA-related transcripts, five pathway 
categories were significant all of which were confined to only the negatively GA-related transcripts (enrichment-
FDR ≤ 0.1) (Supplementary Table  13). Enrichment analysis applied to the nominally significant GA-related 
transcripts resulted in 8 significantly enriched pathway categories among the negatively GA-related expression 
genes, and 20 significantly enriched pathway categories among the positively GA-related sites (Supplementary 
Table 14). Some pathway categories were simultaneously ranked within the list of top 10 enriched pathways 
appropriately in opposite directions in the GA-CpG methylation analysis and GA-expression analysis. The fol-
lowing pathway categories were ranked in both the top 10 lists of negatively GA-related CpGs and positively GA-
related transcripts: inflammatory bowel disease, viral myocarditis, NF-kappa B signaling pathway, and allograft 
rejection. In contrast, the following pathway categories ranked in both top 10 lists of positively GA-related CpGs 

Table 1.  Pregnancy- and delivery-related characteristics of 110 mother-infant pairs. *Since the table 
containing all the values exceeds one page, other descriptive characteristics that cannot be written in Table are 
shown in Supplementary Table 1.

Prenatal variable Mean (SD) Median N (%)

Sex (Male) 53 (48.2)

Maternal age 33.8 (4.7) 34

 < 25 years 1 (0.9)

25 ~ 30 years 20 (18.2)

30 ~ 35 years 41 (37.3)

35 ~ 40 years 34 (30.9)

 > 40 years 14 (12.7)

Maternal pre-pregnancy BMI 21.1 (3.5) 20.3

 < 18.5 kg/m2 23 (20.9)

 18.5 ~ 25 kg/m2 77 (70.0)

 25 ~ 30 kg/m2 4 (3.6)

 > 30 kg/m2 6 (5.5)

 Parity (> 0) 43 (39.1)

Smoking during pregnancy (Yes) 2 (1.8)

Smoking before pregnancy (Yes) 7 (6.4)

Assisted reproductive technology (ART: Yes) 25 (22.7)

Gestational diabetes mellitus (Yes) 4 (3.6)

Preeclampsia (Yes) 20 (18.2)

Placenta previa (Yes) 10 (9.1)

Chorioamnionitis (CAM: Yes) 25 (22.7)

Idiopathic premature rupture of the membrane (iPROM: Yes) 11 (10.0)

Delivery mode (cesarean section) 89 (80.9)

Gestational age at birth 34.0 (4.9) 35

 < 28 weeks 17 (15.5)

 28 ~ 32 weeks 17 (15.5)

 32 ~ 37 weeks 31 (28.2)

 > 37 weeks 45 (40.9)

Birth weight SD score − 0.6 (1.4) − 0.5

 < − 2.5 16 (14.5)

 − 2.5 to − 1.28 22 (20.0)

 − 1.28 to 1.28 60 (54.5)

 1.28 ~ 2.5 12 (10.9)
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and negatively GA-related transcripts: ECM-receptor interaction, PI3K-Akt signaling pathway, Rap1 signaling 
pathway, and focal adhesion (Figs. 2e,f, 3e,f; Supplementary Table 14).

Confirmation of direct association between DNA methylation and gene expression with meth-
ylation expression analysis. Based on the results of cord blood EWAS and association analysis of tran-
scription, we generated 1,355 CpG-transcript combinations connected with 461 GA-related expression probes 
and 1,196 GA-related CpGs within 414 RefSeq genes. From the cord blood samples, 55 were available for inves-
tigating direct methylation-expression relationships (Supplementary Fig. 9a). Within the 1,355 CpG-transcript 
combinations, significant associations between CpG methylation and gene expression were confirmed in 757 
combinations (nominal p < 0.05) (Supplementary Fig. 9c, Supplementary Table 15). This corresponded to 674 
GA-related CpGs showing significant methylation expression correlations to 281 RefSeq genes (Fig. 4a). Among 
these 674 CpG sites, 409 CpGs (458 combinations) showed negative correlation between % methylation and  log2 
expression values, while 265 CpGs (299 combinations) showed a positive correlation (Fig. 4b). Within the 674 
CpG sites, 84 in the promoter regions (including TSS200, TSS1500, 5′UTR, 1st Exon) showed positive correla-
tion between % methylation and  log2 expression, thus exhibiting a ‘discordant’  relation24 where transcription 
increased when methylation increased (Fig. 4b, green dots). In comparison, ‘concordant’ relation was confirmed 
in 165 promoter CpGs, where transcription decreased when methylation increased. Within the ‘discordant’ pro-
moter CpGs, “Repressed Polycomb” occupied the highest proportion (22.6%) among the 25 chromatin states 
of cord blood T cell-based annotation imputed by  ChromHMM25, with an enrichment odds ratio of 3.8 when 
compared to the reference proportion based on all CpGs contained in 450 k array (Fig. 4c,d; Supplementary 
Table 16). We listed the genes in which methylation levels were related to GA at multiple CpGs within the same 
genes from 84 discordant promoter CpGs (Fig. 4e). UCN was the top-ranked gene based on the largest num-
ber of CpGs included in the 84 discordant promoter CpGs, and whose promoter was occupied by “Repressed 
Polycomb” in most types of blood cells except for hematopoietic stem cells (Fig. 4f., E035, E051). Promoters in 
hematopoietic stem cells were occupied by bivalent promoter states which was in common with H1 embryonic 
stem cells (Fig. 4f., E003). Indeed, both the methylation in the promoter CpG of UCN (cg13833437) and the 
expression of UCN were significantly correlated to GA (Fig. 4g,h), in addition to positive correlation between 
methylation and expression levels (Fig. 4i). Within the 165 ‘concordant’ promoter CpGs, “Promoter upstream 
TSS” occupied the highest proportion (22.4%) among the 25 chromatin states of cord blood T cell-based annota-
tion imputed by ChromHMM, with an enrichment odds ratio of 2.4 when compared to the reference proportion 
based on all CpGs contained in the 450 k array (Supplementary Table 17). CARD11 was the top-ranked gene 
based on the largest number of CpGs included in the 165 ‘concordant’ promoter CpGs (Supplementary Fig. 10), 
and CARD11 promoter was occupied by “Promoter upstream TSS”.

Candidate CpGs for GA-involved epigenetic memory. To evaluate whether GA at birth was still asso-
ciated with DNA methylation in postnatal peripheral blood cells, we conducted EWAS using postnatal blood 
DNA methylation values. Postnatal blood samples for analysis were collected around their expected due dates 
from 47 babies whose cord blood samples were utilized for DNA methylation analysis. The GA EWAS was 
repeated among these 47 cord blood samples, and association with GA at birth was also examined in relation 
to DNA methylation in their postnatal samples. We identified 8,484 and 0 FDR-significant CpGs associated 
with GA in cord blood and postnatal peripheral blood, respectively. The volcano plot showing the regression 
coefficients of the DNA methylation and GA association was V-shaped for the 47 cord blood samples analyzed 
(Supplementary Fig. 11a), similar to the analysis using 110 samples (Fig. 2c). In contrast, the volcano plot based 
on the postnatal peripheral blood samples indicated no evidence of an association (Supplementary Fig. 11b).

Next, we examined the relationship between DNA methylation at birth and methylation postnatally around 
the expected due date. Pearson’s correlation coefficients between 47 paired cord and postnatal peripheral blood 
mononuclear cell methylation values were calculated for all 27,619 GA-related CpGs identified in the first EWAS 
of 110 cord blood samples. The median time interval between the two blood draws was 7.1 weeks (range: 2.0 to 
18.1 weeks). We considered CpGs of correlation coefficient ≥ 0.7 as the candidates for GA-involved epigenetic 
memory, similar to definitions used in previous  reports19. We identified 2,093 candidate CpGs for GA-involved 
epigenetic memory that showed a correlation coefficient ≥ 0.7 (Fig. 5a; Supplementary Table 18). Among these, 
CpGs showing high methylation at birth were likely to remain high after the birth as well, while those of low 
methylation values at birth appeared to remain low after birth (Fig. 5b). To evaluate the possibility that the 
correlation coefficients may be influenced by the time interval of the two blood draws, we ordered the samples 
by time interval and compared the correlation coefficients of the bottom 23 samples (median time interval: 
4.0 weeks) and top bottom 23 samples (median time interval: 11.0 weeks) by using paired t-tests. The mean 
of the bottom group was only 0.036 (95%CI: (0.030, 0.042)) higher than that of the top group (Supplementary 
Fig. 12), and the distribution of correlation coefficients of the two groups were similar. High correlations were 
observed across multiple CpGs in genes such as UCN and RGMA. The methylation of certain CpGs in these 
genes were also correlated with neighboring CpGs in cord and postnatal blood samples. This may indicate that 
specific genomic regions were regulated in the same way during the perinatal period (Fig. 5c). To characterize 
those regions, we referred to ChromHMM 25-chromatin-states of the 2,093 candidate CpGs for GA-involved 
epigenetic memory. Among these 2,093 CpGs studied, “Repressed Polycomb” and “Bivalent Promoter” showed 
as the second and the third highest frequency after “Quiescent/Low” in both cord blood T cell-based and B 
cell-based annotations (Fig. 5d; Supplementary Fig. 13, Supplementary Table 19). These two chromatin states 
were also enriched in Fisher’s exact test in both annotations, and “Repressed Polycomb” was most significantly 
enriched (Fig. 5e). Further, as the correlation coefficients between cord blood and postnatal blood DNA meth-
ylation increased, the proportion of loci occupied by “Repressed Polycomb” or “Bivalent Promoter” increased as 
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well (Fig. 5g). Indeed, CpGs in UCN and RGMA, where the DNA methylation levels of each CpG correlated well 
with neighboring CpGs, were mainly in a state of “Repressed Polycomb” and “Bivalent Promoter”, respectively 
(Figs. 4f, 5c). Apart from these two genes, multiple CpGs in PRDM16, SLC38A4, and ZSCAN12L1, which were 
included in the 2,093 candidate CpGs for GA-involved epigenetic memory, were also in a state of “Repressed 
Polycomb” and/or “Bivalent Promoter” (Fig. 5f).

Finally, we investigated transcription of the aforementioned candidate CpGs for GA-involved epigenetic 
memory. Of the 2,093 candidate CpGs, 54 had methylation expression correlation in cord blood (Fig. 5h), where 
half of the CpGs had a negative correlation and the other half had a positive correlation (Supplementary Table 20). 
From these 54 CpGs, 8 CpGs located in UCN were identical to the ones in the multiple ‘discordant’ promoter 
CpGs of Fig. 4e. Thus, cord blood DNA methylation of 8 CpGs in the UCN promoter were GA-related, positively 
correlated with expression, and also correlated with own postnatal blood methylation. However, 97.4% of the 
2,093 candidate CpGs showed no methylation expression correlation at birth in cord blood.

Discussion
In this study, 27,619 GA-related CpGs and 150 SD score-related CpGs were initially identified from the cord 
blood EWAS. Secondly, 461 GA-related transcripts and no SD score-related transcripts were found, and meth-
ylation expression correlations among approximately two-thirds of GA-related CpG transcript combinations 
were observed. Lastly, 2093 candidate CpGs for GA-involved epigenetic memory were identified. Among these 
candidates, trends of chromatin states, such as, “Repressed Polycomb” was observed, alongside the confirmation 
of 54 CpG correlations with transcription, and the non-negligible number of discordant CpGs where transcrip-
tion increased as methylation increased.

Four studies have previously been conducted on GA-related CpGs and/or GA-prediction CpGs. More than 
75% of the GA-related CpGs reported by Schroeder et al. (41 CpGs identified in a discovery cohort, 26 of 
which  replicated13) or ARIES Cohort (224  CpGs15) were also identified in our study. On the other hand, only 
approximately 40% of our 27,619 GA-related CpGs were found among the 44,359 CpGs associated with ultra-
sonography-determined GA (Bohlin et al.) within the MoBa Cohort  data17 (Supplementary Fig. 14). However, 
regarding RefSeq genes within 250 bp upstream or downstream to CpGs, approximately 80% of our GA-related 
RefSeq genes were common to the Bohlin et al. study. The discrepancy of CpG loci between the present study 
and Bohlin et al. study may be attributed to racial differences (Japanese vs Norwegian) and/or sampling meth-
ods used (mononuclear cell separation (lymphocyte-dominant) vs buffy coat without additional cell isolation 
(granulocyte-dominant)). Of the 131 CpGs for GA-prediction identified by Bohlin et al.17, 108 were found 
among our GA-related CpGs while 50 of 148 CpGs reported by Knight et al.16 (using the method developed by 
 Horvath26) were observed in our study (Supplementary Fig. 15). The difference in overlap between studies may be 
attributed to the selection methods of GA-prediction CpGs. In contrast, our transcription-correlated GA-related 
CpGs or epigenetic memory candidate CpGs overlapped only minimally with the aforementioned prediction 
CpGs. Thus, most epigenetic memory candidate CpGs may not be suitable for predicting accurate GA, which 
may be reasonable based on the understanding that memory methylation would not undergo changes ex utero 
according to chronological time passing.

The CpGs associated with birth weight in previous studies (Engel et al., MoBa; Simpkin et al., ARIES)15,18 or 
CpGs associated with “birth weight SD score for GA”19 were not observed among birth weight SD score-related 
CpGs in our study. One reason for such discrepancies may lie with this study’s participant population whose ratio 
of preterm to term infants was approximately 1.5, whereas the previous studies pertained mainly to term infants. 
Second, the results may be affected by differences in nutritional and environmental status of mothers between 
the study areas. For instance, Japanese mothers are likely to have less body-weight gain during pregnancy than 
mothers in other  countries27.

There are several strengths to note compared with previous cord blood EWAS of GA. Firstly, we conducted an 
integrative analysis of the methylome and simultaneously generated transcription data. Secondly, we evaluated 

Figure 2.  Epigenome-wide association study (EWAS) of gestational age and/or birth weight SD scores (n = 110, 
cord blood samples). (a) Blue circle reflects CpGs associated with gestational age (GA) in “Model 1” linear 
regression analysis and yellow circle reflects CpGs in “Model 2”. The intersection of blue and yellow circles 
means finally decided CpGs associated with GA. Upward (or downward) arrows mean the number of CpGs 
whose methylation increases (or decreases) when predictor values increase. (b) Gray circle reflects CpGs 
associated with birth weight SD score in Model 1 linear regression analysis and pink circle reflects CpGs in 
Model 2. The intersection of gray and pink circles means finally decided CpGs associated with birth weight SD 
score. (c) Volcano plot indicating regression coefficients (x-axis) versus p-values (-log10 scale) of CpGs associated 
with GA. All values were generated in Model 1 analysis. (d) Volcano plot indicating regression coefficients 
(x-axis) versus p values (-log10 scale) of CpGs associated with birth weight SD scores. All values were generated 
in Model 1 analysis. (e) Top 10 KEGG pathway categories enriched in the gene set of negatively GA-related 
CpGs by using DAVID 6.8. We selected genes in which the promoter region had at least 2 CpGs associated with 
GA. Single red asterisk denotes a pathway category which was also enriched in GA-related transcripts. x-axis 
of the barplots means –log10 enrichment p-value. (f) Top 10 KEGG pathway categories enriched in the gene set 
of positively GA-related CpGs by using DAVID 6.8. *Model 1) objective variable: %methylation, predictors: GA, 
SD-score, adjusted for: infant sex, batch, cell proportion. **Model 2) objective variable: %methylation, predictors: 
GA, SD-score, adjusted for: infant sex, batch, cell proportion, chorioamnionitis, idiopathic premature rupture 
of the membrane, preeclampsia, maternal smoking before pregnancy, maternal pre-pregnancy BMI, cesarean 
section. ***GA: gestational age, SD-score: birth weight SD score, EWAS: epigenome-wide association study.
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methylation persistence between samples at birth and samples at the expected due date, and among the CpGs of 
persistent methylation we discovered novel trends in chromatin state and transcription.

Although there have been previous reports on GA-related CpGs, we also identified 461 GA-related transcripts 
by using the same samples as those used in the EWAS of GA. In addition, the NF-kappa B signaling pathway was 
enriched in both negatively GA-related CpGs and positively GA-related transcripts while the PI3K-Akt signal-
ing pathway was enriched in the inverted manner. These relationships are consistent with the accepted notion 
that higher methylation in promoter region leads to repressed gene expression, thereby supporting the validity 
of our analyses. Correlations between methylation and transcription were confirmed in approximately 2/3 of 
GA-related transcripts. Among these correlated CpG-transcript combinations, the combinations of positive 
correlations were found in approximately half as many as negatively correlated combinations – a non-negligible 
number. In the promoter region, positive correlation between methylation and transcription means a discord-
ant CpG-transcript relation where transcription increases as methylation increases. Recent studies targeting 
other sample types revealed that CpGs of such discordant relation are not  uncommon24,28. In the present study, 
“Repressed Polycomb” of the 25 chromatin states in ChromHMM had the highest number among discordant 
promoter CpGs. It was also reported that the relation between methylation and transcription at the polycomb-
binding site could be opposite from that of other  sites29,30.

With respect to GA-involved epigenetic memory, we identified 2,093 candidate CpGs based on a correlation 
coefficient ≥ 0.7 between cord and postnatal blood methylation, although we did not identify any FDR-significant 
CpGs in the postnatal blood EWAS whose methylation was associated with GA at birth. These results suggest 
that some epigenetic effects of preterm birth may tend to persist postnatally, but there may be fluctuations in 
the degree of epigenetic memory. Also, methodologically, the lack of significant CpGs may have been due to 
limited statistical power. Furthermore, we demonstrated that the states of “Repressed Polycomb” and “Bivalent 
Promoter” were enriched among the GA-related epigenetic candidate CpGs. These two types of chromatin 
states are based on the repressive histone mark of  H3K27me325, or related to polycomb-binding, and are closely 
 connected31. Polycomb-binding, or histone modification of H3K27me3, is involved in epigenetic memory in 
 plants32,33. GA-involved epigenetic memory candidate CpGs did not necessarily show relationship between 
methylation and corresponding transcription, with only 54 candidate CpGs found to have significant correla-
tion with gene expression. There were also 11 discordant promoter CpGs among these 54 sites (Supplementary 
Table 20). UCN, SLC12A7, TNFAIP2, ANGPT2, and NGF were the only genes within 250 bp upstream or down-
stream of regions that contained ≥ 3 CpGs and showed an association with GA, correlation with transcription, 
and correlation coefficient ≥ 0.7 between birth and at around due date. UCN showed the largest number of sig-
nificant CpGs. The EWAS by Bohlin et al. identified multiple GA-related CpGs of UCN, SLC12A7, and NGF by 
using MoBa cohort  data17, and among them cg20442078 and cg05231308 of UCN were also found in our list of 
transcription-correlated GA-involved epigenetic memory candidates (Supplementary Table 20). UCN encodes 
Urocortin, an endogenous peptide hormone belonging to the corticotropin-releasing hormone (CRH)  family34. 
Urocortin is found in the central nervous system (CNS) and peripheral tissues such as the heart, adrenal glands, 
and lymphocytes. Urocortin influences stress responses in the CNS, cardiovascular system and immune system 
via CRH receptors 1 or 2. For instance, it has protective effects against myocardial ischemic reperfusion  injury35. 
All the loci of UCN presented ‘discordant’ methylation-expression correlations with all these CpGs annotated 
as “Repressed Polycomb” among the 25 chromatin states. This finding may be possible as discordance has been 
observed for polycomb-binding sites as described previously. UCN was one of the top two genes that had multiple 
candidate CpGs for GA-involved epigenetic memory with the modification of H3K27me3; the other top gene 
was RGMA whose major chromatin state was ‘Bivalent Promoter’. RGMA encodes repulsive guidance molecule 
A, a potent inhibitor of nerve growth that is expressed in several brain diseases, including Alzheimer’s disease 
and multiple  sclerosis36. RGMA has also been reported to play an inhibitory role in cancer  progression37. Further, 
a recent study has suggested that RGMA may have an important role in the communication between the sym-
pathetic nervous system and inflammation via monocyte activation through the suppression of NF-κB activity 
and activation of PI3K-Akt-signaling38.

Figure 3.  Association analysis of transcription and gestational age and/or birth weight SD score (n = 55, 
cord blood samples). (a) Blue circle reflects CpGs associated with gestational age in cord blood EWAS and 
pink circle reflects CpGs associated with birth weight SD scores. (b) 19,640 among 27,701 CpGs detected 
in cord blood EWAS were matched to 9,691 gene expression microarray probes. Light blue circle reflects 
gene expression probes matched to GA-related CpGs, and pink circle reflects probes matched to SD score-
related CpGs. (c) Volcano plot indicating regression coefficients (x-axis) versus p-values (-log10 scale) of gene 
expression probes associated with GA. All values were generated in the multivariate linear regression analysis*. 
Deep blue dots mean FDR-significant. Light blue dots mean nominal p < 0.05 and FDR ≥ 0.05. Grey dots mean 
nominal p ≥ 0.05. (d) Volcano plot indicating regression coefficients (x-axis) versus p-values (-log10 scale) of 
gene expression probes associated with birth weight SD scores. All values were generated in Model1 analysis. 
Pink dots mean nominal p < 0.05 and FDR ≥ 0.05. Grey dots mean nominal p ≥ 0.05. (e) Top 10 KEGG pathway 
categories enriched in negatively GA-related expression probes by using DAVID 6.8. Here, threshold of selecting 
expression probes is nominal p < 0.05. Single red asterisk denotes a pathway category which was also enriched in 
GA-related CpGs. x-axis of the barplots means –log10 enrichment p-value. (f) Top 10 KEGG pathway categories 
enriched in positively GA-related expression probes by using DAVID 6.8. *Analysis model) objective variable: 
 log2-transformed expression of each gene expression probes, predictors: GA, SD score, adjusted for: infant 
sex, batch, cell proportion. **GA: gestational age, SD score: birth weight SD score, EWAS: epigenome-wide 
association study.
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It is important to acknowledge certain limitations of this study. The sample size was relatively small and varied 
across the different analyses, and we were not able to attempt replication in an independent cohort. This was 
largely due to the trade-off between sample size and experimental effort including mononuclear cell isolation 
and simultaneous DNA/RNA extraction. Despite the modest sample size, we confirmed the same GA-related 
CpGs found in previous EWAS, identified novel candidates, and were also able to integrate the EWAS findings 
with transcription data. In the future, it is desirable to evaluate DNA methylation and gene expression simulta-
neously by using samples from larger populations with plans for replication attempts. Second, the samples for 
evaluation of epigenetic memory were obtained twice within a short interval between birth and expected due 
date. A previous study reported that most methylation alteration associated with GA disappears by the age of 7 
 years15. On the other hand, this study successfully demonstrated for the first time that most of these associations 
were attenuated by around the due date while some epigenetic effects in preterm infants tend to persist at least 
for several weeks to months. Thus, we consider the use of our postnatally collected samples to be informative in 
the assessment of epigenetic memory focused on the early life period.

In conclusion, integrative analysis of cord blood methylome and transcription data identified many GA-
related methylation alterations and some related to birth weight SD score. We subsequently confirmed methyla-
tion expression correlations among candidate CpGs whose methylation was associated with GA. We also identi-
fied methylation alterations generated in preterm birth that persisted after birth, thus suggesting GA-involved 
epigenetic memory. Among these candidate CpGs for epigenetic memory, we found trends of chromatin state 
such as repressed polycomb-binding sites.

Methods
Ethics statement. All methods were carried out in accordance with following ethical guidelines in Japan: 
Ethics Guidelines for Human Genome/Gene Analysis Research, Ethical Guidelines for Medical and Health 
Research Involving Human Subjects, Ethical Guidelines for Epidemiological Research. Our study was approved 
by the following institutional ethics committees: Human Genome Ethics Committee of The University of Tokyo 
Hospital (approval ID: G10036); Ethics Committee of National Center for Child Health and Development 
(approval ID: 234); Ethics and Personal Information Protection Committee of Tokyo Metropolitan Bokutoh 
Hospital (approval ID: 38). All participant mothers provided written informed consents for themselves and their 
infants.

Study population. We implemented a cross-sectional study design with prospective recruitment of 
mother-infant pairs considered eligible if they were East Asian, had a live birth at 22–42 weeks gestation, and 
no fetal congenital disease prenatally diagnosed. Recruitment was targeted for more than 100 mother-infant 
pairs (median sample size was 96 based on four major previous  studies13,14,20,39). Between October 2014 and July 
2016, 147 mother-infant pairs were invited to participate around the time of delivery at the University of Tokyo 
Hospital or at the Tokyo Metropolitan Bokutoh Hospital, among which 144 mothers provided written informed 

Figure 4.  CpG sites whose methylation correlated with corresponding transcription among gestational age-
related CpGs. (a) Larger circle with gray line reflects 1,196 CpGs whose corresponding genes’ transcription 
associated with gestational age. Smaller orange circle means 674 CpG sites whose methylation correlated with 
corresponding transcription  log2-transformed among the 1,196 CpGs (nominal p-value < 0.05; n = 55). ‘Combi’ 
means the combinations of the same CpGs and those corresponding transcripts. (b) Dot plot indicating the 
distribution of correlation coefficients between methylation and  log2-transformed gene expression in each 
of the 3 large regions for the 674 expression-correlated GA-related CpGs. Green dots mean CpGs within 
“Promoter Region” including TSS1500, TSS200, 5′UTR, 1st Exon. Pink dots mean CpGs within “Gene Body” 
region including Body, 3′UTR. Black dots mean IGR, i.e., the intergenic region. Regarding “Promoter Region”, 
we defined negative correlation as ‘concordant’, while positive correlation as ‘discordant’. (c) Distribution of 
25 chromatin states for 84 promoter GA-related CpGs of ‘discordant’ methylation expression-relation using 
cord blood T cell-based annotation of ChromHMM. (d) Enrichment of 25 chromatin states for 84 promoter 
GA-related CpGs of ‘discordant’ methylation expression relation. Error bars indicate 95% CI (confidence 
interval). Single red asterisk denotes the enriched chromatin state which was significant at Bonferroni-criteria 
(0.05/25) and of odds ratio ≥ 1 (black dashed line). Filled black diamnod indicate that the upper limit of 95% 
CI is too high to show in error bars because this value is a prominent outlier, more than 3 times of the 2nd 
highest value and there is no statistical significance. (e). Top 8 genes that have multiple GA-related CpGs of 
‘discordant’ methylation expression relation. f. Chromatin state of UCN in hematopoietic cell samples. Filled 
green diamnod means a ‘discordant’ promoter GA-related CpG, and the representative is cg13833437. (g). 
A scatterplot of GA (x-axis) versus cord blood methylation at cg13833437. (n = 110) (h) A scatterplot of GA 
(x-axis) versus  log2-transformed gene expression of A_33_P3353030, UCN transcript (n = 55). (i) A scatterplot 
of methylation of cg13833437 (x-axis) versus  log2-transformed gene expression of A_33_P3353030 (n = 55). 
*GA: gestational age. **Chromatin state abbreviations are defined in ChromHMM. Following Abbreviations are 
defined in ChromHMM; TssA: Active TSS, PromU: Promoter upstream TSS, PromD1: Promoter downstream 
with DNase, PromD2: Promoter downstream TSS, Tx5′: Transcription 5′, Tx: Transcription, Tx3′: Transcription 
3′, TxWk: Weak Transcription, TxReg: Transcription Regulatory, TxEnh5′: Transcription 5′ Enhancer, TxEnh3′: 
Transcription 3′ Enhancer, TxEnhW: Transcription Weak Enhancer, EnhA1: Active Enhancer 1, EnhA2: Active 
Enhancer 2, EnhAF: Active Enhancer Flank, EnhW1: Weak Enhancer 1, EnhW2: Weak Enhancer 2, EnhAc: 
Enhancer Acetylation Only, DNase: DNase only, ZNF/Rpts: ZNF genes & repeats, Het: Heterochromatin, 
PromP: Poised Promoter, PromBiv: Bivalent Promoter, ReprPC: Repressed Polycomb, Qies: Quiescent/Low.
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consents, and 3 refused participation (Supplementary Fig. 1). Umbilical cord blood samples were obtained from 
all participants at the time of infant delivery, and postnatal peripheral blood samples were obtained by veni-
puncture at least 2 weeks after birth around their due date (36–44 weeks of postmenstrual age). Postnatal blood 
samples were unavailable for 74 participants for various reasons, but primarily due to hospital discharge occur-
ring prior to 2 weeks after birth (Supplementary Fig. 1).

Covariates. Clinical data (e.g. GA, birth weight, mode of delivery, etc.), maternal age and pre-pregnancy 
BMI, use of assisted reproductive technology (e.g. in vitro fertilization (IVF), etc.), mother’s smoking status and 
pregnancy complications, as well as postmenstrual age during postnatal blood collection were obtained from 
hospital medical records. Paternal data (i.e. body weight, height, age) were obtained by questionnaire. Birth 
weight SD score – namely birth weight z-score for GA according to Japanese reference data – was calculated 
from GA, birth weight, infants’ sex, and parity, through a program provided by the Japanese Society for Pediatric 
Endocrinology (downloaded from following site on 16th, December, 2016; http://jspe.umin.jp/medic al/keisa 
n.html).

Mononuclear cell separation and DNA/RNA extraction. From the obtained blood samples, cord 
blood mononuclear cells (CBMCs) and peripheral blood mononuclear cell (PBMC) samples were separated by 
gradient centrifugation using Ficoll-Hypaque within 24 h of sample collection (details are described in Supple-
mentary Fig. 3). The buffy coats of CBMCs/PBMCs were directly lysed with Buffer RLT Plus (Qiagen) contain-
ing β-mercaptoethanol in 59 cord blood samples and 14 postnatal blood samples. Genomic DNA was extracted 
from the lysate of mononuclear cell buffy coat using Qiagen AllPrep kit (Qiagen) (Protocol 1). In the remaining 
76 cord blood samples and 52 postnatal blood samples, we utilized Protocol 2, in which the CBMCs/PBMCs 
buffy coats were processed with erythrocyte lysis solution, and genomic DNA and total RNA were simultane-
ously extracted from the lysate of the isolated cells using the same kit in Protocol 1. Aliquots of genomic DNA 
and total RNA were then stored at − 80 °C.

Quality control (QC) and preprocessing in DNA methylation microarray analysis. Following 
extraction, genomic DNA was bisulfite-converted using the EpiTect Plus DNA Bisulfite Kit (Qiagen). Bisulfited 
DNA was processed with 450 k array, which can assay methylation levels at more than 485,000 CpG sites. The 
methylation levels at each CpG site was calculated as β values. The methylation levels at each CpG site was 
calculated as β values where β  = intensity of the methylated allele (M) / (intensity of the unmethylated allele 
(U) + intensity of the methylated allele (M) + 100). Therefore, β values ranged from 0 (completely unmethylated) 
to 1 (completely methylated). All methylation data preprocessing was conducted in R environment (v. 3.3.2). The 
quality of each sample was evaluated using RnBeads package (v. 1.4.0)40 and minfi package (v. 1.20.2)41. Failed 

Figure 5.  Candidate CpGs for GA-involved epigenetic memory whose methylation alteration persist after 
birth. (a) Histogram showing distribution of correlation coefficients between cord blood and postnatal blood 
methylation levels among the 27,619 GA-related CpGs decided by the cord blood EWAS (n = 110). Red block 
denotes the 2,093 CpGs of correlation coefficients ≥ 0.7 (n = 47), i.e., candidate CpGs whose methylation 
alteration persist after birth. (b) Scatterplots indicating cord blood methylation level (x-axis) versus postnatal 
blood methylation level for 2 candidate CpGs. These CpGs existed in the representative genes with multiple 
candidate CpGs in chromatin state of ‘Repressed Polycomb’ or ‘Bivalent Promoter’. (c) Heatmap showing 
Pearson correlation between cord blood and postnatal blood CpG methylation levels in 2 regions (UCN 
with its neighborhood (top panel), the midst of RGMA (bottom panel)). Each column (row) represents a 
cord (postnatal) blood CpG methylation level. Row labels indicate CpG names, and a dark red label means 
a candidate CpG for epigenetic memory, and a green label means a CpG nearby UCN. (d) Distribution of 
25 chromatin states for GA-related CpGs whose cord-post correlation ≥ 0.7 using cord blood T cell-based 
annotation of ChromHMM. (e) Enrichment of 25 chromatin states for GA-related CpGs whose cord post-
correlation ≥ 0.7.  Single red asterisk denotes the enriched chromatin state which was significant at Bonferroni-
criteria (0.05/25) and of enrichment odds ratio ≥ 1 (black dashed line). (f) Top 11 genes with multiple loci 
of cord-post correlation ≥ 0.7 among GA-related CpGs and those CpGs’ chromatin state. (g) A line graph 
showing the relationship between the cord-post correlation level of methylation (x-axis) and the enrichment 
odds ratio of 2 chromatin states (‘Repressed Polycomb’, ‘Bivalent Promoter’). 27,619 GA-related CpGs were 
divided into 10 bins every 10th percentile for cord-post correlation coefficients. (h) Overlap between 2093 
candidate CpGs for GA-involved epigenetic memory (gray circle) and 674 CpGs whose methylation correlated 
with  log2-transformed expression of corresponding genes (orange circle: see Fig. 4) among GA-related CpGs. 
*GA: gestational age, EWAS: epigenome-wide association study. **All error bars indicate 95% CI (confidence 
interval). ***Chromatin state abbreviations are defined in ChromHMM. Following Abbreviations are defined 
in ChromHMM; TssA: Active TSS, PromU: Promoter upstream TSS, PromD1: Promoter downstream with 
DNase, PromD2: Promoter downstream TSS, Tx5′: Transcription 5′, Tx: Transcription, Tx3′: Transcription 3′, 
TxWk: Weak Transcription, TxReg: Transcription Regulatory, TxEnh5′: Transcription 5′ Enhancer, TxEnh3′: 
Transcription 3′ Enhancer, TxEnhW: Transcription Weak Enhancer, EnhA1: Active Enhancer 1, EnhA2: Active 
Enhancer 2, EnhAF: Active Enhancer Flank, EnhW1: Weak Enhancer 1, EnhW2: Weak Enhancer 2, EnhAc: 
Enhancer Acetylation Only, DNase: DNase only, ZNF/Rpts: ZNF genes & repeats, Het: Heterochromatin, 
PromP: Poised Promoter, PromBiv: Bivalent Promoter, ReprPC: Repressed Polycomb, Qies: Quiescent/Low.
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samples were excluded on the basis of bisulfite conversion efficiency, hybridization efficiency, and the intensity 
of methylated and unmethylated probes.

After exclusion of low-quality samples, CpG probes were filtered using the ChAMP package (v. 2.6.0)42. 
Non-CpG probes were removed. The probes on the X and Y chromosomes, with a detection p value > 0.01, and a 
beadcount less than 3 were removed. Based on the default of the ChAMP package, the probes mapping to multiple 
sites, defined by Nordlund et al.43, were removed. In addition, according to the data of Chen et al.44, cross-reactive 
and polymorphic CpG probes of Asian minor-allele frequency (MAF) ≥ 1% were also removed. After filtering, 
410,735 CpG probes remained for further analysis. Background correction and dye-bias equalization (Noob)45 
was then performed using the minfi package. To further reduce the bias of type 2 probe values, beta-mixture 
quantile normalization (BMIQ)46 was performed using the ChAMP package.

Estimation of cell fraction. Cell fraction was estimated with the method proposed by  Houseman47,48 
using the Bakulski reference data set for cord blood  analysis49. Estimated cell fraction data including lympho-
cytes (CD4 + T cells, CD8 + T cells, NK cells, B cells), myelocytes (granulocytes, monocytes), and nucleated red 
blood cells (nRBCs) were used for further multivariate methylation analysis.

Gene expression microarray analysis and data preprocessing. Following extraction, total RNA was 
initially quantified and qualitatively assessed whereby samples with low RNA yield and quality were excluded 
(Supplementary Fig. 4). Thereafter, 100 ng of total RNA was used to produce Cyanine 3-labeled cRNA. After 
labeling, 600 ng of cRNA was fragmented and hybridized to the SurePrint G3 Human GE microarray 8 × 60 K 
Ver. 3.0 (Agilent Technologies). After hybridization, washing the array slides, and scanning, the raw intensity 
data were obtained using Agilent Feature Extraction (FE) software (ver. 10.7.3.1).

As described in Supplementary Fig. 4, array QC on each sample, probe filtering, and normalization were per-
formed using GeneSpring14.5 (Agilent Technologies). The data set comprised of 65 cord blood and 48 postnatal 
peripheral blood samples that passed QC; these were then quantile normalized with the minimum expression 
level of all transcription among all samples set to 1. Probes above the threshold expression criteria were selected, 
and those on sex chromosomes were removed. Finally, 46,789 probes remained for further analysis. After this 
preprocessing, the samples from twin infants were excluded. As the number of postnatal blood RNA samples 
were small, these were not used for further analysis. In total, 55 cord blood RNA samples remained. Prior to 
transcription analysis, expression probes were selected from among the 46,789 remaining probes according to 
the results of the cord blood EWAS; probes without threshold background signal detection were removed. The 
normalized and filtered data were imported into the R environment for statistical analysis.

Statistical analysis. All statistical analysis was conducted in the R environment (v. 3.3.2). The overall anal-
ysis framework is summarized in Supplementary Fig. 5, and the detail of each analysis is described below.

Covariates associating with GA and/or birth weight SD scores. Simple linear regression analysis was performed 
to examine the association between prenatal variables and infant GA and birth weight SD scores. Infant sex and 
six prenatal variables associated with GA and/or birth weight SD scores were included in subsequent analyses. 
These variables were subject to mutual statistical adjustment in multivariate linear regression analysis of GA and 
SD scores. As described by  Gelman50 and Lin et al.51, binary prenatal variables were not scaled, and continuous 
prenatal variables were standardized to have a standard deviation of 0.5 in order to compare effect estimates 
from both continuous and binary prenatal variables.

Epigenome-wide association analysis of GA and/or birth weight SD scores and pathway analysis. Two multivari-
ate linear regression models were used to evaluate the association between GA and SD scores and cord blood 
DNA methylation value for each CpG site.

The two linear regression models differed in covariate adjustment, in which the first model (Model 1) adjusted 
for infant sex, batch and estimated cellular populations, and the other model (Model 2) additionally adjusted for 
the above mentioned 6 prenatal covariates associated with GA and/or SD score. To adjust for multiple testing 
across 410,735 probes, suggestive CpG sites associated with GA or birth weight SD scores were selected at an 
FDR of < 0.05 in each model. Finally, we defined GA-related CpGs or SD score-related CpGs as CpG sites whose 
methylation levels were associated with GA or SD scores in both “Model 1” and “Model 2” in the same direction.

In preparations for pathway analyses, we categorized the suggestive CpGs based on the direction of regres-
sion coefficients (i.e. positive or negative) for both the analysis of GA and SD score, giving rise to four categories 
of CpGs. Next, the four categories of CpGs were linked to genes using the ChAMP  package23. In addition to 
duplicate gene entities, probes lacking an Illumina gene annotation, and probes mapped to gene body, 3′UTR, 
or intergenic region were not used for pathway analyses. Among the gene entities of each CpG category, only 
entities with at least 2 CpGs on them were selected. Finally, DAVID Bioinformatics Resources 6.823 was used to 
assess enrichment in KEGG pathway, and Benjamini–Hochberg procedure was applied to this analysis based on 
the FDR; an enrichment-FDR threshold of ≤ 0.1 was used based on the default applied by the DAVID resource 
(https ://david .ncifc rf.gov/conte nt.jsp?file=funct ional _annot ation .html).

Ymeth = β0 + βGA × XGA + βSDscore × XSDscore +

∑
(βi × XCOV ) + ε

https://david.ncifcrf.gov/content.jsp?file=functional_annotation.html
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Data availability
Both the methylation microarray data and the gene expression microarray data have been deposited in the Gene 
Expression Omnibus (GEO) database under accession number GSE110829.
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